Xianli Su

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9301960/xianli-su-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 137
 5,421
 38
 71

 papers
 citations
 h-index
 g-index

 148
 6,531
 9.6
 5.65

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
137	Phase boundary mapping and suppressing Pb vacancies for enhanced thermoelectric properties in n-type Sb doped PbTe compounds. <i>Materials Today Energy</i> , 2022 , 25, 100962	7	1
136	The role of Ge vacancies and Sb doping in GeTe: a comparative study of Thermoelectric Transport Properties in SbxGe1-1.5xTe and SbxGe1-xTe Compounds. <i>Materials Today Physics</i> , 2022 , 100682	8	1
135	Removing the Oxygen-Induced Donor-like Effect for High Thermoelectric Performance in n-Type BiTe-Based Compounds. <i>ACS Applied Materials & Discrete Material</i>	9.5	2
134	Synergistically Enhanced Thermoelectric Performance of CuSnSe-Based Composites Ag Doping Balance. <i>ACS Applied Materials & Doping Salance</i> , 13, 55178-55187	9.5	1
133	Extremely low thermal conductivity of G a2O3 with porous structure. <i>Journal of Applied Physics</i> , 2021 , 130, 195103	2.5	1
132	Thermal stability and Interfacial structure evolution of Bi2Te3-based micro thermoelectric devices. Journal of Alloys and Compounds, 2021 , 896, 163090	5.7	4
131	An Instant Change of Elastic Lattice Strain during Cu2Se Phase Transition: Origin of Abnormal Thermoelectric Properties. <i>Advanced Functional Materials</i> , 2021 , 31, 2100431	15.6	9
130	New criteria for the applicability of combustion synthesis: The investigation of thermodynamic and kinetic processes for binary Chemical Reactions. <i>Journal of Alloys and Compounds</i> , 2021 , 860, 158465	5.7	1
129	Strong Anisotropy and Bipolar Conduction-Dominated Thermoelectric Transport Properties in the Polycrystalline Topological Phase of ZrTe. <i>Inorganic Chemistry</i> , 2021 , 60, 8890-8897	5.1	3
128	Copper ion chemistry in a new rechargeable all-solid-state copper-ion battery. <i>Journal of Solid State Chemistry</i> , 2021 , 298, 122112	3.3	0
127	Enhanced thermoelectric performance of tin oxide through antimony doping and introducing pore structures. <i>Journal of Materials Science</i> , 2021 , 56, 2360-2371	4.3	3
126	Achieving superior performance in thermoelectric Bi0.4Sb1.6Te3.72 by enhancing texture and inducing high-density line defects. <i>Science China Materials</i> , 2021 , 64, 1507-1520	7.1	3
125	Atomic mechanism of ionic confinement in the thermoelectric Cu2Se based on a low-cost electric-current method. <i>Cell Reports Physical Science</i> , 2021 , 2, 100345	6.1	3
124	Structural transformation and thermoelectric performance in Ag2Te1\(\mathbb{B}\)Sex solid solution. <i>Journal of Alloys and Compounds</i> , 2021 , 871, 159507	5.7	4
123	Regulation of Exciton for High Thermoelectric Performance in (Bi, Sb)2Te3 alloys via doping with Pb and Multi-scale Microstructure. <i>Journal of the European Ceramic Society</i> , 2021 ,	6	2
122	The origin of ultra-low thermal conductivity of the Bi2Te2S compound and boosting the thermoelectric performance via carrier engineering. <i>Materials Today Physics</i> , 2021 , 20, 100472	8	3
121	Ultralow Thermal Conductivity, Multiband Electronic Structure and High Thermoelectric Figure of Merit in TlCuSe. <i>Advanced Materials</i> , 2021 , 33, e2104908	24	5

(2020-2021)

120	Mechanical Properties and Thermal Stability of the High-Thermoelectric-Performance CuSe Compound. <i>ACS Applied Materials & Discrete States and Thermal Stability of the High-Thermoelectric-Performance CuSe Compound. ACS Applied Materials & Discrete Stability of the High-Thermoelectric-Performance CuSe Compound. ACS Applied Materials & Discrete Stability of the High-Thermoelectric-Performance CuSe Compound. ACS Applied Materials & Discrete Stability of the High-Thermoelectric-Performance CuSe Compound. ACS Applied Materials & Discrete Stability of the High-Thermoelectric-Performance CuSe Compound. ACS Applied Materials & Discrete Stability of the High-Thermoelectric-Performance CuSe Compound. ACS Applied Materials & Discrete Stability of the High-Thermoelectric-Performance CuSe Compound. ACS Applied Materials & Discrete Stability of the High-Thermoelectric-Performance CuSe Compound. ACS Applied Materials & Discrete Stability of the High-Thermoelectric-Performance CuSe Compound. ACS Applied Materials & Discrete Stability of the High-Thermoelectric-Performance CuSe Compound & Discrete Stability of the High-Thermoelectric-Performance CuSe Compound & Discrete Stability of the High-Thermoelectric-Performance CuSe Cuse Cuse Cuse Cuse Cuse Cuse Cuse Cus</i>	9.5	2	
119	Zn-Induced Defect Complexity for the High Thermoelectric Performance of n-Type PbTe Compounds. <i>ACS Applied Materials & Samp; Interfaces</i> , 2021 , 13, 43134-43143	9.5	5	
118	In-situ formed nano-pore induced by Ultrasonication boosts the thermoelectric performance of Cu2Se compounds. <i>Journal of Alloys and Compounds</i> , 2021 , 881, 160639	5.7	4	
117	High carrier mobility and ultralow thermal conductivity in the synthetic layered superlattice Sn4Bi10Se19. <i>Materials Advances</i> , 2021 , 2, 2382-2390	3.3	4	
116	Unveiling the Intrinsic Low Thermal Conductivity of BiAgSeS through Entropy Engineering in SHS Kinetic Process. <i>Wuji Cailiao Xuebao/Journal of Inorganic Materials</i> , 2021 , 36, 991	1	O	
115	Boosting Thermoelectric Properties of AgBi(SeS) Solid Solution via Entropy Engineering. <i>ACS Applied Materials & Discrete Section</i> , 13, 4185-4191	9.5	3	
114	Electroresistance in multipolar antiferroelectric CuSe semiconductor. <i>Nature Communications</i> , 2021 , 12, 7207	17.4	1	
113	Significant Enhancement in the Thermoelectric Performance of Aluminum-Doped ZnO Tuned by Pore Structure. <i>ACS Applied Materials & Samp; Interfaces</i> , 2020 , 12, 51669-51678	9.5	14	
112	Enhanced Thermoelectric Performance of BiSbTe Nanostructured with CdTe. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 26330-26341	9.5	15	
111	Ultralow Thermal Conductivity and Thermoelectric Properties of Rb2Bi8Se13. <i>Chemistry of Materials</i> , 2020 , 32, 3561-3569	9.6	14	
110	Anomalously Large Seebeck Coefficient of CuFeS2 Derives from Large Asymmetry in the Energy Dependence of Carrier Relaxation Time. <i>Chemistry of Materials</i> , 2020 , 32, 2639-2646	9.6	16	
109	Vacancy-Based Defect Regulation for High Thermoelectric Performance in GeSbTe Compounds. <i>ACS Applied Materials & Defect Regulation</i> 12, 19664-19673	9.5	24	
108	Quasilinear dispersion in electronic band structure and high Seebeck coefficient in CuFeS2-based thermoelectric materials. <i>Physical Review Materials</i> , 2020 , 4,	3.2	1	
107	Anisotropic thermoelectric transport properties of Bi0.5Sb1.5Te2.96+x zone melted ingots. <i>Journal of Solid State Chemistry</i> , 2020 , 288, 121433	3.3	4	
106	The electronic-thermal transport properties and the exploration of magneto-thermoelectric properties and the Nernst thermopower of Ag2(1+)Se. <i>Journal of Solid State Chemistry</i> , 2020 , 288, 121	4 <i>5</i> 33 ³	5	
105	Discordant nature of Cd in GeTe enhances phonon scattering and improves band convergence for high thermoelectric performance. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 1193-1204	13	49	
104	Impurity states in Mo1⊠MxSe2 compounds doped with group VB elements and their electronic and thermal transport properties. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 619-629	7.1	7	
103	Distinct role of Sn and Ge doping on thermoelectric properties in p-type (Bi, Sb)2Te3-alloys. <i>Journal of Solid State Chemistry</i> , 2020 , 292, 121722	3.3	9	

102	Realizing High Thermoelectric Performance in Sb-Doped AgTe Compounds with a Low-Temperature Monoclinic Structure. <i>ACS Applied Materials & Doped Materials &</i>	9.5	16
101	Blocking Ion Migration Stabilizes the High Thermoelectric Performance in Cu Se Composites. <i>Advanced Materials</i> , 2020 , 32, e2003730	24	49
100	Origin of the Distinct Thermoelectric Transport Properties of Chalcopyrite ABTe2 (A = Cu, Ag; B = Ga, In). <i>Advanced Functional Materials</i> , 2020 , 30, 2005861	15.6	21
99	Enhancing Thermoelectric Performance of n-Type PbSe through Forming Solid Solution with PbTe and PbS. <i>ACS Applied Energy Materials</i> , 2020 , 3, 2-8	6.1	21
98	High Figure of Merit in Gallium-Doped Nanostructured n-Type PbTe-GeTe with Midgap States. <i>Journal of the American Chemical Society</i> , 2019 , 141, 16169-16177	16.4	44
97	Compressive Fatigue Behavior and Its Influence on the Thermoelectric Properties of p-Type BiSbTe Alloys. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 40091-40098	9.5	7
96	Fine-tuning the solid-state ordering and thermoelectric performance of regioregular P3HT analogues by sequential oxygen-substitution of carbon atoms along the alkyl side chains. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 2333-2344	7.1	11
95	Origin of Intrinsically Low Thermal Conductivity in Talnakhite CuFeS Thermoelectric Material: Correlations between Lattice Dynamics and Thermal Transport. <i>Journal of the American Chemical Society</i> , 2019 , 141, 10905-10914	16.4	29
94	Role of Cation Vacancies in CuSnSe Thermoelectrics. <i>ACS Applied Materials & Description</i> 11, 24212-24220	9.5	16
93	Synergistically Improved Electronic and Thermal Transport Properties in Nb-Doped NbMoSeTe Solid Solutions Due to Alloy Phonon Scattering and Increased Valley Degeneracy. <i>ACS Applied Materials & Degeneration (Materials & Degen</i>	9.5	9
92	One-step ultra-rapid fabrication and thermoelectric properties of CuSe bulk thermoelectric material <i>RSC Advances</i> , 2019 , 9, 10508-10519	3.7	6
91	Optimizing the average power factor of p-type (Na, Ag) co-doped polycrystalline SnSe <i>RSC Advances</i> , 2019 , 9, 7115-7122	3.7	12
90	Enhanced Density-of-States Effective Mass and Strained Endotaxial Nanostructures in Sb-Doped PbCdTe Thermoelectric Alloys. <i>ACS Applied Materials & Description of Strained Endotaxial Nanostructures in Sb-Doped PbCdTe Thermoelectric Alloys. ACS Applied Materials & Description of Strained Endotaxial Nanostructures in Sb-Doped PbCdTe Thermoelectric Alloys. <i>ACS Applied Materials & Description of Strained Endotaxial Nanostructures in Sb-Doped PbCdTe Thermoelectric Alloys. ACS Applied Materials & Description of Strained Endotaxial Nanostructures in Sb-Doped PbCdTe Thermoelectric Alloys. <i>ACS Applied Materials & Description of Strained Endotaxial Nanostructures in Sb-Doped PbCdTe Thermoelectric Alloys. ACS Applied Materials & Description of Strained Endotaxial Nanostructures in Sb-Doped PbCdTe Thermoelectric Alloys. <i>ACS Applied Materials & Description of Strained Endotaxial Nanostructures in Sb-Doped PbCdTe Thermoelectric Alloys. ACS Applied Materials & Description of Strained Endotaxial Nanostructures in Sb-Doped PbCdTe Thermoelectric Alloys. <i>ACS Applied Materials & Description of Strained Endotaxial Nanostructures in S</i></i></i></i></i>	9.5	46
89	3D Printing of highly textured bulk thermoelectric materials: mechanically robust BiSbTe alloys with superior performance. <i>Energy and Environmental Science</i> , 2019 , 12, 3106-3117	35.4	64
88	Enhanced Mechanical Properties of NaPbTe/MoTe Thermoelectric Composites Through in-Situ-Formed MoTe. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 41472-41481	9.5	5
87	Large Thermal Conductivity Drops in the Diamondoid Lattice of CuFeS by Discordant Atom Doping. Journal of the American Chemical Society, 2019 , 141, 18900-18909	16.4	33
86	Ultra-fast fabrication of bulk ZrNiSn thermoelectric material through self-propagating high-temperature synthesis combined with in-situ quick pressing. <i>Scripta Materialia</i> , 2019 , 165, 140-144	5.6	5
85	High Thermoelectric Performance in the Wide Band-Gap AgGa1-xTe2 Compounds: Directional Negative Thermal Expansion and Intrinsically Low Thermal Conductivity. <i>Advanced Functional Materials</i> , 2019 , 29, 1806534	15.6	32

(2018-2019)

84	Ultrafast and low-cost preparation of Mg2(Si0.3Sn0.7)1 Sby with superior thermoelectric performance by self-propagating high-temperature synthesis. <i>Scripta Materialia</i> , 2019 , 162, 507-511	5.6	5
83	High Hole Mobility and Nonsaturating Giant Magnetoresistance in the New 2D Metal NaCuSe Synthesized by a Unique Pathway. <i>Journal of the American Chemical Society</i> , 2019 , 141, 635-642	16.4	9
82	Structure and thermoelectric property of Te doped paracostibite CoSb1-Te S compounds. <i>Journal of Solid State Chemistry</i> , 2018 , 262, 1-7	3.3	7
81	Modification of Bulk Heterojunction and Cl Doping for High-Performance Thermoelectric SnSe/SnSe Nanocomposites. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 15793-15802	9.5	28
80	Realization of non-equilibrium process for high thermoelectric performance Sb-doped GeTe. <i>Science Bulletin</i> , 2018 , 63, 717-725	10.6	30
79	Self-propagating high-temperature synthesis and thermoelectric performances of Cu2SnSe3. <i>Journal of Alloys and Compounds</i> , 2018 , 750, 965-971	5.7	8
78	High Thermoelectric Performance in SnTeAgSbTe2 Alloys from Lattice Softening, Giant Phonon Vacancy Scattering, and Valence Band Convergence. ACS Energy Letters, 2018, 3, 705-712	20.1	90
77	Rhombohedral to Cubic Conversion of GeTe via MnTe Alloying Leads to Ultralow Thermal Conductivity, Electronic Band Convergence, and High Thermoelectric Performance. <i>Journal of the American Chemical Society</i> , 2018 , 140, 2673-2686	16.4	206
76	Structure and thermoelectric properties of 2D Cr2Se3BxS3x solid solutions. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 836-846	7.1	9
75	Modulation of carrier concentration and microstructure for high performance Bi x Sb 2-x Te 3 thermoelectrics prepared by rapid solidification. <i>Journal of Solid State Chemistry</i> , 2018 , 264, 141-147	3.3	8
74	High thermoelectric performance in Bi0.46Sb1.54Te3 nanostructured with ZnTe. <i>Energy and Environmental Science</i> , 2018 , 11, 1520-1535	35.4	155
73	Ultrafast Synthesis and Thermoelectric Properties of MnTe Compounds. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 25519-25528	9.5	14
72	Ni and Se co-doping increases the power factor and thermoelectric performance of CoSbS. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 15123-15131	13	11
71	Role of vacancy defects on the lattice thermal conductivity in In2O3 thermoelectric nanocrystals: a positron annihilation study. <i>Journal of Materials Science</i> , 2018 , 53, 12961-12973	4.3	10
70	Enhanced Thermoelectric Properties of Codoped CrSe: The Distinct Roles of Transition Metals and S. <i>ACS Applied Materials & Distinct Roles of Transition Metals and S. ACS Applied Materials & Distinct Roles of Transition Metals and S. ACS Applied Materials & Distinct Roles of Transition Metals and S. ACS Applied Materials & Distinct Roles of Transition Metals and S. ACS Applied Materials & Distinct Roles of Transition Metals and S. ACS Applied Materials & Distinct Roles of Transition Metals and S. ACS Applied Materials & Distinct Roles of Transition Metals and S. ACS Applied Materials & Distinct Roles of Transition Metals and S. ACS Applied Materials & Distinct Roles of Transition Metals and S. ACS Applied Materials & Distinct Roles of Transition Metals and S. ACS Applied Materials & Distinct Roles of Transition Metals and Distinct Role of </i>	9.5	11
69	Interpreting the Combustion Process for High-Performance ZrNiSn Thermoelectric Materials. <i>ACS Applied Materials & Description (Materials & Description of Materials & Description (Materials & Description of Materials & Description of Mat</i>	9.5	19
68	Understanding the combustion process for the synthesis of mechanically robust SnSe thermoelectrics. <i>Nano Energy</i> , 2018 , 44, 53-62	17.1	37
67	Structure and Improved Thermoelectric Properties of AgCrSe Compounds. <i>Inorganic Chemistry</i> , 2018 , 57, 12125-12131	5.1	2

66	Electron Density Optimization and the Anisotropic Thermoelectric Properties of Ti Self-Intercalated TiS Compounds. <i>ACS Applied Materials & Acs Applied & Acs </i>	9.5	14
65	Weak Electron Phonon Coupling and Deep Level Impurity for High Thermoelectric Performance Pb1\(\text{\text{B}}\)GaxTe. Advanced Energy Materials, 2018 , 8, 1800659	21.8	75
64	Thermal conductivity in BiSbTe and the role of dense dislocation arrays at grain boundaries. <i>Science Advances</i> , 2018 , 4, eaar5606	14.3	102
63	Multi-Scale Microstructural Thermoelectric Materials: Transport Behavior, Non-Equilibrium Preparation, and Applications. <i>Advanced Materials</i> , 2017 , 29, 1602013	24	182
62	Panoscopic approach for high-performance Te-doped skutterudite. NPG Asia Materials, 2017, 9, e352-e	3 5 0.3	37
61	Thermoelectric Materials: Multi-Scale Microstructural Thermoelectric Materials: Transport Behavior, Non-Equilibrium Preparation, and Applications (Adv. Mater. 20/2017). <i>Advanced Materials</i> , 2017 , 29,	24	3
60	Chemical synthesis and enhanced electrical properties of bulk poly(3,4-ethylenedioxythiophene)/reduced graphene oxide nanocomposites. <i>Synthetic Metals</i> , 2017 , 229, 65-71	3.6	14
59	Ultrafast Synthesis and Related Phase Evolution of Mg2Si and Mg2Sn Compounds. <i>Journal of Electronic Materials</i> , 2017 , 46, 3172-3181	1.9	4
58	Facile room temperature solventless synthesis of high thermoelectric performance Ag2Se via a dissociative adsorption reaction. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 23243-23251	13	52
57	Semiconducting Pavonites CdMBi4Se8 (M = Sn and Pb) and Their Thermoelectric Properties. <i>Chemistry of Materials</i> , 2017 , 29, 8494-8503	9.6	11
56	Superparamagnetic enhancement of thermoelectric performance. <i>Nature</i> , 2017 , 549, 247-251	50.4	314
55	Grain boundary engineering with nano-scale InSb producing high performance In Ce Co4Sb12+ skutterudite thermoelectrics. <i>Journal of Materiomics</i> , 2017 , 3, 273-279	6.7	27
54	Enhanced thermoelectric performance of heavy-fermion YbAl3 via multi-scale microstructures. Journal of Alloys and Compounds, 2017 , 725, 1297-1303	5.7	5
53	High thermoelectric performance of p-BiSbTe compounds prepared by ultra-fast thermally induced reaction. <i>Energy and Environmental Science</i> , 2017 , 10, 2638-2652	35.4	90
52	Thermoelectric performance of CuFeS2+2x composites prepared by rapid thermal explosion. <i>NPG Asia Materials</i> , 2017 , 9, e390-e390	10.3	29
51	Modification of the intermediate band and thermoelectric properties in Se-doped CoSbS1⊠Sex compounds. <i>RSC Advances</i> , 2017 , 7, 34466-34472	3.7	9
50	Thermoelectric properties of Cu/Ag doped type-III Ba24Ge100 clathrates. <i>Journal of Solid State Chemistry</i> , 2017 , 253, 414-420	3.3	4
49	The Role of Zn in Chalcopyrite CuFeS2: Enhanced Thermoelectric Properties of Cu1\(\mathbb{Z}\)In Situ Nanoprecipitates. Advanced Energy Materials, 2017 , 7, 1601299	21.8	107

(2015-2017)

48	Morphology modulation of SiC nano-additives for mechanical robust high thermoelectric performance Mg2Si1Bn /SiC nano-composites. <i>Scripta Materialia</i> , 2017 , 126, 1-5	5.6	49
47	Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials. <i>Nature Nanotechnology</i> , 2017 , 12, 55-60	28.7	155
46	Thermal Stability of P-Type BiSbTe Alloys Prepared by Melt Spinning and Rapid Sintering. <i>Materials</i> , 2017 , 10,	3.5	18
45	Optimization of Ag Nanoparticles on Thermoelectric Performance of Ba-Filled Skutterudite. <i>Science of Advanced Materials</i> , 2017 , 9, 682-687	2.3	9
44	Nonmagnetic In Substituted CuFe1IInxS2 Solid Solution Thermoelectric. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 27895-27902	3.8	27
43	Optimization of the Electronic Band Structure and the Lattice Thermal Conductivity of Solid Solutions According to Simple Calculations: A Canonical Example of the Mg2Si1MJGexSny Ternary Solid Solution. <i>Chemistry of Materials</i> , 2016 , 28, 5538-5548	9.6	40
42	Manipulating the Combustion Wave during Self-Propagating Synthesis for High Thermoelectric Performance of Layered Oxychalcogenide Bi1\(\text{NPbxCuSeO}. \) Chemistry of Materials, 2016, 28, 4628-4640	9.6	71
41	Phase Segregation and Superior Thermoelectric Properties of Mg2Si(1-x)Sb(x) (0 lk ld.025) Prepared by Ultrafast Self-Propagating High-Temperature Synthesis. <i>ACS Applied Materials & Interfaces</i> , 2016 , 8, 3268-76	9.5	37
40	In situ nanostructure design leading to a high figure of merit in an eco-friendly stable Mg2Si0.30Sn0.70 solid solution. <i>RSC Advances</i> , 2016 , 6, 16824-16831	3.7	12
39	Reversible structural transition in spark plasma-sintered thermoelectric Zn4Sb3. <i>Journal of Materials Science</i> , 2016 , 51, 2041-2048	4.3	13
38	Toward High-Thermoelectric-Performance Large-Size Nanostructured BiSbTe Alloys via Optimization of Sintering-Temperature Distribution. <i>Advanced Energy Materials</i> , 2016 , 6, 1600595	21.8	42
37	Ultra-Fast One-Step Fabrication of Cu2Se Thermoelectric Legs With NiAl Electrodes by Plasma-Activated Reactive Sintering Technique . <i>Advanced Engineering Materials</i> , 2016 , 18, 1181-1188	3.5	8
36	Mechanochemical synthesis of high thermoelectric performance bulk Cu2X (X = S, Se) materials. <i>APL Materials</i> , 2016 , 4, 116110	5.7	24
35	Improved thermoelectric performance of (Fe,Co)Sb3-type skutterudites from first-principles. <i>Journal of Applied Physics</i> , 2016 , 119, 055101	2.5	3
34	Microstructure and thermoelectric properties of Sb doped Hf0.25Zr0.75NiSn Half-Heusler compounds with improved carrier mobility. <i>Intermetallics</i> , 2016 , 74, 1-7	3.5	13
33	Thermal stability of Mg2Si0.3Sn0.7 under different heat treatment conditions. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 10381-10387	7.1	29
32	Ultra-fast non-equilibrium synthesis and phase segregation in InxSn1⊠Te thermoelectrics by SHS-PAS processing. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 8550-8558	7.1	35
31	High thermoelectric performance of higher manganese silicides prepared by ultra-fast thermal explosion. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 12116-12122	7.1	47

30	Enhanced power factor of Mg 2 Si 0.3 Sn 0.7 synthesized by a non-equilibrium rapid solidification method. <i>Scripta Materialia</i> , 2015 , 96, 1-4	5.6	45
29	Mechanically Robust BiSbTe Alloys with Superior Thermoelectric Performance: A Case Study of Stable Hierarchical Nanostructured Thermoelectric Materials. <i>Advanced Energy Materials</i> , 2015 , 5, 1401	3 3 1 ⁸	232
28	Influence of O-Co-O layer thickness on the thermal conductivity of NaxCo2O4 studied by positron annihilation. <i>Journal of Applied Physics</i> , 2015 , 118, 035102	2.5	1
27	High thermoelectric performance of mechanically robust n-type Bi2Te3⊠Sex prepared by combustion synthesis. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 6603-6613	13	97
26	Enhanced Thermoelectric Properties of La-Doped ZrNiSn Half-Heusler Compound. <i>Journal of Electronic Materials</i> , 2015 , 44, 3563-3570	1.9	16
25	Thermoelectric Properties of Ga/Ag Codoped Type-III BallelClathrates with in Situ Nanostructures. <i>ACS Applied Materials & Samp; Interfaces</i> , 2015 , 7, 19172-8	9.5	8
24	Structural transition of partially Ba-filled thermoelectric CoSb3 investigated by positron annihilation spectroscopy. <i>Journal of Applied Physics</i> , 2015 , 117, 055103	2.5	2
23	Low effective mass and carrier concentration optimization for high performance p-type Mg2(1-x)Li2xSi0.3Sn0.7 solid solutions. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 23576-83	3.6	59
22	Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing. <i>Nature Communications</i> , 2014 , 5, 4908	17.4	243
21	Ultra-fast synthesis and thermoelectric properties of Te doped skutterudites. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 17914-17918	13	78
20	Low-temperature transport properties of Tl-doped Bi2Te3 single crystals. <i>Physical Review B</i> , 2013 , 88,	3.3	38
19	Stretchable nanoparticle conductors with self-organized conductive pathways. <i>Nature</i> , 2013 , 500, 59-6.	3 50.4	613
18	In situ synthesis and thermoelectric properties of PbTegraphene nanocomposites by utilizing a facile and novel wet chemical method. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 12503	13	101
17	Enhanced hole concentration through Ga doping and excess of Mg and thermoelectric properties of p-type Mg2(1+z)(Si0.3Sn0.7)1 Gay. <i>Intermetallics</i> , 2013 , 32, 352-361	3.5	46
16	Realization of high thermoelectric performance in p-type unfilled ternary skutterudites FeSb2+xTe1\(\text{W}\) via band structure modification and significant point defect scattering. <i>Acta Materialia</i> , 2013 , 61, 7693-7704	8.4	39
15	Lower Thermal Conductivity and Higher Thermoelectric Performance of Fe-Substituted and Ce, Yb Double-Filled p-Type Skutterudites. <i>Journal of Electronic Materials</i> , 2013 , 42, 1622-1627	1.9	19
14	Enhanced thermoelectric properties of Ba-filled skutterudites by grain size reduction and Ag nanoparticle inclusion. <i>Journal of Materials Chemistry</i> , 2012 , 22, 2958-2964		76
13	The role of Ga in Ba0.30GaxCo4Sb12+x filled skutterudites. <i>Journal of Materials Chemistry</i> , 2012 , 22, 15628		25

LIST OF PUBLICATIONS

12	Configuring pnicogen rings in skutterudites for low phonon conductivity. <i>Physical Review B</i> , 2012 , 86,	3.3	28
11	Thermoelectric Performance of Sb- and La-Doped Mg2Si0.5Ge0.5. <i>Journal of Electronic Materials</i> , 2012 , 41, 1589-1594	1.9	16
10	Microstructure and thermoelectric properties of CoSb2.75Ge0.25\(\mathbb{\text{ITex}}\) prepared by rapid solidification. <i>Acta Materialia</i> , 2012 , 60, 3536-3544	8.4	55
9	Simultaneous large enhancements in thermopower and electrical conductivity of bulk nanostructured half-Heusler alloys. <i>Journal of the American Chemical Society</i> , 2011 , 133, 18843-52	16.4	205
8	Structure and Transport Properties of Double-Doped CoSb2.75Ge0.25\(\mathbb{\textsf{T}}\)ex (x = 0.125\(\mathbb{\textsf{D}}\).20) with in Situ Nanostructure. Chemistry of Materials, 2011 , 23, 2948-2955	9.6	102
7	Structure and Thermoelectric Properties of Te- and Ge-Doped Skutterudites CoSb2.875\(\text{Ge0.125Te} \) Ge0.125Te x. <i>Journal of Electronic Materials</i> , 2011 , 40, 1286-1291	1.9	8
6	High-temperature charge and thermal transport properties of the n-type thermoelectric material PbSe. <i>Physical Review B</i> , 2011 , 84,	3.3	48
5	Synthesis and thermoelectric properties of p-type Zn-doped Znxln1⊠Sb compounds. <i>Journal Physics D: Applied Physics</i> , 2010 , 43, 015403	3	7
4	Nanostructured bulk YbxCo4Sb12with high thermoelectric performance prepared by the rapid solidification method. <i>Journal Physics D: Applied Physics</i> , 2009 , 42, 145409	3	52
3	Preparation and thermoelectric properties of high-performance Sb additional Yb0.2Co4Sb12+y bulk materials with nanostructure. <i>Applied Physics Letters</i> , 2008 , 92, 202114	3.4	126
2	Preparation of eco-environmental protection bricks from lake sludge. <i>Journal Wuhan University of Technology, Materials Science Edition</i> , 2008 , 23, 912-916	1	2
1	Regulation of Ge vacancies through Sm doping resulting in superior thermoelectric performance in GeTe. <i>Journal of Materials Chemistry A</i> ,	13	7