Xianli Su

List of Publications by Citations

Source: https://exaly.com/author-pdf/9301960/xianli-su-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 137
 5,421
 38
 71

 papers
 citations
 h-index
 g-index

 148
 6,531
 9.6
 5.65

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
137	Stretchable nanoparticle conductors with self-organized conductive pathways. <i>Nature</i> , 2013 , 500, 59-6	3 50.4	613
136	Superparamagnetic enhancement of thermoelectric performance. <i>Nature</i> , 2017 , 549, 247-251	50.4	314
135	Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing. <i>Nature Communications</i> , 2014 , 5, 4908	17.4	243
134	Mechanically Robust BiSbTe Alloys with Superior Thermoelectric Performance: A Case Study of Stable Hierarchical Nanostructured Thermoelectric Materials. <i>Advanced Energy Materials</i> , 2015 , 5, 140°	13 3 1.8	232
133	Rhombohedral to Cubic Conversion of GeTe via MnTe Alloying Leads to Ultralow Thermal Conductivity, Electronic Band Convergence, and High Thermoelectric Performance. <i>Journal of the American Chemical Society</i> , 2018 , 140, 2673-2686	16.4	206
132	Simultaneous large enhancements in thermopower and electrical conductivity of bulk nanostructured half-Heusler alloys. <i>Journal of the American Chemical Society</i> , 2011 , 133, 18843-52	16.4	205
131	Multi-Scale Microstructural Thermoelectric Materials: Transport Behavior, Non-Equilibrium Preparation, and Applications. <i>Advanced Materials</i> , 2017 , 29, 1602013	24	182
130	High thermoelectric performance in Bi0.46Sb1.54Te3 nanostructured with ZnTe. <i>Energy and Environmental Science</i> , 2018 , 11, 1520-1535	35.4	155
129	Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials. <i>Nature Nanotechnology</i> , 2017 , 12, 55-60	28.7	155
128	Preparation and thermoelectric properties of high-performance Sb additional Yb0.2Co4Sb12+y bulk materials with nanostructure. <i>Applied Physics Letters</i> , 2008 , 92, 202114	3.4	126
127	The Role of Zn in Chalcopyrite CuFeS2: Enhanced Thermoelectric Properties of Cu1\(\mathbb{Z}\)TnxFeS2 with In Situ Nanoprecipitates. <i>Advanced Energy Materials</i> , 2017 , 7, 1601299	21.8	107
126	Structure and Transport Properties of Double-Doped CoSb2.75Ge0.25 $\mbox{125}$ (x = 0.125 $\mbox{125}$.20) with in Situ Nanostructure. <i>Chemistry of Materials</i> , 2011 , 23, 2948-2955	9.6	102
125	Thermal conductivity in BiSbTe and the role of dense dislocation arrays at grain boundaries. <i>Science Advances</i> , 2018 , 4, eaar5606	14.3	102
124	In situ synthesis and thermoelectric properties of PbTegraphene nanocomposites by utilizing a facile and novel wet chemical method. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 12503	13	101
123	High thermoelectric performance of mechanically robust n-type Bi2Te3\(\mathbb{B}\)Sex prepared by combustion synthesis. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 6603-6613	13	97
122	High Thermoelectric Performance in SnTeAgSbTe2 Alloys from Lattice Softening, Giant Phonon Vacancy Scattering, and Valence Band Convergence. ACS Energy Letters, 2018, 3, 705-712	20.1	90
121	High thermoelectric performance of p-BiSbTe compounds prepared by ultra-fast thermally induced reaction. <i>Energy and Environmental Science</i> , 2017 , 10, 2638-2652	35.4	90

120	Ultra-fast synthesis and thermoelectric properties of Te doped skutterudites. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 17914-17918	13	78	
119	Enhanced thermoelectric properties of Ba-filled skutterudites by grain size reduction and Ag nanoparticle inclusion. <i>Journal of Materials Chemistry</i> , 2012 , 22, 2958-2964		76	
118	Weak Electron Phonon Coupling and Deep Level Impurity for High Thermoelectric Performance Pb1\(\text{BGaxTe}. \) Advanced Energy Materials, 2018 , 8, 1800659	21.8	75	
117	Manipulating the Combustion Wave during Self-Propagating Synthesis for High Thermoelectric Performance of Layered Oxychalcogenide Bi1\(\text{BPbxCuSeO}. \) Chemistry of Materials, 2016 , 28, 4628-4640	9.6	71	
116	3D Printing of highly textured bulk thermoelectric materials: mechanically robust BiSbTe alloys with superior performance. <i>Energy and Environmental Science</i> , 2019 , 12, 3106-3117	35.4	64	
115	Low effective mass and carrier concentration optimization for high performance p-type Mg2(1-x)Li2xSi0.3Sn0.7 solid solutions. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 23576-83	3.6	59	
114	Microstructure and thermoelectric properties of CoSb2.75Ge0.25⊠Tex prepared by rapid solidification. <i>Acta Materialia</i> , 2012 , 60, 3536-3544	8.4	55	
113	Facile room temperature solventless synthesis of high thermoelectric performance Ag2Se via a dissociative adsorption reaction. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 23243-23251	13	52	
112	Nanostructured bulk YbxCo4Sb12with high thermoelectric performance prepared by the rapid solidification method. <i>Journal Physics D: Applied Physics</i> , 2009 , 42, 145409	3	52	
111	Morphology modulation of SiC nano-additives for mechanical robust high thermoelectric performance Mg2Si1Bn /SiC nano-composites. <i>Scripta Materialia</i> , 2017 , 126, 1-5	5.6	49	
110	Discordant nature of Cd in GeTe enhances phonon scattering and improves band convergence for high thermoelectric performance. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 1193-1204	13	49	
109	Blocking Ion Migration Stabilizes the High Thermoelectric Performance in Cu Se Composites. <i>Advanced Materials</i> , 2020 , 32, e2003730	24	49	
108	High-temperature charge and thermal transport properties of the n-type thermoelectric material PbSe. <i>Physical Review B</i> , 2011 , 84,	3.3	48	
107	High thermoelectric performance of higher manganese silicides prepared by ultra-fast thermal explosion. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 12116-12122	7.1	47	
106	Enhanced Density-of-States Effective Mass and Strained Endotaxial Nanostructures in Sb-Doped PbCdTe Thermoelectric Alloys. <i>ACS Applied Materials & Description of the Physics of the Phys</i>	9.5	46	
105	Enhanced hole concentration through Ga doping and excess of Mg and thermoelectric properties of p-type Mg2(1+z)(Si0.3Sn0.7)1 Gay. <i>Intermetallics</i> , 2013 , 32, 352-361	3.5	46	
104	Enhanced power factor of Mg 2 Si 0.3 Sn 0.7 synthesized by a non-equilibrium rapid solidification method. <i>Scripta Materialia</i> , 2015 , 96, 1-4	5.6	45	
103	High Figure of Merit in Gallium-Doped Nanostructured n-Type PbTe-GeTe with Midgap States. Journal of the American Chemical Society, 2019, 141, 16169-16177	16.4	44	

102	Toward High-Thermoelectric-Performance Large-Size Nanostructured BiSbTe Alloys via Optimization of Sintering-Temperature Distribution. <i>Advanced Energy Materials</i> , 2016 , 6, 1600595	21.8	42
101	Optimization of the Electronic Band Structure and the Lattice Thermal Conductivity of Solid Solutions According to Simple Calculations: A Canonical Example of the Mg2Si1NJGexSny Ternary Solid Solution. <i>Chemistry of Materials</i> , 2016 , 28, 5538-5548	9.6	40
100	Realization of high thermoelectric performance in p-type unfilled ternary skutterudites FeSb2+xTe1\(\text{W}\) via band structure modification and significant point defect scattering. <i>Acta Materialia</i> , 2013 , 61, 7693-7704	8.4	39
99	Low-temperature transport properties of Tl-doped Bi2Te3 single crystals. <i>Physical Review B</i> , 2013 , 88,	3.3	38
98	Panoscopic approach for high-performance Te-doped skutterudite. NPG Asia Materials, 2017, 9, e352-e	350 .3	37
97	Phase Segregation and Superior Thermoelectric Properties of Mg2Si(1-x)Sb(x) (0 k D.025) Prepared by Ultrafast Self-Propagating High-Temperature Synthesis. <i>ACS Applied Materials & Materials & Interfaces</i> , 2016 , 8, 3268-76	9.5	37
96	Understanding the combustion process for the synthesis of mechanically robust SnSe thermoelectrics. <i>Nano Energy</i> , 2018 , 44, 53-62	17.1	37
95	Ultra-fast non-equilibrium synthesis and phase segregation in InxSn1NTe thermoelectrics by SHS-PAS processing. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 8550-8558	7.1	35
94	Large Thermal Conductivity Drops in the Diamondoid Lattice of CuFeS by Discordant Atom Doping. Journal of the American Chemical Society, 2019 , 141, 18900-18909	16.4	33
93	High Thermoelectric Performance in the Wide Band-Gap AgGa1-xTe2 Compounds: Directional Negative Thermal Expansion and Intrinsically Low Thermal Conductivity. <i>Advanced Functional Materials</i> , 2019 , 29, 1806534	15.6	32
92	Realization of non-equilibrium process for high thermoelectric performance Sb-doped GeTe. <i>Science Bulletin</i> , 2018 , 63, 717-725	10.6	30
91	Origin of Intrinsically Low Thermal Conductivity in Talnakhite CuFeS Thermoelectric Material: Correlations between Lattice Dynamics and Thermal Transport. <i>Journal of the American Chemical Society</i> , 2019 , 141, 10905-10914	16.4	29
90	Thermal stability of Mg2Si0.3Sn0.7 under different heat treatment conditions. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 10381-10387	7.1	29
89	Thermoelectric performance of CuFeS2+2x composites prepared by rapid thermal explosion. <i>NPG Asia Materials</i> , 2017 , 9, e390-e390	10.3	29
88	Modification of Bulk Heterojunction and Cl Doping for High-Performance Thermoelectric SnSe/SnSe Nanocomposites. <i>ACS Applied Materials & Doping For High-Performance Thermoelectric SnSe/SnSe Nanocomposites</i> . <i>ACS Applied Materials & Doping For High-Performance Thermoelectric SnSe/SnSe Nanocomposites</i> .	9.5	28
87	Configuring pnicogen rings in skutterudites for low phonon conductivity. <i>Physical Review B</i> , 2012 , 86,	3.3	28
86	Nonmagnetic In Substituted CuFe1IInxS2 Solid Solution Thermoelectric. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 27895-27902	3.8	27
85	Grain boundary engineering with nano-scale InSb producing high performance In Ce Co4Sb12+ skutterudite thermoelectrics. <i>Journal of Materiomics</i> , 2017 , 3, 273-279	6.7	27

(2018-2012)

84	The role of Ga in Ba0.30GaxCo4Sb12+x filled skutterudites. <i>Journal of Materials Chemistry</i> , 2012 , 22, 15628		25
83	Vacancy-Based Defect Regulation for High Thermoelectric Performance in GeSbTe Compounds. <i>ACS Applied Materials & Defect Regulation for High Thermoelectric Performance in GeSbTe Compounds.</i>	9.5	24
82	Mechanochemical synthesis of high thermoelectric performance bulk Cu2X (X = S, Se) materials. <i>APL Materials</i> , 2016 , 4, 116110	5.7	24
81	Origin of the Distinct Thermoelectric Transport Properties of Chalcopyrite ABTe2 (A = Cu, Ag; B = Ga, In). <i>Advanced Functional Materials</i> , 2020 , 30, 2005861	15.6	21
80	Enhancing Thermoelectric Performance of n-Type PbSe through Forming Solid Solution with PbTe and PbS. <i>ACS Applied Energy Materials</i> , 2020 , 3, 2-8	6.1	21
79	Lower Thermal Conductivity and Higher Thermoelectric Performance of Fe-Substituted and Ce, Yb Double-Filled p-Type Skutterudites. <i>Journal of Electronic Materials</i> , 2013 , 42, 1622-1627	1.9	19
78	Interpreting the Combustion Process for High-Performance ZrNiSn Thermoelectric Materials. <i>ACS Applied Materials & District Materials</i> , 2018, 10, 864-872	9.5	19
77	Thermal Stability of P-Type BiSbTe Alloys Prepared by Melt Spinning and Rapid Sintering. <i>Materials</i> , 2017 , 10,	3.5	18
76	Role of Cation Vacancies in CuSnSe Thermoelectrics. <i>ACS Applied Materials & Description</i> 11, 24212-24220	9.5	16
75	Anomalously Large Seebeck Coefficient of CuFeS2 Derives from Large Asymmetry in the Energy Dependence of Carrier Relaxation Time. <i>Chemistry of Materials</i> , 2020 , 32, 2639-2646	9.6	16
74	Enhanced Thermoelectric Properties of La-Doped ZrNiSn Half-Heusler Compound. <i>Journal of Electronic Materials</i> , 2015 , 44, 3563-3570	1.9	16
73	Thermoelectric Performance of Sb- and La-Doped Mg2Si0.5Ge0.5. <i>Journal of Electronic Materials</i> , 2012 , 41, 1589-1594	1.9	16
72	Realizing High Thermoelectric Performance in Sb-Doped AgTe Compounds with a Low-Temperature Monoclinic Structure. <i>ACS Applied Materials & Doped AgTe Compounds</i> , 12, 39425-39433	9.5	16
71	Enhanced Thermoelectric Performance of BiSbTe Nanostructured with CdTe. <i>ACS Applied Materials & Materials (ACS Applied Materials ACS Applied Materials ACS Applied Materials ACS Applied Materials (ACS Applied Materials ACS Applied Materials ACS Applied Materials ACS Applied Materials (ACS Applied Materials ACS Applied Materials ACS Applied Materials ACS Applied Materials (ACS Applied Materials ACS Applied Materials ACS Applied Materials ACS Applied Materials (ACS ACS Applied Materials ACS ACS APPLIED ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	15
7°	Chemical synthesis and enhanced electrical properties of bulk poly(3,4-ethylenedioxythiophene)/reduced graphene oxide nanocomposites. <i>Synthetic Metals</i> , 2017 , 229, 65-71	3.6	14
69	Significant Enhancement in the Thermoelectric Performance of Aluminum-Doped ZnO Tuned by Pore Structure. <i>ACS Applied Materials & Samp; Interfaces</i> , 2020 , 12, 51669-51678	9.5	14
68	Ultralow Thermal Conductivity and Thermoelectric Properties of Rb2Bi8Se13. <i>Chemistry of Materials</i> , 2020 , 32, 3561-3569	9.6	14
67	Ultrafast Synthesis and Thermoelectric Properties of MnTe Compounds. <i>ACS Applied Materials</i> & Samp; Interfaces, 2018 , 10, 25519-25528	9.5	14

66	Electron Density Optimization and the Anisotropic Thermoelectric Properties of Ti Self-Intercalated TiS Compounds. <i>ACS Applied Materials & Acs Applied & Acs Appl</i>	9.5	14
65	Reversible structural transition in spark plasma-sintered thermoelectric Zn4Sb3. <i>Journal of Materials Science</i> , 2016 , 51, 2041-2048	4.3	13
64	Microstructure and thermoelectric properties of Sb doped Hf0.25Zr0.75NiSn Half-Heusler compounds with improved carrier mobility. <i>Intermetallics</i> , 2016 , 74, 1-7	3.5	13
63	Optimizing the average power factor of p-type (Na, Ag) co-doped polycrystalline SnSe <i>RSC Advances</i> , 2019 , 9, 7115-7122	3.7	12
62	In situ nanostructure design leading to a high figure of merit in an eco-friendly stable Mg2Si0.30Sn0.70 solid solution. <i>RSC Advances</i> , 2016 , 6, 16824-16831	3.7	12
61	Fine-tuning the solid-state ordering and thermoelectric performance of regioregular P3HT analogues by sequential oxygen-substitution of carbon atoms along the alkyl side chains. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 2333-2344	7.1	11
60	Ni and Se co-doping increases the power factor and thermoelectric performance of CoSbS. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 15123-15131	13	11
59	Enhanced Thermoelectric Properties of Codoped CrSe: The Distinct Roles of Transition Metals and S. <i>ACS Applied Materials & Distinct Roles of Transition Metals and S. ACS Applied Materials & Distinct Roles of Transition Metals and S. ACS Applied Materials & Distinct Roles of Transition Metals and S. ACS Applied Materials & Distinct Roles of Transition Metals and S. ACS Applied Materials & Distinct Roles of Transition Metals and S. ACS Applied Materials & Distinct Roles of Transition Metals and S. ACS Applied Materials & Distinct Roles of Transition Metals and S. ACS Applied Materials & Distinct Roles of Transition Metals and S. ACS Applied Materials & Distinct Roles of Transition Metals and S. ACS Applied Materials & Distinct Roles of Transition Metals and S. ACS Applied Materials & Distinct Roles of Transition Metals and Distinct Role of </i>	9.5	11
58	Semiconducting Pavonites CdMBi4Se8 (M = Sn and Pb) and Their Thermoelectric Properties. <i>Chemistry of Materials</i> , 2017 , 29, 8494-8503	9.6	11
57	Role of vacancy defects on the lattice thermal conductivity in In2O3 thermoelectric nanocrystals: a positron annihilation study. <i>Journal of Materials Science</i> , 2018 , 53, 12961-12973	4.3	10
56	Synergistically Improved Electronic and Thermal Transport Properties in Nb-Doped NbMoSeTe Solid Solutions Due to Alloy Phonon Scattering and Increased Valley Degeneracy. <i>ACS Applied Materials & Degeneracy</i> , 2019, 11, 26069-26081	9.5	9
55	Structure and thermoelectric properties of 2D Cr2Se3BxS3x solid solutions. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 836-846	7.1	9
54	Modification of the intermediate band and thermoelectric properties in Se-doped CoSbS1⊠Sex compounds. <i>RSC Advances</i> , 2017 , 7, 34466-34472	3.7	9
53	Optimization of Ag Nanoparticles on Thermoelectric Performance of Ba-Filled Skutterudite. <i>Science of Advanced Materials</i> , 2017 , 9, 682-687	2.3	9
52	Distinct role of Sn and Ge doping on thermoelectric properties in p-type (Bi, Sb)2Te3-alloys. <i>Journal of Solid State Chemistry</i> , 2020 , 292, 121722	3.3	9
51	An Instant Change of Elastic Lattice Strain during Cu2Se Phase Transition: Origin of Abnormal Thermoelectric Properties. <i>Advanced Functional Materials</i> , 2021 , 31, 2100431	15.6	9
50	High Hole Mobility and Nonsaturating Giant Magnetoresistance in the New 2D Metal NaCuSe Synthesized by a Unique Pathway. <i>Journal of the American Chemical Society</i> , 2019 , 141, 635-642	16.4	9
49	Self-propagating high-temperature synthesis and thermoelectric performances of Cu2SnSe3. Journal of Alloys and Compounds, 2018, 750, 965-971	5.7	8

48	Modulation of carrier concentration and microstructure for high performance Bi x Sb 2-x Te 3 thermoelectrics prepared by rapid solidification. <i>Journal of Solid State Chemistry</i> , 2018 , 264, 141-147	3.3	8
47	Thermoelectric Properties of Ga/Ag Codoped Type-III Ballellathrates with in Situ Nanostructures. ACS Applied Materials & Samp; Interfaces, 2015, 7, 19172-8	9.5	8
46	Structure and Thermoelectric Properties of Te- and Ge-Doped Skutterudites CoSb2.875 Ge0.125Te x. <i>Journal of Electronic Materials</i> , 2011 , 40, 1286-1291	1.9	8
45	Ultra-Fast One-Step Fabrication of Cu2Se Thermoelectric Legs With NiAl Electrodes by Plasma-Activated Reactive Sintering Technique . <i>Advanced Engineering Materials</i> , 2016 , 18, 1181-1188	3.5	8
44	Compressive Fatigue Behavior and Its Influence on the Thermoelectric Properties of p-Type BiSbTe Alloys. <i>ACS Applied Materials & District Applied Materials & Di</i>	9.5	7
43	Structure and thermoelectric property of Te doped paracostibite CoSb1-Te S compounds. <i>Journal of Solid State Chemistry</i> , 2018 , 262, 1-7	3.3	7
42	Synthesis and thermoelectric properties of p-type Zn-doped ZnxIn1⊠Sb compounds. <i>Journal Physics D: Applied Physics</i> , 2010 , 43, 015403	3	7
41	Regulation of Ge vacancies through Sm doping resulting in superior thermoelectric performance in GeTe. <i>Journal of Materials Chemistry A</i> ,	13	7
40	Impurity states in Mo1 MxSe2 compounds doped with group VB elements and their electronic and thermal transport properties. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 619-629	7.1	7
39	One-step ultra-rapid fabrication and thermoelectric properties of CuSe bulk thermoelectric material <i>RSC Advances</i> , 2019 , 9, 10508-10519	3.7	6
38	Enhanced Mechanical Properties of NaPbTe/MoTe Thermoelectric Composites Through in-Situ-Formed MoTe. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 41472-41481	9.5	5
37	Enhanced thermoelectric performance of heavy-fermion YbAl3 via multi-scale microstructures. Journal of Alloys and Compounds, 2017, 725, 1297-1303	5.7	5
36	The electronic-thermal transport properties and the exploration of magneto-thermoelectric properties and the Nernst thermopower of Ag2(1+)Se. <i>Journal of Solid State Chemistry</i> , 2020 , 288, 1214	15 ³ 3 ³	5
35	Ultra-fast fabrication of bulk ZrNiSn thermoelectric material through self-propagating high-temperature synthesis combined with in-situ quick pressing. <i>Scripta Materialia</i> , 2019 , 165, 140-144	5.6	5
34	Ultrafast and low-cost preparation of Mg2(Si0.3Sn0.7)1 \(\bar{\perp}\) Sby with superior thermoelectric performance by self-propagating high-temperature synthesis. Scripta Materialia, 2019, 162, 507-511	5.6	5
33	Ultralow Thermal Conductivity, Multiband Electronic Structure and High Thermoelectric Figure of Merit in TlCuSe. <i>Advanced Materials</i> , 2021 , 33, e2104908	24	5
32	Zn-Induced Defect Complexity for the High Thermoelectric Performance of n-Type PbTe Compounds. <i>ACS Applied Materials & Defect Science (Note: Performance of Note: Page 1988)</i> 13, 43134-43143	9.5	5
31	Ultrafast Synthesis and Related Phase Evolution of Mg2Si and Mg2Sn Compounds. <i>Journal of Electronic Materials</i> , 2017 , 46, 3172-3181	1.9	4

30	Thermoelectric properties of Cu/Ag doped type-III Ba24Ge100 clathrates. <i>Journal of Solid State Chemistry</i> , 2017 , 253, 414-420	3.3	4
29	Thermal stability and Interfacial structure evolution of Bi2Te3-based micro thermoelectric devices. Journal of Alloys and Compounds, 2021 , 896, 163090	5.7	4
28	Anisotropic thermoelectric transport properties of Bi0.5Sb1.5Te2.96+x zone melted ingots. <i>Journal of Solid State Chemistry</i> , 2020 , 288, 121433	3.3	4
27	Structural transformation and thermoelectric performance in Ag2Te1\(\mathbb{B}\)Sex solid solution. <i>Journal of Alloys and Compounds</i> , 2021 , 871, 159507	5.7	4
26	In-situ formed nano-pore induced by Ultrasonication boosts the thermoelectric performance of Cu2Se compounds. <i>Journal of Alloys and Compounds</i> , 2021 , 881, 160639	5.7	4
25	High carrier mobility and ultralow thermal conductivity in the synthetic layered superlattice Sn4Bi10Se19. <i>Materials Advances</i> , 2021 , 2, 2382-2390	3.3	4
24	Thermoelectric Materials: Multi-Scale Microstructural Thermoelectric Materials: Transport Behavior, Non-Equilibrium Preparation, and Applications (Adv. Mater. 20/2017). <i>Advanced Materials</i> , 2017 , 29,	24	3
23	Strong Anisotropy and Bipolar Conduction-Dominated Thermoelectric Transport Properties in the Polycrystalline Topological Phase of ZrTe. <i>Inorganic Chemistry</i> , 2021 , 60, 8890-8897	5.1	3
22	Improved thermoelectric performance of (Fe,Co)Sb3-type skutterudites from first-principles. <i>Journal of Applied Physics</i> , 2016 , 119, 055101	2.5	3
21	Enhanced thermoelectric performance of tin oxide through antimony doping and introducing pore structures. <i>Journal of Materials Science</i> , 2021 , 56, 2360-2371	4.3	3
20	Achieving superior performance in thermoelectric Bi0.4Sb1.6Te3.72 by enhancing texture and inducing high-density line defects. <i>Science China Materials</i> , 2021 , 64, 1507-1520	7.1	3
19	Atomic mechanism of ionic confinement in the thermoelectric Cu2Se based on a low-cost electric-current method. <i>Cell Reports Physical Science</i> , 2021 , 2, 100345	6.1	3
18	The origin of ultra-low thermal conductivity of the Bi2Te2S compound and boosting the thermoelectric performance via carrier engineering. <i>Materials Today Physics</i> , 2021 , 20, 100472	8	3
17	Boosting Thermoelectric Properties of AgBi(SeS) Solid Solution via Entropy Engineering. <i>ACS Applied Materials & Discourse (Section 2021)</i> , 13, 4185-4191	9.5	3
16	Structural transition of partially Ba-filled thermoelectric CoSb3 investigated by positron annihilation spectroscopy. <i>Journal of Applied Physics</i> , 2015 , 117, 055103	2.5	2
15	Preparation of eco-environmental protection bricks from lake sludge. <i>Journal Wuhan University of Technology, Materials Science Edition</i> , 2008 , 23, 912-916	1	2
14	Removing the Oxygen-Induced Donor-like Effect for High Thermoelectric Performance in n-Type BiTe-Based Compounds. <i>ACS Applied Materials & Discrete Applied Mater</i>	9.5	2
13	Structure and Improved Thermoelectric Properties of AgCrSe Compounds. <i>Inorganic Chemistry</i> , 2018 , 57, 12125-12131	5.1	2

LIST OF PUBLICATIONS

12	Regulation of Exciton for High Thermoelectric Performance in (Bi, Sb)2Te3 alloys via doping with Pb and Multi-scale Microstructure. <i>Journal of the European Ceramic Society</i> , 2021 ,	6	2	
11	Mechanical Properties and Thermal Stability of the High-Thermoelectric-Performance CuSe Compound. <i>ACS Applied Materials & District Science</i> , 2021 , 13, 45736-45743	9.5	2	
10	Influence of O-Co-O layer thickness on the thermal conductivity of NaxCo2O4 studied by positron annihilation. <i>Journal of Applied Physics</i> , 2015 , 118, 035102	2.5	1	
9	Quasilinear dispersion in electronic band structure and high Seebeck coefficient in CuFeS2-based thermoelectric materials. <i>Physical Review Materials</i> , 2020 , 4,	3.2	1	
8	Synergistically Enhanced Thermoelectric Performance of CuSnSe-Based Composites Ag Doping Balance. <i>ACS Applied Materials & Doping States and St</i>	9.5	1	
7	Extremely low thermal conductivity of G a2O3 with porous structure. <i>Journal of Applied Physics</i> , 2021 , 130, 195103	2.5	1	
6	New criteria for the applicability of combustion synthesis: The investigation of thermodynamic and kinetic processes for binary Chemical Reactions. <i>Journal of Alloys and Compounds</i> , 2021 , 860, 158465	5.7	1	
5	Phase boundary mapping and suppressing Pb vacancies for enhanced thermoelectric properties in n-type Sb doped PbTe compounds. <i>Materials Today Energy</i> , 2022 , 25, 100962	7	1	
4	The role of Ge vacancies and Sb doping in GeTe: a comparative study of Thermoelectric Transport Properties in SbxGe1-1.5xTe and SbxGe1-xTe Compounds. <i>Materials Today Physics</i> , 2022 , 100682	8	1	
3	Electroresistance in multipolar antiferroelectric CuSe semiconductor. <i>Nature Communications</i> , 2021 , 12, 7207	17.4	1	
2	Copper ion chemistry in a new rechargeable all-solid-state copper-ion battery. <i>Journal of Solid State Chemistry</i> , 2021 , 298, 122112	3.3	0	
1	Unveiling the Intrinsic Low Thermal Conductivity of BiAgSeS through Entropy Engineering in SHS Kinetic Process. <i>Wuji Cailiao Xuebao/Journal of Inorganic Materials</i> , 2021 , 36, 991	1	O	