Sudhakar Srivastava

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/930196/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heavy metal (loid)s phytotoxicity in crops and its mitigation through seed priming technology. International Journal of Phytoremediation, 2023, 25, 187-206.	1.7	7
2	Recent advances in arsenic mitigation in rice through biotechnological approaches. International Journal of Phytoremediation, 2023, 25, 305-313.	1.7	2
3	The beneficial roles of trace and ultratrace elements in plants. Plant Growth Regulation, 2023, 100, 219-236.	1.8	23
4	Evaluation of Phytoremediation Potential of Pteris vittata L. on Arsenic Contaminated Soil Using Allium cepaÂBioassay. Bulletin of Environmental Contamination and Toxicology, 2022, 108, 423-429.	1.3	7
5	Approaches for assisted phytoremediation of arsenic contaminated sites. , 2022, , 221-242.		2
6	The importance of beneficial and essential trace and ultratrace elements in plant nutrition, growth, and stress tolerance. , 2022, , 27-46.		8
7	Sustainable solutions to arsenic accumulation in rice grown in south and south-east Asia. Crop and Pasture Science, 2022, 73, 149-159.	0.7	14
8	Enhanced phytoremediation of Metal(loid)s via spiked ZVI nanoparticles: An urban clean-up strategy with ornamental plants. Chemosphere, 2022, 288, 132588.	4.2	24
9	Potential of indigenous plant species for phytoremediation of arsenic contaminated water and soil. Ecological Engineering, 2022, 175, 106476.	1.6	23
10	Antioxidant enzymes and transporter genes mediate arsenic stress reduction in rice (Oryza sativa L.) upon thiourea supplementation. Chemosphere, 2022, 292, 133482.	4.2	20
11	Sustainable Amelioration of Heavy Metals in Soil Ecosystem: Existing Developments to Emerging Trends. Minerals (Basel, Switzerland), 2022, 12, 85.	0.8	25
12	Application of Pteris vittata L. for phytoremediation of arsenic and biomonitoring of the process through cyto-genetic biomarkers of Trigonella foenum-graecum L Physiology and Molecular Biology of Plants, 2022, 28, 91-106.	1.4	5
13	Genome-wide profiling of drought-tolerant Arabidopsis plants over-expressing chickpea MT1 gene reveals transcription factors implicated in stress modulation. Functional and Integrative Genomics, 2022, 22, 153-170.	1.4	2
14	The impact of the COVID-19 lockdown on global air quality: A review. Environmental Sustainability, 2022, 5, 5-23.	1.4	4
15	An assessment of various potentially toxic elements and associated health risks in agricultural soil along the middle Gangetic basin, India. Chemosphere, 2022, 300, 134433.	4.2	21
16	Comprehensive illustration of transcriptomic and proteomic dataset for mitigation of arsenic toxicity in rice (Oryza sativa L.) by microbial consortium. Data in Brief, 2022, 43, 108377.	0.5	1
17	Arsenic dynamics and flux assessment under drying-wetting irrigation and enhanced microbial diversity in paddy soils: A four year study in Bengal delta plain. Journal of Hazardous Materials, 2021, 409, 124443.	6.5	37
18	Tracking the time-dependent and tissue-specific processes of arsenic accumulation and stress responses in rice (Oryza sativa L.). Journal of Hazardous Materials, 2021, 406, 124307.	6.5	22

#	Article	IF	CITATIONS
19	Thiourea supplementation mediated reduction of grain arsenic in rice (Oryza sativa L.) cultivars: A two year field study. Journal of Hazardous Materials, 2021, 407, 124368.	6.5	28
20	Arsenic Contamination of Groundwater and Its Mitigation Strategies. , 2021, , 107-119.		0
21	Arsenic—rice—human health: Understanding the toxic association from microbiome angle. , 2021, , 55-62.		1
22	Environmental impact of COVID-19 pandemic: more negatives than positives. Environmental Sustainability, 2021, 4, 447-454.	1.4	36
23	Effect of thiourea application on root, old leaf and young leaf of two contrasting rice varieties (Oryza sativa L.) grown in arsenic contaminated soil. Environmental Technology and Innovation, 2021, 21, 101368.	3.0	15
24	Chemical intervention for enhancing growth and reducing grain arsenic accumulation in rice. Environmental Pollution, 2021, 276, 116719.	3.7	22
25	Coping with the Challenges of Abiotic Stress in Plants: New Dimensions in the Field Application of Nanoparticles. Plants, 2021, 10, 1221.	1.6	112
26	Arsenic Remediation through Sustainable Phytoremediation Approaches. Minerals (Basel,) Tj ETQq0 0 0 rgBT /O	verlock 10	Tf 50 462 Td
27	Application and research progress of Hydrilla verticillata in ecological restoration of water contaminated with metals and metalloids. Environmental Challenges, 2021, 4, 100177.	2.0	2
28	MicroRNAs: Tiny, powerful players of metal stress responses in plants. Plant Physiology and Biochemistry, 2021, 166, 928-938.	2.8	16
29	Imagining a teaching utopia. Science, 2021, 374, 31-32.	6.0	2
30	Application of Immobilization Techniques in Heavy Metal and Metalloid Remediation. Gels Horizons: From Science To Smart Materials, 2021, , 581-595.	0.3	3
31	Transporters: the molecular drivers of arsenic stress tolerance in plants. Journal of Plant Biochemistry and Biotechnology, 2021, 30, 730-743.	0.9	5
32	Effect of ZnO Nanoparticles on Growth and Biochemical Responses of Wheat and Maize. Plants, 2021, 10, 2556.	1.6	45
33	Microbial consortium mediated growth promotion and Arsenic reduction in Rice: An integrated transcriptome and proteome profiling. Ecotoxicology and Environmental Safety, 2021, 228, 113004.	2.9	8
34	Phyto-genotoxicity of arsenic contaminated soil from Lakhimpur Kheri, India on Vicia faba L Chemosphere, 2020, 241, 125063.	4.2	25
35	Cloning, in silico characterization and expression analysis of TIP subfamily from rice (Oryza sativa L.). Gene, 2020, 761, 145043.	1.0	6
36	Copper accumulation and biochemical responses of Sesuvium portulacastrum (L.). Materials Today: Proceedings, 2020, 31, 679-684.	0.9	10

#	Article	IF	CITATIONS
37	Elemental (As, Zn, Fe and Cu) analysis and health risk assessment of rice grains and rice based food products collected from markets from different cities of Gangetic basin, India. Journal of Food Composition and Analysis, 2020, 93, 103612.	1.9	29
38	Arsenic in Rice Agro-Ecosystem: Solutions for Safe and Sustainable Rice Production. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	53
39	21-Day Lockdown in India Dramatically Reduced Air Pollution Indices in Lucknow and New Delhi, India. Bulletin of Environmental Contamination and Toxicology, 2020, 105, 9-17.	1.3	111
40	Plant Growth-Promoting Bacteria: Biological Tools for the Mitigation of Salinity Stress in Plants. Frontiers in Microbiology, 2020, 11, 1216.	1.5	278
41	Co-culturing Hydrilla verticillata with rice (Oryza sativa) plants ameliorates arsenic toxicity and reduces arsenic accumulation in rice. Environmental Technology and Innovation, 2020, 18, 100722.	3.0	10
42	News from a postpandemic world. Science, 2020, 369, 26-29.	6.0	5
43	Transcriptome and proteome analyses reveal selenium mediated amelioration of arsenic toxicity in rice (Oryza sativa L.). Journal of Hazardous Materials, 2020, 390, 122122.	6.5	94
44	Safeguarding Rice from Arsenic Contamination Through the Adoption of Chemo-agronomic Measures. , 2020, , 411-424.		4
45	Arsenic Tolerance and Signaling Mechanisms in Plants. , 2020, , 341-353.		1
46	Genetic Engineering to Reduce Toxicity and Increase Accumulation of Toxic Metals in Plants. , 2020, , 481-501.		1
47	The Toxicity and Accumulation of Metals in Crop Plants. , 2020, , 53-68.		2
48	Heavy Metal Hyperaccumulator Plants: The Resource to Understand the Extreme Adaptations of Plants Towards Heavy Metals. , 2019, , 79-97.		13
49	Microbes Are Essential Components of Arsenic Cycling in the Environment: Implications for the Use of Microbes in Arsenic Remediation. Microorganisms for Sustainability, 2019, , 217-227.	0.4	3
50	Ultra-structure alteration via enhanced silicon uptake in arsenic stressed rice cultivars under intermittent irrigation practices in Bengal delta basin. Ecotoxicology and Environmental Safety, 2019, 180, 770-779.	2.9	37
51	An assessment of arsenic hazard in groundwater–soil–rice system in two villages of Nadia district, West Bengal, India. Environmental Geochemistry and Health, 2019, 41, 2381-2395.	1.8	77
52	Understanding selenium metabolism in plants and its role as a beneficial element. Critical Reviews in Environmental Science and Technology, 2019, 49, 1937-1958.	6.6	130
53	Foods of the future. Science, 2019, 366, 1306-1307.	6.0	0
54	Characterizing the hypertolerance potential of two indigenous bacterial strains (<i>Bacillus) Tj ETQq0 0 0 rgBT</i>	/Overlock 1.4	10 Tf 50 67 T 28

Applied Microbiology, 2019, 126, 1117-1127.

SUDHAKAR SRIVASTAVA

#	Article	IF	CITATIONS
55	Challenging transitions. Science, 2019, 363, 24-26.	6.0	1
56	Nitrogen supply influences arsenic accumulation and stress responses of rice (Oryza sativa L.) seedlings. Journal of Hazardous Materials, 2019, 367, 599-606.	6.5	47
57	A review on positive and negative impacts of nanotechnology in agriculture. International Journal of Environmental Science and Technology, 2019, 16, 2175-2184.	1.8	67
58	A Review of Phytoremediation Prospects for Arsenic Contaminated Water and Soil. , 2019, , 243-254.		13
59	A review of arsenic in crops, vegetables, animals and food products. Food Chemistry, 2019, 276, 608-618.	4.2	192
60	Analysis of Arsenic Accumulation and its Effects on the Ionome Profile of Rice (Oryza sativa L.) Plants. International Journal of Plant and Environment, 2019, 5, 141-148.	0.2	1
61	NextGen VOICES: Research resolutions. Science, 2018, 359, 26-28.	6.0	3
62	Cytotoxic Assessment of Chromium and Arsenic Using Chromosomal Behavior of Root Meristem in Allium cepa L. Bulletin of Environmental Contamination and Toxicology, 2018, 100, 803-808.	1.3	38
63	A consortium of alga (Chlorella vulgaris) and bacterium (Pseudomonas putida) for amelioration of arsenic toxicity in rice: A promising and feasible approach. Environmental and Experimental Botany, 2018, 150, 115-126.	2.0	70
64	Early Senescence in Older Leaves of Low Nitrate-Grown <i>Atxdh1</i> Uncovers a Role for Purine Catabolism in N Supply. Plant Physiology, 2018, 178, 1027-1044.	2.3	41
65	An integrative approach toward biosensing and bioremediation of metals and metalloids. International Journal of Environmental Science and Technology, 2018, 15, 2701-2712.	1.8	17
66	Vermiremediation of metal(loid)s via Eichornia crassipes phytomass extraction: A sustainable technique for plant amelioration. Journal of Environmental Management, 2018, 220, 118-125.	3.8	21
67	Prospects of genetic engineering utilizing potential genes for regulating arsenic accumulation in plants. Chemosphere, 2018, 211, 397-406.	4.2	51
68	Utilizing the Potential of Microorganisms for Managing Arsenic Contamination: A Feasible and Sustainable Approach. Frontiers in Environmental Science, 2018, 6, .	1.5	90
69	Cellular and Subcellular Phosphate Transport Machinery in Plants. International Journal of Molecular Sciences, 2018, 19, 1914.	1.8	46
70	A Successive Application Approach for Effective Utilization of Three Aquatic Plants in Arsenic Removal. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	9
71	Emerging Aspects of Bioremediation of Arsenic. , 2017, , 395-407.		20
72	Physiological and molecular insights into rice-arbuscular mycorrhizal interactions under arsenic stress. Plant Gene, 2017, 11, 232-237.	1.4	13

SUDHAKAR SRIVASTAVA

#	Article	IF	CITATIONS
73	Expression of the SIN3 homologue from banana, MaSIN3, suppresses ABA responses globally during plant growth in Arabidopsis. Plant Science, 2017, 264, 69-82.	1.7	4
74	Higher Novel L-Cys Degradation Activity Results in Lower Organic-S and Biomass in <i>Sarcocornia</i> than the Related Saltwort, <i>Salicornia</i> . Plant Physiology, 2017, 175, 272-289.	2.3	12
75	Zinc supplementation imparts tolerance to arsenite stress in Hydrilla verticillata (L.f.) Royle. International Journal of Phytoremediation, 2017, 19, 353-359.	1.7	5
76	24-Epibrassinolide and Sodium Nitroprusside alleviate the salinity stress in Brassica juncea L. cv. Varuna through cross talk among proline, nitrogen metabolism and abscisic acid. Plant and Soil, 2017, 411, 483-498.	1.8	96
77	Heavy Metal Tolerance in Crop Plants: Physiological and Biochemical Aspects. , 2017, , 253-267.		Ο
78	The Journey of Arsenic from Soil to Grain in Rice. Frontiers in Plant Science, 2017, 8, 1007.	1.7	218
79	Genomics of Metal Stress-Mediated Signalling and Plant Adaptive Responses in Reference to Phytohormones. Current Genomics, 2017, 18, 512-522.	0.7	22
80	Arsenic stress affects the expression profile of genes of 14-3-3 proteins in the shoot of mycorrhiza colonized rice. Physiology and Molecular Biology of Plants, 2016, 22, 515-522.	1.4	18
81	Selenate mitigates arsenite toxicity in rice (Oryza sativa L.) by reducing arsenic uptake and ameliorates amino acid content and thiol metabolism. Ecotoxicology and Environmental Safety, 2016, 133, 350-359.	2.9	57
82	Arsenic toxicity in rice (Oryza sativa L.) is influenced by sulfur supply: Impact on the expression of transporters and thiol metabolism. Geoderma, 2016, 270, 33-42.	2.3	72
83	Evaluation of uranium removal by Hydrilla verticillata (L.f.) Royle from low level nuclear waste under laboratory conditions. Journal of Environmental Management, 2016, 167, 124-129.	3.8	14
84	A study on the effect of cadmium on the antioxidative defense system and alteration in different functional groups in castor bean and Indian mustard. Archives of Agronomy and Soil Science, 2016, 62, 877-891.	1.3	27
85	Arsenic Transport, Metabolism and Toxicity in Plants. International Journal of Plant and Environment, 2016, 2, 17-28.	0.2	14
86	Salt stress reveals differential antioxidant and energetics responses in glycophyte (Brassica juncea L.) and halophyte (Sesuvium portulacastrum L.). Frontiers in Environmental Science, 2015, 3, .	1.5	43
87	Transcriptomics profiling of Indian mustard (Brassica juncea) under arsenate stress identifies key candidate genes and regulatory pathways. Frontiers in Plant Science, 2015, 6, 646.	1.7	46
88	Prospects of Genetic Manipulation for Enhanced Heavy Metal Tolerance and Bioremediation in Relation to Climate Change. , 2015, , 169-186.		0
89	Analysis of arsenic induced physiological and biochemical responses in a medicinal plant, Withania somnifera. Physiology and Molecular Biology of Plants, 2015, 21, 61-69.	1.4	34
90	Arsenite and arsenate impact the oxidative status and antioxidant responses in Ocimum tenuiflorum L. Physiology and Molecular Biology of Plants, 2015, 21, 453-458.	1.4	22

SUDHAKAR SRIVASTAVA

#	Article	IF	CITATIONS
91	Identification of redox-regulated components of arsenate (As ^V) tolerance through thiourea supplementation in rice. Metallomics, 2014, 6, 1718-1730.	1.0	55
92	Effect of combinations of aquatic plants (Hydrilla, Ceratophyllum, Eichhornia, Lemna and Wolffia) on arsenic removal in field conditions. Ecological Engineering, 2014, 73, 297-301.	1.6	27
93	Investigation of biochemical responses of <i>Bacopa monnieri</i> L. upon exposure to arsenate. Environmental Toxicology, 2013, 28, 419-430.	2.1	18
94	Quantitative real-time expression profiling of aquaporins-isoforms and growth response of Brassica juncea under arsenite stress. Molecular Biology Reports, 2013, 40, 2879-2886.	1.0	19
95	Arsenic accumulation in Ocimum spp. and its effect on growth and oil constituents. Acta Physiologiae Plantarum, 2013, 35, 1071-1079.	1.0	36
96	Response of adenine and pyridine metabolism during germination and early seedling growth under arsenic stress in Brassica juncea. Acta Physiologiae Plantarum, 2013, 35, 1081-1091.	1.0	12
97	Evaluation of effects of arsenic on carbon, nitrogen, and sulfur metabolism in two contrasting varieties of Brassica juncea. Acta Physiologiae Plantarum, 2013, 35, 3377-3389.	1.0	30
98	The effect of arsenic on pigment composition and photosynthesis in Hydrilla verticillata. Biologia Plantarum, 2013, 57, 385-389.	1.9	56
99	Identification and profiling of arsenic stress-induced microRNAs in <i>Brassica juncea</i> . Journal of Experimental Botany, 2013, 64, 303-315.	2.4	214
100	Arsenic affects essential and non-essential amino acids differentially in rice grains: Inadequacy of amino acids in rice based diet. Environment International, 2012, 46, 16-22.	4.8	44
101	Mechanisms of Arsenic Tolerance and Detoxification in Plants and their Application in Transgenic Technology: A Critical Appraisal. International Journal of Phytoremediation, 2012, 14, 506-517.	1.7	48
102	Arsenic accumulation in native plants of West Bengal, India: prospects for phytoremediation but concerns with the use of medicinal plants. Environmental Monitoring and Assessment, 2012, 184, 2617-2631.	1.3	37
103	Isolation and characterization of ripening related pectin methylesterase inhibitor gene from banana fruit. Physiology and Molecular Biology of Plants, 2012, 18, 191-195.	1.4	17
104	Calcium supplementation modulates arsenic-induced alterations and augments arsenic accumulation in callus cultures of Indian mustard (Brassica juncea (L.) Czern.). Protoplasma, 2012, 249, 725-736.	1.0	14
105	Bioremediation potential of genus Portulaca L. collected from industrial areas in Vadodara, Gujarat, India. Clean Technologies and Environmental Policy, 2012, 14, 223-228.	2.1	13
106	Arsenic Tolerance and Detoxification Mechanisms in Plants. Soil Biology, 2011, , 169-179.	0.6	21
107	Phytofiltration of arsenic from simulated contaminated water using Hydrilla verticillata in field conditions. Ecological Engineering, 2011, 37, 1937-1941.	1.6	51
108	Investigation of arsenic accumulation and tolerance potential of Sesuvium portulacastrum (L.) L Chemosphere, 2011, 82, 529-534.	4.2	48

#	Article	IF	CITATIONS
109	Regulated alterations in redox and energetic status are the key mediators of salinity tolerance in the halophyte Sesuvium portulacastrum (L.) L. Plant Growth Regulation, 2011, 65, 287-298.	1.8	25
110	Redox state and energetic equilibrium determine the magnitude of stress in Hydrilla verticillata upon exposure to arsenate. Protoplasma, 2011, 248, 805-815.	1.0	70
111	Lead Induced Responses of Pfaffia glomerata, an Economically Important Brazilian Medicinal Plant, Under In Vitro Culture Conditions. Bulletin of Environmental Contamination and Toxicology, 2011, 86, 272-277.	1.3	29
112	Thiourea orchestrates regulation of redox state and antioxidant responses to reduce the NaCl-induced oxidative damage in Indian mustard (Brassica juncea (L.) Czern.). Plant Physiology and Biochemistry, 2011, 49, 676-686.	2.8	43
113	Comparative Antioxidant Profiling of Tolerant and Sensitive Varieties of Brassica juncea L. to Arsenate and Arsenite Exposure. Bulletin of Environmental Contamination and Toxicology, 2010, 84, 342-346.	1.3	26
114	Arsenic affects mineral nutrients in grains of various Indian rice (Oryza sativa L.) genotypes grown on arsenic-contaminated soils of West Bengal. Protoplasma, 2010, 245, 113-124.	1.0	94
115	Role of Thiol Metabolism in Arsenic Detoxification in Hydrilla verticillata (L.f.) Royle. Water, Air, and Soil Pollution, 2010, 212, 155-165.	1.1	28
116	Characterization of native microalgal strains for their chromium bioaccumulation potential: Phytoplankton response in polluted habitats. Journal of Hazardous Materials, 2010, 173, 95-101.	6.5	69
117	Investigation of uranium accumulation potential and biochemical responses of an aquatic weed Hydrilla verticillata (L.f.) Royle. Bioresource Technology, 2010, 101, 2573-2579.	4.8	56
118	Effect of variable sulfur supply on arsenic tolerance and antioxidant responses in Hydrilla verticillata (L.f.) Royle. Ecotoxicology and Environmental Safety, 2010, 73, 1314-1322.	2.9	57
119	Thiourea mediated regulation in the expression profile of aquaporins and its impact on water homeostasis under salinity stress in Brassica juncea roots. Plant Science, 2010, 178, 517-522.	1.7	36
120	Comparative biochemical and transcriptional profiling of two contrasting varieties of Brassica juncea L. in response to arsenic exposure reveals mechanisms of stress perception and tolerance. Journal of Experimental Botany, 2009, 60, 3419-3431.	2.4	138
121	Evaluation of zinc accumulation potential of Hydrilla verticillata. Biologia Plantarum, 2009, 53, 789-792.	1.9	11
122	Thiol metabolism play significant role during cadmium detoxification by Ceratophyllum demersum L Bioresource Technology, 2009, 100, 2155-2161.	4.8	113
123	Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. Journal of Hazardous Materials, 2009, 172, 479-484.	6.5	251
124	Increasing Sulfur Supply Enhances Tolerance to Arsenic and its Accumulation in <i>Hydrilla verticillata</i> (L.f.) Royle. Environmental Science & Technology, 2009, 43, 6308-6313.	4.6	54
125	Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicology and Environmental Safety, 2009, 72, 1102-1110.	2.9	391
126	Phytoremediation efficiency of Portulaca tuberosa rox and Portulaca oleracea L. naturally growing in an industrial effluent irrigated area in Vadodra, Gujrat, India. Environmental Monitoring and Assessment, 2008, 147, 15-22.	1.3	70

#	Article	IF	CITATIONS
127	Response of antioxidant enzymes in coontail (<i>Ceratophyllum demersum</i> L.) plants under cadmium stress. Environmental Toxicology, 2008, 23, 294-301.	2.1	37
128	Screening of native plants and algae growing on fly-ash affected areas near National Thermal Power Corporation, Tanda, Uttar Pradesh, India for accumulation of toxic heavy metals. Journal of Hazardous Materials, 2008, 158, 359-365.	6.5	47
129	Thiol metabolism and antioxidant systems complement each other during arsenate detoxification in Ceratophyllum demersum L. Aquatic Toxicology, 2008, 86, 205-215.	1.9	168
130	Role of blue green algae biofertilizer in ameliorating the nitrogen demand and fly-ash stress to the growth and yield of rice (Oryza sativa L.) plants. Chemosphere, 2008, 70, 1919-1929.	4.2	78
131	Growth performance and biochemical responses of three rice (Oryza sativa L.) cultivars grown in fly-ash amended soil. Chemosphere, 2007, 67, 140-151.	4.2	80
132	Phytochelatins and Antioxidant Systems Respond Differentially during Arsenite and Arsenate Stress inHydrilla verticillata(L.f.) Royle. Environmental Science & Technology, 2007, 41, 2930-2936.	4.6	187
133	Arsenic hazards: strategies for tolerance and remediation by plants. Trends in Biotechnology, 2007, 25, 158-165.	4.9	591
134	Growth and biochemical parameters of Cicer arietinum L. grown on amended fly ash. Environmental Monitoring and Assessment, 2007, 134, 479-487.	1.3	16
135	Copper-induced oxidative stress and responses of antioxidants and phytochelatins in Hydrilla verticillata (L.f.) Royle. Aquatic Toxicology, 2006, 80, 405-415.	1.9	195
136	Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere, 2006, 65, 1027-1039.	4.2	419
137	Changes in amino acid profile and metal content in seeds of Cicer arietinum L. (chickpea) grown under various fly-ash amendments. Chemosphere, 2006, 65, 939-945.	4.2	24
138	Dominance of Algae in Ganga Water Polluted Through Fly-Ash Leaching: Metal Bioaccumulation Potential of Selected Algal Species. Bulletin of Environmental Contamination and Toxicology, 2006, 77, 427-436.	1.3	24
139	Phytochelatin synthesis andÂresponse ofÂantioxidants during cadmium stress inÂBacopaÂmonnieri Lâ—Š. Plant Physiology and Biochemistry, 2006, 44, 25-37.	2.8	418
140	Differential expression of genes during banana fruit development, ripening and 1-MCP treatment: Presence of distinct fruit specific, ethylene induced and ethylene repressed expression. Postharvest Biology and Technology, 2006, 42, 16-22.	2.9	46
141	Nickel Phytoremediation Potential of Broad Bean, Vicia faba L., and Its Biochemical Responses. Bulletin of Environmental Contamination and Toxicology, 2005, 74, 715-724.	1.3	21
142	Identification of potential source of quality raw material of Costus speciosus from Western coast of Malabar. Journal of Planar Chromatography - Modern TLC, 0, , 1.	0.6	0