
Katia Boniface

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9301685/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vitiligo Skin T Cells Are Prone to Produce Type 1 and Type 2 Cytokines to Induce Melanocyte Dysfunction and Epidermal Inflammatory Response Through Jak Signaling. Journal of Investigative Dermatology, 2022, 142, 1194-1205.e7.	0.7	23
2	Assessment of Vitiligo Area Scoring Index (VASI), Facial-VASI and Vitiligo Extent Score using standardized photography of patients with vitiligo. British Journal of Dermatology, 2022, 187, 422-424.	1.5	6
3	Cytokine-Mediated Crosstalk Between Keratinocytes and T Cells in Atopic Dermatitis. Frontiers in Immunology, 2022, 13, 801579.	4.8	23
4	Alopecia areata: Recent advances and emerging therapies. Annales De Dermatologie Et De Venereologie, 2022, 149, 222-227.	1.0	5
5	An update on Vitiligo pathogenesis. Pigment Cell and Melanoma Research, 2021, 34, 236-243.	3.3	61
6	Targeting Innate Immunity to Combat Cutaneous Stress: The Vitiligo Perspective. Frontiers in Immunology, 2021, 12, 613056.	4.8	19
7	Demographic and clinical characteristics of patients with both psoriasis and vitiligo in a cohort of vitiligo patients: a crossâ€sectional study. Journal of the European Academy of Dermatology and Venereology, 2021, 35, e676-e679.	2.4	9
8	Editorial: Immunology of Vitiligo. Frontiers in Immunology, 2021, 12, 711080.	4.8	4
9	Complete response in a patient with advanced melanoma following antiâ€PDâ€1 therapy is associated with a high frequency of melanomaâ€infiltrating CXCR3 ⁺ resident memory CD8 ⁺ T cells and multiple chemokine pathways. British Journal of Dermatology, 2021, 185, 663-666.	1.5	1
10	Analysis of tumor response and clinical factors associated with vitiligo in patients receiving anti–programmed cell death-1 therapies for melanoma: AÂcross-sectional study. JAAD International, 2021, 5, 112-120.	2.2	10
11	NKG2D Defines a Subset of Skin Effector Memory CD8 T Cells with Proinflammatory Functions in Vitiligo. Journal of Investigative Dermatology, 2020, 140, 1143-1153.e5.	0.7	32
12	Vitiligo, From Physiopathology to Emerging Treatments: A Review. Dermatology and Therapy, 2020, 10, 1185-1198.	3.0	29
13	Characteristics of postinflammatory hyper- and hypopigmentation in patients with psoriasis: A survey study. Journal of the American Academy of Dermatology, 2020, 83, 1188-1191.	1.2	8
14	Phenotype and function of circulating memory T cells in human vitiligo*. British Journal of Dermatology, 2020, 183, 899-908.	1.5	14
15	Type-1 cytokines regulate matrix metalloprotease-9 production and E-cadherin disruption to promote melanocyte loss in vitiligo. JCI Insight, 2020, 5, .	5.0	31
16	An unusual presentation of Sutton's phenomenon presenting as halo cherry angioma. Journal of the European Academy of Dermatology and Venereology, 2019, 33, e464-e465.	2.4	0
17	Vitiligo-Like Lesions in Patients with Metastatic Melanoma Receiving Immunotherapies. , 2019, , 163-167.		0
18	Cytokines, Growth Factors, and POMC Peptides. , 2019, , 303-312.		0

Cytokines, Growth Factors, and POMC Peptides. , 2019, , 303-312. 18

KATIA BONIFACE

#	Article	IF	CITATIONS
19	Imbalance of peripheral follicular helper T lymphocyte subsets in active vitiligo. Pigment Cell and Melanoma Research, 2019, 32, 588-592.	3.3	4
20	Vitiligo as a skin memory disease: The need for early intervention with immunomodulating agents and a maintenance therapy to target resident memory T cells. Experimental Dermatology, 2019, 28, 656-661.	2.9	26
21	Vitiligo-like lesions occurring in patients receiving anti-programmed cell death-1 therapies. Giornale Italiano Di Dermatologia E Venereologia, 2019, 154, 435-443.	0.8	5
22	Cell delivery using microneedle devices: a new approach to treat depigmenting disorders. British Journal of Dermatology, 2018, 178, 588-589.	1.5	2
23	Vitiligo-like lesions in patients receiving anti–programmed cell death-1 therapies are distinct from spontaneously occurring active vitiligo. Journal of the American Academy of Dermatology, 2018, 78, e17-e18.	1.2	13
24	Elevated total serum IgE in vitiligo might be protective for other autoimmune diseases. British Journal of Dermatology, 2018, 179, 987-988.	1.5	2
25	Dual efficacy of dupilumab in a patient with concomitant atopic dermatitis and alopecia areata. British Journal of Dermatology, 2018, 179, 534-536.	1.5	40
26	Vitiligo: Focus on Clinical Aspects, Immunopathogenesis, and Therapy. Clinical Reviews in Allergy and Immunology, 2018, 54, 52-67.	6.5	155
27	Vitiligo Skin Is Imprinted with Resident Memory CD8 T Cells Expressing CXCR3. Journal of Investigative Dermatology, 2018, 138, 355-364.	0.7	168
28	Inflammatory skin eruptions induced by anti-tumour necrosis factor-α therapy differ undeniably from psoriasis or eczema. British Journal of Dermatology, 2018, 178, 1007-1008.	1.5	0
29	Inflammasome Activation Characterizes Lesional Skin of Folliculitis Decalvans. Acta Dermato-Venereologica, 2018, 98, 570-575.	1.3	11
30	In vitro models of vitiligo. , 2018, , 129-149.		0
31	Vitiligo therapy: restoring immune privilege?. Experimental Dermatology, 2017, 26, 635-636.	2.9	3
32	Vitiligo-like lesions occurring in patients receiving anti-programmed cell death–1 therapies are clinically and biologically distinct from vitiligo. Journal of the American Academy of Dermatology, 2017, 76, 863-870.	1.2	128
33	Meeting report: Vitiligo Global Issues Consensus Conference Workshop "Outcome measurement instruments―and Vitiligo International Symposium, Rome, Nov 30–Dec 3rd. Pigment Cell and Melanoma Research, 2017, 30, 436-443.	3.3	14
34	MicroRNA-211 Regulates Oxidative Phosphorylation and Energy Metabolism in Human Vitiligo. Journal of Investigative Dermatology, 2017, 137, 1965-1974.	0.7	55
35	Heat shock protein 70 potentiates interferon alpha production by plasmacytoid dendritic cells: relevance for cutaneous lupus and vitiligo pathogenesis. British Journal of Dermatology, 2017, 177, 1367-1375.	1.5	75
36	A Score with a VESted InterestÂinÂVitiligo. Journal of Investigative Dermatology, 2016, 136, 902-904.	0.7	0

KATIA BONIFACE

#	Article	IF	CITATIONS
37	New insights into immune mechanisms of vitiligo. Giornale Italiano Di Dermatologia E Venereologia, 2016, 151, 44-54.	0.8	13
38	Comment: the mystery of melanocyte demise in vitiligo. Experimental Dermatology, 2015, 24, 260-261.	2.9	3
39	A Th2 Cytokine Interleukin-31 Signature in a Case of Sporadic Lichen Amyloidosis. Acta Dermato-Venereologica, 2015, 95, 223-224.	1.3	9
40	Type <scp>I</scp> interferon signature in the initiation of the immune response in vitiligo. Pigment Cell and Melanoma Research, 2014, 27, 398-407.	3.3	118
41	Expression of interleukin-1 alpha in amicrobial pustulosis of the skin folds with complete response to anakinra. Journal of the American Academy of Dermatology, 2014, 71, e53-e56.	1.2	25
42	Accelerating bleaching in vitiligo: balancing benefits versus risks. Experimental Dermatology, 2014, 23, 879-880.	2.9	4
43	Malvidin-3-O-β glucoside, major grape anthocyanin, inhibits human macrophage-derived inflammatory mediators and decreases clinical scores in arthritic rats. Biochemical Pharmacology, 2013, 86, 1461-1467.	4.4	68
44	Development and validation of the <scp>K</scp> â€ <scp>VSCOR</scp> for scoring <scp>K</scp> oebner's phenomenon in <scp>v</scp> itiligo/nonâ€segmental vitiligo. Pigment Cell and Melanoma Research, 2013, 26, 402-407.	3.3	26
45	Autoimmune Memory T Helper 17 Cell Function and Expansion Are Dependent on Interleukin-23. Cell Reports, 2013, 3, 1378-1388.	6.4	72
46	IL-17 in the Rheumatologist's Line of Sight. BioMed Research International, 2013, 2013, 1-18.	1.9	24
47	Role of Th17 cells in the pathogenesis of rheumatoid arthritis. World Journal of Rheumatology, 2013, 3, 25.	0.5	5
48	Biomarkers of Therapeutic Response in the IL-23 Pathway in Inflammatory Bowel Disease. Clinical and Translational Gastroenterology, 2012, 3, e10.	2.5	47
49	Pre- vs. post-pubertal onset of vitiligo: multivariate analysis indicates atopic diathesis association in pre-pubertal onset vitiligo. British Journal of Dermatology, 2012, 167, 490-495.	1.5	55
50	T helper type 1 and 17 cells determine efficacy of interferon-β in multiple sclerosis and experimental encephalomyelitis. Nature Medicine, 2010, 16, 406-412.	30.7	509
51	Skin Inflammation Induced by the Synergistic Action of IL-17A, IL-22, Oncostatin M, IL-1α, and TNF-α Recapitulates Some Features of Psoriasis. Journal of Immunology, 2010, 184, 5263-5270.	0.8	274
52	Human Th17 Cells Comprise Heterogeneous Subsets Including IFN-γ–Producing Cells with Distinct Properties from the Th1 Lineage. Journal of Immunology, 2010, 185, 679-687.	0.8	163
53	Circulating and gut-resident human Th17 cells express CD161 and promote intestinal inflammation. Journal of Experimental Medicine, 2009, 206, 525-534.	8.5	430
54	Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. Journal of Experimental Medicine, 2009, 206, 535-548.	8.5	426

KATIA BONIFACE

#	Article	IF	CITATIONS
55	IL-27 Blocks RORc Expression to Inhibit Lineage Commitment of Th17 Cells. Journal of Immunology, 2009, 182, 5748-5756.	0.8	302
56	Development and function of TH17 cells in health and disease. Journal of Allergy and Clinical Immunology, 2009, 123, 1004-1011.	2.9	223
57	Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. Journal of Cell Biology, 2009, 184, i16-i16.	5.2	1
58	From interleukinâ€23 to Tâ€helper 17 cells: human Tâ€helper cell differentiation revisited. Immunological Reviews, 2008, 226, 132-146.	6.0	194
59	Oncostatin M Secreted by Skin Infiltrating T Lymphocytes Is a Potent Keratinocyte Activator Involved in Skin Inflammation. Journal of Immunology, 2007, 178, 4615-4622.	0.8	160
60	104 A role for Th17-Derived IL-22 in Psoriatic Skin Inflammation. Cytokine, 2007, 39, 28-29.	3.2	0
61	Development, cytokine profile and function of human interleukin 17–producing helper T cells. Nature Immunology, 2007, 8, 950-957.	14.5	1,795
62	A role for T cell-derived interleukin 22 in psoriatic skin inflammation. Clinical and Experimental Immunology, 2007, 150, 407-415.	2.6	253
63	IL-22 Inhibits Epidermal Differentiation and Induces Proinflammatory Gene Expression and Migration of Human Keratinocytes. Journal of Immunology, 2005, 174, 3695-3702.	0.8	726
64	Keratinocytes as targets for interleukin-10-related cytokines: a putative role in the pathogenesis of psoriasis. European Cytokine Network, 2005, 16, 309-19.	2.0	42
65	IL-22, in contrast to IL-10, does not induce Ig production, due to absence of a functional IL-22 receptor on activated human B cells. International Immunology, 2002, 14, 1351-1356.	4.0	40