
Bekele Hailegnaw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9301279/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rain on Methylammonium Lead Iodide Based Perovskites: Possible Environmental Effects of Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 1543-1547.	4.6	428
2	Impedance Spectroscopy of Perovskite Solar Cells: Studying the Dynamics of Charge Carriers Before and After Continuous Operation. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000291.	1.8	54
3	Designing Ultraflexible Perovskite Xâ€Ray Detectors through Interface Engineering. Advanced Science, 2020, 7, 2002586.	11.2	44
4	The influence of perovskite precursor composition on the morphology and photovoltaic performance of mixed halide MAPbI3-xClx solar cells. Solar Energy, 2018, 163, 215-223.	6.1	36
5	Nanoscale Charge Accumulation and Its Effect on Carrier Dynamics in Tri-cation Perovskite Structures. ACS Applied Materials & Interfaces, 2020, 12, 48057-48066.	8.0	21
6	Role of additives and surface passivation on the performance of perovskite solar cells. Materials for Renewable and Sustainable Energy, 2022, 11, 47-70.	3.6	18
7	Depolymerization of Cellulose in Water Catalyzed by Phenylboronic Acid Derivatives. ACS Sustainable Chemistry and Engineering, 2016, 4, 5799-5803.	6.7	17
8	Inverted (p–i–n) perovskite solar cells using a low temperature processed TiO _x interlayer. RSC Advances, 2018, 8, 24836-24846.	3.6	17
9	Optoelectronic Properties of Layered Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900126.	5.8	13
10	Acetylacetone Improves the Performance of Mixed Halide Perovskite Solar Cells. Journal of Physical Chemistry C, 2019, 123, 23807-23816.	3.1	12
11	Improving the Performance of Perovskite Solar Cells using a Polyphosphazene Interfacing Layer. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900436.	1.8	9
12	Anti-Stokes photoluminescence study on a methylammonium lead bromide nanoparticle film. Nanoscale, 2020, 12, 16556-16561.	5.6	8
13	Ion-driven nanograin formation in early-stage degradation of tri-cation perovskite films. Nanoscale, 2022, 14, 2605-2616.	5.6	6
14	Effect of short chain iodoalkane solvent additives on photovoltaic performance of poly(3-hexylthiophene) and phenyl-C61-butyric acid methyl ester based bulk heterojunction solar cells. Thin Solid Films, 2015, 589, 272-277.	1.8	4