
Des Field

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9300475/publications.pdf Version: 2024-02-01

DES FIELD

#	Article	IF	CITATIONS
1	Inhibition of Listeria monocytogenes by the Staphylococcus capitis - derived bacteriocin capidermicin. Food Microbiology, 2021, 94, 103661.	2.1	9
2	Bio-Engineered Nisin with Increased Anti-Staphylococcus and Selectively Reduced Anti-Lactococcus Activity for Treatment of Bovine Mastitis. International Journal of Molecular Sciences, 2021, 22, 3480.	1.8	17
3	Assessing the ability of nisin A and derivatives thereof to inhibit gram-negative bacteria from the genus Thermus. Journal of Dairy Science, 2021, 104, 2632-2640.	1.4	7
4	Nisin variants from <i>Streptococcus</i> and <i>Staphylococcus</i> successfully express in NZ9800. Journal of Applied Microbiology, 2021, 131, 2223-2234.	1.4	3
5	Recipe for Success: Suggestions and Recommendations for the Isolation and Characterisation of Bacteriocins. International Journal of Microbiology, 2021, 2021, 1-19.	0.9	14
6	Editorial: Bacteriocins and Other Ribosomally Synthesised and Post-translationally Modified Peptides (RiPPs) as Alternatives to Antibiotics. Frontiers in Microbiology, 2021, 12, 695081.	1.5	3
7	A Bioengineered Nisin Derivative To Control Streptococcus uberis Biofilms. Applied and Environmental Microbiology, 2021, 87, e0039121.	1.4	12
8	Investigation of combinations of rationally selected bioengineered nisin derivatives for their ability to inhibit Listeria in broth and model food systems. Food Microbiology, 2021, 99, 103835.	2.1	8
9	Simultaneous Production of Multiple Antimicrobial Compounds by Bacillus velezensis ML122-2 Isolated From Assam Tea Leaf [Camellia sinensis var. assamica (J.W.Mast.) Kitam.]. Frontiers in Microbiology, 2021, 12, 789362.	1.5	8
10	Nisin J, a Novel Natural Nisin Variant, Is Produced by Staphylococcus capitis Sourced from the Human Skin Microbiota. Journal of Bacteriology, 2020, 202, .	1.0	48
11	Vancomycin and nisin A are effective against biofilms of multi-drug resistant Staphylococcus aureus isolates from human milk. PLoS ONE, 2020, 15, e0233284.	1.1	24
12	Nisin M: a Bioengineered Nisin A Variant That Retains Full Induction Capacity but Has Significantly Reduced Antimicrobial Activity. Applied and Environmental Microbiology, 2020, 86, .	1.4	10
13	Diverse Bacteriocins Produced by Strains From the Human Milk Microbiota. Frontiers in Microbiology, 2020, 11, 788.	1.5	23
14	Bioengineered Nisin Derivative M17Q Has Enhanced Activity against Staphylococcus epidermidis. Antibiotics, 2020, 9, 305.	1.5	8
15	Bioengineering nisin to overcome the nisin resistance protein. Molecular Microbiology, 2019, 111, 717-731.	1.2	45
16	Identification and characterisation of capidermicin, a novel bacteriocin produced by Staphylococcus capitis. PLoS ONE, 2019, 14, e0223541.	1.1	24
17	A novel bioengineered derivative of nisin displays enhanced antimicrobial activity against clinical Streptococcus agalactiae isolates. Journal of Global Antimicrobial Resistance, 2019, 19, 14-21.	0.9	12
18	Identification and characterization of bioengineered nisin derivatives that inhibit the opportunistic pathogen Staphylococcus epidermidis. Access Microbiology, 2019, 1, .	0.2	0

Des Field

#	Article	IF	CITATIONS
19	Fighting biofilms with lantibiotics and other groups of bacteriocins. Npj Biofilms and Microbiomes, 2018, 4, 9.	2.9	154
20	Developing bacteriocins of lactic acid bacteria into next generation biopreservatives. Current Opinion in Food Science, 2018, 20, 1-6.	4.1	63
21	The microbiology and treatment of human mastitis. Medical Microbiology and Immunology, 2018, 207, 83-94.	2.6	92
22	In silico Prediction and Exploration of Potential Bacteriocin Gene Clusters Within the Bacterial Genus Geobacillus. Frontiers in Microbiology, 2018, 9, 2116.	1.5	24
23	Use of enhanced nisin derivatives in combination with food-grade oils or citric acid to control Cronobacter sakazakii and Escherichia coli O157:H7. Food Microbiology, 2017, 65, 254-263.	2.1	59
24	Application of bacteriocin-producing Enterococcus faecium isolated from donkey milk, in the bio-control of Listeria monocytogenes in fresh whey cheese. International Dairy Journal, 2017, 73, 1-9.	1.5	69
25	Genome Sequence of Geobacillus stearothermophilus DSM 458, an Antimicrobial-Producing Thermophilic Bacterium, Isolated from a Sugar Beet Factory. Genome Announcements, 2017, 5, .	0.8	8
26	Antimicrobial Peptide Production and Purification. Methods in Molecular Biology, 2017, 1485, 401-410.	0.4	6
27	Bacteriocin-Antimicrobial Synergy: A Medical and Food Perspective. Frontiers in Microbiology, 2017, 8, 1205.	1.5	140
28	Nisin in Combination with Cinnamaldehyde and EDTA to Control Growth of Escherichia coli Strains of Swine Origin. Antibiotics, 2017, 6, 35.	1.5	21
29	Bacteriocins: Novel Solutions to Age Old Spore-Related Problems?. Frontiers in Microbiology, 2016, 7, 461.	1.5	105
30	In Vitro Activities of Nisin and Nisin Derivatives Alone and In Combination with Antibiotics against Staphylococcus Biofilms. Frontiers in Microbiology, 2016, 7, 508.	1.5	86
31	Synergistic Nisin-Polymyxin Combinations for the Control of Pseudomonas Biofilm Formation. Frontiers in Microbiology, 2016, 7, 1713.	1.5	66
32	Bioengineering Lantibiotics for Therapeutic Success. Frontiers in Microbiology, 2015, 6, 1363.	1.5	120
33	Bioengineering of the model lantibiotic nisin. Bioengineered, 2015, 6, 187-192.	1.4	94
34	Efficacies of Nisin A and Nisin V Semipurified Preparations Alone and in Combination with Plant Essential Oils for Controlling Listeria monocytogenes. Applied and Environmental Microbiology, 2015, 81, 2762-2769.	1.4	42
35	A Bioengineered Nisin Derivative to Control Biofilms of Staphylococcus pseudintermedius. PLoS ONE, 2015, 10, e0119684.	1.1	69
36	In vivo activity of Nisin A and Nisin V against Listeria monocytogenesin mice. BMC Microbiology, 2013, 13, 23.	1.3	57

Des Field

#	Article	IF	CITATIONS
37	Saturation mutagenesis of selected residues of the αâ€peptide of the lantibiotic lacticin 3147 yields a derivative with enhanced antimicrobial activity. Microbial Biotechnology, 2013, 6, 564-575.	2.0	22
38	Intensive Mutagenesis of the Nisin Hinge Leads to the Rational Design of Enhanced Derivatives. PLoS ONE, 2013, 8, e79563.	1.1	62
39	Saturation Mutagenesis of Lysine 12 Leads to the Identification of Derivatives of Nisin A with Enhanced Antimicrobial Activity. PLoS ONE, 2013, 8, e58530.	1.1	54
40	Bioengineered Nisin A Derivatives with Enhanced Activity against Both Gram Positive and Gram Negative Pathogens. PLoS ONE, 2012, 7, e46884.	1.1	167
41	Comparison of the Potency of the Lipid II Targeting Antimicrobials Nisin, Lacticin 3147 and Vancomycin Against Gram-Positive Bacteria. Probiotics and Antimicrobial Proteins, 2012, 4, 108-115.	1.9	25
42	Technological characterization of bacteriocin producing Lactococcus lactis strains employed to control Listeria monocytogenes in Cottage cheese. International Journal of Food Microbiology, 2012, 153, 58-65.	2.1	113
43	Bioengineered nisin derivatives with enhanced activity in complex matrices. Microbial Biotechnology, 2012, 5, 501-508.	2.0	50
44	Studies with bioengineered Nisin peptides highlight the broadâ€ s pectrum potency of Nisin V. Microbial Biotechnology, 2010, 3, 473-486.	2.0	84
45	The dawning of a â€~Golden era' in lantibiotic bioengineering. Molecular Microbiology, 2010, 78, 1077-1087.	1.2	70
46	The gene encoded antimicrobial peptides, a template for the design of novel anti-mycobacterial drugs. Bioengineered Bugs, 2010, 1, 408-412.	2.0	49
47	The generation of nisin variants with enhanced activity against specific Gramâ€positive pathogens. Molecular Microbiology, 2008, 69, 218-230.	1.2	206
48	A System for the Random Mutagenesis of the Two-Peptide Lantibiotic Lacticin 3147: Analysis of Mutants Producing Reduced Antibacterial Activities. Journal of Molecular Microbiology and Biotechnology, 2007, 13, 226-234.	1.0	30