Luis Santos Pereira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9300365/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model. Agricultural Water Management, 2022, 261, 107362.	2.4	15
2	Water Use and Soil Water Balance of Mediterranean Vineyards under Rainfed and Drip Irrigation Management: Evapotranspiration Partition and Soil Management Modelling for Resource Conservation. Water (Switzerland), 2022, 14, 554.	1.2	19
3	Crop and landscape water requirements. , 2022, , .		Ο
4	Searching for Sustainable-Irrigation Issues of Clementine Orchards in the Syrian Akkar Plain: Effects of Irrigation Method and Canopy Size on Crop Coefficients, Transpiration, and Water Use with SIMDualKc Model. Water (Switzerland), 2022, 14, 2052.	1.2	4
5	Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method. Agricultural Water Management, 2021, 243, 106466.	2.4	35
6	Standard single and basal crop coefficients for vegetable crops, an update of FAO56 crop water requirements approach. Agricultural Water Management, 2021, 243, 106196.	2.4	32
7	Daily grass reference evapotranspiration with Meteosat Second Generation shortwave radiation and reference ET products. Agricultural Water Management, 2021, 248, 106543.	2.4	19
8	Updated single and dual crop coefficients for tree and vine fruit crops. Agricultural Water Management, 2021, 250, 106645.	2.4	51
9	Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization. Agricultural Water Management, 2021, 252, 106663.	2.4	21
10	Transpiration and Water Use of an Irrigated Traditional Olive Grove with Sap-Flow Observations and the FAO56 Dual Crop Coefficient Approach. Water (Switzerland), 2021, 13, 2466.	1.2	12
11	Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region. Agricultural Water Management, 2021, 255, 107038.	2.4	8
12	Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues. Agricultural Water Management, 2020, 227, 105832.	2.4	185
13	Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach. Agricultural Water Management, 2020, 241, 106357.	2.4	100
14	Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data. Agricultural Water Management, 2020, 241, 106197.	2.4	62
15	A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods. Agricultural Water Management, 2020, 239, 106267.	2.4	46
16	Reference grass evapotranspiration with reduced data sets: Parameterization of the FAO Penman-Monteith temperature approach and the Hargeaves-Samani equation using local climatic variables. Agricultural Water Management, 2020, 240, 106210.	2.4	49
17	Innovation Issues in Water, Agriculture and Food. Water (Switzerland), 2019, 11, 1230.	1.2	14
18	Computing FAO56 reference grass evapotranspiration PM-ETo from temperature with focus on solar radiation. Agricultural Water Management, 2019, 215, 86-102.	2.4	31

#	Article	IF	CITATIONS
19	Crop Coefficients and Transpiration of a Super Intensive Arbequina Olive Orchard using the Dual Kc Approach and the Kcb Computation with the Fraction of Ground Cover and Height. Water (Switzerland), 2019, 11, 383.	1.2	26
20	Irrigation Water-Saving Technologies to Adapt to Global Changes in the Yellow River Basin, China: A Hetao Case Study. Climate Change Management, 2018, , 521-537.	0.6	0
21	Assessing potato transpiration, yield and water productivity under various water regimes and planting dates using the FAO dual K c approach. Agricultural Water Management, 2018, 195, 11-24.	2.4	41
22	Spatial and Time Variability of Drought Based on SPI and RDI with Various Time Scales. Water Resources Management, 2018, 32, 1087-1100.	1.9	41
23	Comparing SPI and RDI Applied at Local Scale as Influenced by Climate. Water Resources Management, 2018, 32, 1071-1085.	1.9	35
24	Daily reference crop evapotranspiration with reduced data sets in the humid environments of Azores islands using estimates of actual vapor pressure, solar radiation, and wind speed. Theoretical and Applied Climatology, 2018, 134, 1115-1133.	1.3	21
25	Daily reference crop evapotranspiration in the humid environments of Azores islands using reduced data sets: accuracy of FAO-PM temperature and Hargreaves-Samani methods. Theoretical and Applied Climatology, 2018, 134, 595-611.	1.3	27
26	Evapotranspiration of the Brazilian Pampa Biome: Seasonality and Influential Factors. Water (Switzerland), 2018, 10, 1864.	1.2	38
27	Accuracy of daily estimation of grass reference evapotranspiration using ERA-Interim reanalysis products with assessment of alternative bias correction schemes. Agricultural Water Management, 2018, 210, 340-353.	2.4	46
28	Basin Irrigation Design with Multi-Criteria Analysis Focusing on Water Saving and Economic Returns: Application to Wheat in Hetao, Yellow River Basin. Water (Switzerland), 2018, 10, 67.	1.2	17
29	Evapotranspiration Partition and Crop Coefficients of Tifton 85 Bermudagrass as Affected by the Frequency of Cuttings. Application of the FAO56 Dual Kc Model. Water (Switzerland), 2018, 10, 558.	1.2	17
30	Assessing yield, water productivity and farm economic returns of malt barley as influenced by the sowing dates and supplemental irrigation. Agricultural Water Management, 2017, 179, 132-143.	2.4	25
31	Hyperspectral-based predictive modelling of grapevine water status in the Portuguese Douro wine region. International Journal of Applied Earth Observation and Geoinformation, 2017, 58, 177-190.	1.4	33
32	Using the FAO dual crop coefficient approach to model water use and productivity of processing pea (Pisum sativum L.) as influenced by irrigation strategies. Agricultural Water Management, 2017, 189, 5-18.	2.4	26
33	Water, Agriculture and Food: Challenges and Issues. Water Resources Management, 2017, 31, 2985-2999.	1.9	98
34	Assessing reference evapotranspiration estimation from reanalysis weather products. An application to the Iberian Peninsula. International Journal of Climatology, 2017, 37, 2378-2397.	1.5	42
35	Comparing Sprinkler and Surface Irrigation for Wheat Using Multi-Criteria Analysis: Water Saving vs. Economic Returns. Water (Switzerland), 2017, 9, 50.	1.2	19
36	Water Use and Yield of Soybean under Various Irrigation Regimes and Severe Water Stress. Application of AquaCrop and SIMDualKc Models. Water (Switzerland), 2017, 9, 393.	1.2	28

#	Article	IF	CITATIONS
37	SPI Drought Class Predictions Driven by the North Atlantic Oscillation Index Using Log-Linear Modeling. Water (Switzerland), 2016, 8, 43.	1.2	18
38	Predicting Maize Transpiration, Water Use and Productivity for Developing Improved Supplemental Irrigation Schedules in Western Uruguay to Cope with Climate Variability. Water (Switzerland), 2016, 8, 309.	1.2	20
39	Daily Reference Evapotranspiration for Hyper-Arid to Moist Sub-Humid Climates in Inner Mongolia, China: I. Assessing Temperature Methods and Spatial Variability. Water Resources Management, 2016, 30, 3769-3791.	1.9	37
40	The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model. Agricultural Water Management, 2016, 177, 77-94.	2.4	32
41	Ecohydrology of groundwaterâ€dependent grasslands of the semiâ€arid Horqin sandy land of inner Mongolia focusing on evapotranspiration partition. Ecohydrology, 2016, 9, 1052-1067.	1.1	15
42	Influence of Precipitation Changes on the SPI and Related Drought Severity. An Analysis Using Long-Term Data Series. Water Resources Management, 2016, 30, 5737-5757.	1.9	28
43	Daily Reference Evapotranspiration for Hyper-Arid to Moist Sub-Humid Climates in Inner Mongolia, China: II. Trends of ETo and Weather Variables and Related Spatial Patterns. Water Resources Management, 2016, 30, 3793-3814.	1.9	13
44	Modeling water use, transpiration and soil evaporation of spring wheat–maize and spring wheat–sunflower relay intercropping using the dual crop coefficient approach. Agricultural Water Management, 2016, 165, 211-229.	2.4	72
45	Estimation of Actual Crop Coefficients Using Remotely Sensed Vegetation Indices and Soil Water Balance Modelled Data. Remote Sensing, 2015, 7, 2373-2400.	1.8	61
46	Predicting Grapevine Water Status Based on Hyperspectral Reflectance Vegetation Indices. Remote Sensing, 2015, 7, 16460-16479.	1.8	51
47	Assessing drought cycles in SPI time series using a Fourier analysis. Natural Hazards and Earth System Sciences, 2015, 15, 571-585.	1.5	32
48	Water use by a groundwater dependent maize in a semi-arid region of Inner Mongolia: Evapotranspiration partitioning and capillary rise. Agricultural Water Management, 2015, 152, 222-232.	2.4	45
49	Modelling soil water dynamics of full and deficit drip irrigated maize cultivated under a rain shelter. Biosystems Engineering, 2015, 132, 1-18.	1.9	47
50	Performance assessment of the FAO AquaCrop model for soil water, soil evaporation, biomass and yield of soybeans in North China Plain. Agricultural Water Management, 2015, 152, 57-71.	2.4	73
51	Water Resources Management in an Interdisciplinary and Changing Context. Water Resources Management, 2015, 29, 211-216.	1.9	6
52	Field assessment of basin irrigation performance and water saving in Hetao, Yellow River basin: Issues to support irrigation systems modernisation. Biosystems Engineering, 2015, 136, 102-116.	1.9	37
53	Modeling malt barley water use and evapotranspiration partitioning in two contrasting rainfall years. Assessing AquaCrop and SIMDualKc models. Agricultural Water Management, 2015, 159, 239-254.	2.4	81
54	Assessing and modelling water use and the partition of evapotranspiration of irrigated hop (Humulus) Tj ETQq0 C) 0 rgBT /0 2.5	Overlock 10 7 30

54 Products, 2015, 77, 204-217.

#	Article	IF	CITATIONS
55	Ground-Based GPS Measurements of Precipitable Water Vapor and Their Usefulness for Hydrological Applications. Water Resources Management, 2015, 29, 471-486.	1.9	15
56	Modelling transpiration, soil evaporation and yield prediction of soybean in North China Plain. Agricultural Water Management, 2015, 147, 43-53.	2.4	89
57	Climate change and Mediterranean agriculture: Impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield. Agricultural Water Management, 2015, 147, 103-115.	2.4	194
58	SPI Modes of Drought Spatial and Temporal Variability in Portugal: Comparing Observations, PT02 and GPCC Gridded Datasets. Water Resources Management, 2015, 29, 487-504.	1.9	27
59	Crop evapotranspiration estimation with FAO56: Past and future. Agricultural Water Management, 2015, 147, 4-20.	2.4	489
60	Remote sensing estimation of actual evapotranspiration and crop coefficients for a multiple land use arid landscape of southern Iran with limited available data. Journal of Hydroinformatics, 2014, 16, 1441-1460.	1.1	19
61	Water Use: Recycling and Desalination for Agriculture. , 2014, , 407-424.		13
62	Development of ternary diagrams for estimating water retention properties using geostatistical approaches. Geoderma, 2014, 230-231, 229-242.	2.3	19
63	Spatial patterns and temporal trends of precipitation in Iran. Theoretical and Applied Climatology, 2014, 115, 531-540.	1.3	62
64	Partitioning evapotranspiration, yield prediction and economic returns of maize under various irrigation management strategies. Agricultural Water Management, 2014, 135, 27-39.	2.4	109
65	ESTIMATING SOIL HYDRAULIC PROPERTIES FROM LIMITED DATA TO IMPROVE IRRIGATION MANAGEMENT IN AGRICULTURAL SOILS OF SANTIAGO ISLAND, CAPE VERDE. Irrigation and Drainage, 2014, 63, 405-415.	0.8	7
66	Spatial patterns and temporal trends of daily precipitation indices in Iran. Climatic Change, 2014, 124, 239-253.	1.7	35
67	Drip vs. surface irrigation: A comparison focussing on water saving and economic returns using multicriteria analysis applied to cotton. Biosystems Engineering, 2014, 122, 74-90.	1.9	52
68	Evapotranspiration and crop coefficients for a super intensive olive orchard. An application of SIMDualKc and METRIC models using ground and satellite observations. Journal of Hydrology, 2014, 519, 2067-2080.	2.3	98
69	Impacts of climate change on olive crop evapotranspiration and irrigation requirements in the Mediterranean region. Agricultural Water Management, 2014, 144, 54-68.	2.4	154
70	Satellite-based evapotranspiration of a super-intensive olive orchard: Application of METRIC algorithms. Biosystems Engineering, 2014, 128, 69-81.	1.9	48
71	Vulnerability of Bulgarian agriculture to drought and climate variability with focus on rainfed maize systems. Natural Hazards, 2014, 74, 865-886.	1.6	28
72	Assessing the performance of the FAO AquaCrop model to estimate maize yields and water use under full and deficit irrigation with focus on model parameterization. Agricultural Water Management, 2014, 144, 81-97.	2.4	99

#	Article	IF	CITATIONS
73	Generating fuzzy rules by learning from olive tree transpiration measurement – An algorithm to automatize Granier sap flow data analysis. Computers and Electronics in Agriculture, 2014, 101, 1-10.	3.7	7
74	Modelling economic impacts of deficit irrigated maize in Brazil with consideration of different rainfall regimes. Biosystems Engineering, 2013, 116, 97-110.	1.9	7
75	Regional Drought Modes in Iran Using the SPI: The Effect of Time Scale and Spatial Resolution. Water Resources Management, 2013, 27, 1661-1674.	1.9	50
76	The dual crop coefficient approach to estimate and partitioning evapotranspiration of the winter wheat–summer maize crop sequence in North China Plain. Irrigation Science, 2013, 31, 1303-1316.	1.3	118
77	Effects of water deficits on growth, yield and water productivity of drip-irrigated onion (Allium cepa) Tj ETQq1 1 C).784314 r 1.3	gBT /Overlo
78	Responses of drip irrigated tomato (Solanum lycopersicum L.) yield, quality and water productivity to various soil matric potential thresholds in an arid region of Northwest China. Agricultural Water Management, 2013, 129, 181-193.	2.4	87
79	Spatial variability analysis of reference evapotranspiration in Iran utilizing fine resolution gridded datasets. Agricultural Water Management, 2013, 126, 104-118.	2.4	44
80	Multi-band remote sensing based retrieval model and 3D analysis of water depth in Hulun Lake, China. Mathematical and Computer Modelling, 2013, 58, 771-781.	2.0	10
81	Assessing the effects of water table depth on water use, soil salinity and wheat yield: Searching for a target depth for irrigated areas in the upper Yellow River basin. Agricultural Water Management, 2013, 125, 46-60.	2.4	140
82	Reference evapotranspiration estimate with limited weather data across a range of Mediterranean climates. Journal of Hydrology, 2013, 481, 166-176.	2.3	142
83	Using remote sensing energy balance and evapotranspiration to characterize montane landscape vegetation with focus on grass and pasture lands. International Journal of Applied Earth Observation and Geoinformation, 2013, 21, 159-172.	1.4	41
84	Assessing homogeneous regions relative to drought class transitions using an ANOVA-like inference. Application to Alentejo, Portugal. Stochastic Environmental Research and Risk Assessment, 2013, 27, 183-193.	1.9	8
85	Estimation of ETo with Hargreaves–Samani and FAO-PM temperature methods for a wide range of climates in Iran. Agricultural Water Management, 2013, 121, 1-18.	2.4	156
86	Dual crop coefficients for maize in southern Brazil: Model testing for sprinkler and drip irrigation and mulched soil. Biosystems Engineering, 2013, 115, 291-310.	1.9	60
87	Comparing sprinkler and drip irrigation systems for full and deficit irrigated maize using multicriteria analysis and simulation modelling: Ranking for water saving vs. farm economic returns. Agricultural Water Management, 2013, 126, 85-96.	2.4	63
88	Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component. Agricultural Water Management, 2013, 117, 93-105.	2.4	106
89	Development of class pedotransfer functions for integrating water retention properties into Portuguese soil maps. Soil Research, 2013, 51, 262.	0.6	20

#	Article	IF	CITATIONS
91	Validation and Application of Model ISAREG in a Typical Semiarid Sand-Meadow Area of Horqin Sandy Land. IFIP Advances in Information and Communication Technology, 2013, , 421-429.	0.5	2
92	Climate trends and behaviour of drought indices based on precipitation and evapotranspiration in Portugal. Natural Hazards and Earth System Sciences, 2012, 12, 1481-1491.	1.5	206
93	Are drought occurrence and severity aggravating? A study on SPI drought class transitions using log-linear models and ANOVA-like inference. Hydrology and Earth System Sciences, 2012, 16, 3011-3028.	1.9	28
94	Dynamics of mountain semi-natural grassland meadows inferred from SPOT-VEGETATION and field spectroradiometer data. International Journal of Remote Sensing, 2012, 33, 4334-4355.	1.3	17
95	Clustering of log-linear models using LRT <i>p</i> -values to assess homogeneous regions relative to drought class transitions. Journal of Statistical Computation and Simulation, 2012, 82, 293-308.	0.7	0
96	ESTIMATING TRANSPIRATION AND SOIL EVAPORATION OF VINEYARDS FROM THE FRACTION OF GROUND COVER AND CROP HEIGHT - APPLICATION TO 'ALBARIÃ'O' VINEYARDS OF GALICIA. Acta Horticulturae, 2012, , 227-234.	0.1	6
97	ESTIMATION OF THE PAPAYA CROP COEFFICIENTS FOR IMPROVING IRRIGATION WATER MANAGEMENT IN SOUTH OF HAVANA. Acta Horticulturae, 2012, , 179-186.	0.1	3
98	Improved indicators of water use performance and productivity for sustainable water conservation and saving. Agricultural Water Management, 2012, 108, 39-51.	2.4	327
99	Implementing the dual crop coefficient approach in interactive software. 1. Background and computational strategy. Agricultural Water Management, 2012, 103, 8-24.	2.4	147
100	Implementing the dual crop coefficient approach in interactive software: 2. Model testing. Agricultural Water Management, 2012, 103, 62-77.	2.4	93
101	Two-dimensional modeling of water and nitrogen fate from sweet sorghum irrigated with fresh and blended saline waters. Agricultural Water Management, 2012, 111, 87-104.	2.4	162
102	Using the dual-Kc approach to model evapotranspiration of Albariño vineyards (Vitis vinifera L. cv.) Tj ETQq0 0 C) rgBT /Ove 2.4	erlock 10 Tf 5
103	DEPIVOT: A model for center-pivot design and evaluation. Computers and Electronics in Agriculture, 2012, 87, 159-170.	3.7	29
104	Water saving vs. farm economics in cotton surface irrigation: An application of multicriteria analysis. Agricultural Water Management, 2012, 115, 223-231.	2.4	26
105	Spatial and temporal variability of precipitation and drought in Portugal. Natural Hazards and Earth System Sciences, 2012, 12, 1493-1501.	1.5	82
106	Relationship between daily atmospheric circulation types and winter dry/wet spells in western Iran. International Journal of Climatology, 2012, 32, 1056-1068.	1.5	22
107	The dual crop coefficient approach using a density factor to simulate the evapotranspiration of a peach orchard: SIMDualKc model versus eddy covariance measurements. Irrigation Science, 2012, 30, 115-126.	1.3	79
108	Remote sensing based indicators of changes in a mountain rural landscape of Northeast Portugal. Applied Geography, 2011, 31, 871-880.	1.7	73

#	Article	IF	CITATIONS
109	Modelling for maize irrigation scheduling using long term experimental data from Plovdiv region, Bulgaria. Agricultural Water Management, 2011, 98, 675-683.	2.4	33
110	Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agricultural Water Management, 2011, 98, 899-920.	2.4	706
111	Evapotranspiration information reporting: II. Recommended documentation. Agricultural Water Management, 2011, 98, 921-929.	2.4	114
112	Nitrogen dynamics in volcanic soils under permanent pasture. Geoderma, 2011, 160, 384-393.	2.3	5
113	An evaluation of changes in a mountainous rural landscape of Northeast Portugal using remotely sensed data. Landscape and Urban Planning, 2011, 101, 253-261.	3.4	31
114	Field evaluation of a multicomponent solute transport model in soils irrigated with saline waters. Journal of Hydrology, 2011, 407, 129-144.	2.3	145
115	THE DUAL CROP COEFFICIENT APPROACH: TESTING THE SIMDUALKC MODEL WITH PEACH ORCHARD EVAPOTRANSPIRATION EDDY COVARIANCE MEASUREMENTS. Acta Horticulturae, 2011, , 181-188.	0.1	2
116	DETERMINATION OF CROP COEFFICIENTS FOR HORTICULTURAL CROPS IN CUBA THROUGH FIELD EXPERIMENTS AND WATER BALANCE SIMULATION. Acta Horticulturae, 2011, , 475-482.	0.1	3
117	An Application of GPCC and NCEP/NCAR Datasets for Drought Variability Analysis in Iran. Water Resources Management, 2011, 25, 1075-1086.	1.9	67
118	Using MODFLOW and GIS to Assess Changes in Groundwater Dynamics in Response to Water Saving Measures in Irrigation Districts of the Upper Yellow River Basin. Water Resources Management, 2011, 25, 2035-2059.	1.9	118
119	Impacts of spatial variability of basins microtopography on irrigation performance. Irrigation Science, 2011, 29, 359-368.	1.3	14
120	Furrow irrigation design with multicriteria analysis. Biosystems Engineering, 2011, 109, 266-275.	1.9	23
121	Stochastic modeling of basins microtopography: analysis of spatial variability and model testing. Irrigation Science, 2010, 28, 157-172.	1.3	21
122	Flexible delivery schedules to improve farm irrigation and reduce pressure on groundwater: a case study in southern Italy. Irrigation Science, 2010, 28, 257-270.	1.3	18
123	Relating energy performance and water productivity of sprinkler irrigated maize, wheat and sunflower under limited water availability. Biosystems Engineering, 2010, 106, 195-204.	1.9	21
124	Recommended Documentation of Evapotranspiration Measurements and Associated Weather Data and a Review of Requirements for Accuracy. , 2010, , .		1
125	Space-time variability of hydrological drought and wetness in Iran using NCEP/NCAR and GPCC datasets. Hydrology and Earth System Sciences, 2010, 14, 1919-1930.	1.9	31
126	Evaluating MODIS vegetation indices using ground based measurements in mountain semi-natural meadows of Northeast Portugal. , 2010, , .		5

#	Article	IF	CITATIONS
127	Assessing the groundwater dynamics and impacts of water saving in the Hetao Irrigation District, Yellow River basin. Agricultural Water Management, 2010, 98, 301-313.	2.4	164
128	Simulation of the soil water balance of wheat using daily weather forecast messages to estimate the reference evapotranspiration. Hydrology and Earth System Sciences, 2009, 13, 1045-1059.	1.9	47
129	A Web-based Decision Support System for Surface Irrigation Design. Sofware Development. , 2009, , .		0
130	Coping with Water Scarcity. , 2009, , .		96
131	Water Conservation and Saving: Concepts and Performance. , 2009, , 221-242.		0
132	Conceptual Thinking in Coping with Water Scarcity. , 2009, , 77-98.		1
133	Water Conservation and Saving Measures and Practices. , 2009, , 243-328.		0
134	Spatial Patterns and Temporal Variability of Drought in Western Iran. Water Resources Management, 2009, 23, 439-455.	1.9	241
135	Estimating crop coefficients from fraction of ground cover and height. Irrigation Science, 2009, 28, 17-34.	1.3	326
136	Assessing economic impacts of deficit irrigation as related to water productivity and water costs. Biosystems Engineering, 2009, 103, 536-551.	1.9	108
137	MIRRIC: A decision support system for design and evaluation of microirrigation systems. Agricultural Water Management, 2009, 96, 691-701.	2.4	29
138	Multicriteria analysis for design of microirrigation systems. Application and sensitivity analysis. Agricultural Water Management, 2009, 96, 702-710.	2.4	12
139	Irrigation scheduling strategies for cotton to cope with water scarcity in the Fergana Valley, Central Asia. Agricultural Water Management, 2009, 96, 723-735.	2.4	86
140	Decision Support System for Surface Irrigation Design. Journal of Irrigation and Drainage Engineering - ASCE, 2009, 135, 343-356.	0.6	35
141	Estimating Crop Coefficients from Fraction of Ground Cover and Height. , 2009, , .		0
142	Water Scarcity Concepts. , 2009, , 7-24.		3
143	Droughts and Desertification. , 2009, , 47-75.		0
144	Physical Characteristics and Processes Leading to Water Scarcity. , 2009, , 25-46.		0

9

#	Article	IF	CITATIONS
145	Groundwater Use and Recharge. , 2009, , 133-174.		1
146	SurfaceWater Use and Harvesting. , 2009, , 99-132.		0
147	Social, Economic, Cultural, Legal and Institutional Constraints and Issues. , 2009, , 329-342.		1
148	Stochastic Prediction of Drought Class Transitions. Water Resources Management, 2008, 22, 1277-1296.	1.9	51
149	Cotton irrigation scheduling in central Asia: model calibration and validation with consideration of groundwater contribution. Irrigation and Drainage, 2008, 57, 516-532.	0.8	43
150	Irrigation scheduling for furrow-irrigated maize under climate uncertainties in the Thrace plain, Bulgaria. Biosystems Engineering, 2008, 99, 587-597.	1.9	12
151	SPI-based drought category prediction using loglinear models. Journal of Hydrology, 2008, 354, 116-130.	2.3	132
152	Performance analysis of pressurized irrigation systems operating on-demand using flow-driven simulation models. Agricultural Water Management, 2008, 95, 154-162.	2.4	36
153	A precipitation-based regionalization for Western Iran and regional drought variability. Hydrology and Earth System Sciences, 2008, 12, 1309-1321.	1.9	108
154	Estimating reference evapotranspiration with the FAO Penman–Monteith equation using daily weather forecast messages. Agricultural and Forest Meteorology, 2007, 145, 22-35.	1.9	267
155	Assessing impacts of surge-flow irrigation on water saving and productivity of cotton. Agricultural Water Management, 2007, 87, 115-127.	2.4	68
156	Pressure-driven modeling for performance analysis of irrigation systems operating on demand. Agricultural Water Management, 2007, 90, 36-44.	2.4	25
157	Assessing the impact of flow regulators with a pressure-driven performance analysis model. Agricultural Water Management, 2007, 90, 27-35.	2.4	12
158	Assessing basin irrigation and scheduling strategies for saving irrigation water and controlling salinity in the upper Yellow River Basin, China. Agricultural Water Management, 2007, 93, 109-122.	2.4	137
159	Modelling and multicriteria analysis of water saving scenarios for an irrigation district in the upper Yellow River Basin. Agricultural Water Management, 2007, 94, 93-108.	2.4	58
160	Chapter 8. Water Requirements. , 2007, , 208-288.		39
161	Prediction of SPI Drought Class Transitions Using Markov Chains. Water Resources Management, 2007, 21, 1813-1827.	1.9	131
162	Simulação da procura numa rede de rega operando a pedido: o modelo Irdemand. IngenierÃa Del Agua, 2007, 14, 153.	0.2	0

#	Article	IF	CITATIONS
163	A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method. Agricultural Water Management, 2006, 81, 1-22.	2.4	473
164	Fluxes through the bottom boundary of the root zone in silty soils: Parametric approaches to estimate groundwater contribution and percolation. Agricultural Water Management, 2006, 84, 27-40.	2.4	102
165	Analysis of SPI drought class transitions using loglinear models. Journal of Hydrology, 2006, 331, 349-359.	2.3	97
166	Modelling for Improved Irrigation Water Management in a Temperate Region of Northern Spain. Biosystems Engineering, 2006, 94, 151-163.	1.9	35
167	Model Validation, Crop Coefficients and Yield Response Factors for Maize Irrigation Scheduling based on Long-term Experiments. Biosystems Engineering, 2006, 95, 139-149.	1.9	36
168	Validation of the FAO methodology for computing ETo with limited data. Application to south Bulgaria. Irrigation and Drainage, 2006, 55, 201-215.	0.8	119
169	Assessing drainage water reuse options in Bojili Irrigation District, Shandong. Irrigation and Drainage, 2006, 55, 463-477.	0.8	7
170	Drought Concepts and Characterization. Water International, 2006, 31, 37-49.	0.4	125
171	DESERTIFICATION, TERRITORY AND PEOPLE, A HOLISTIC APPROACH IN THE PORTUGUESE CONTEXT. , 2006, , 269-289.		14
172	Estimating Evaporation from Bare Soil and the Crop Coefficient for the Initial Period Using Common Soils Information. Journal of Irrigation and Drainage Engineering - ASCE, 2005, 131, 14-23.	0.6	91
173	Simulating the fate of water in field soil–crop environment. Journal of Hydrology, 2005, 315, 1-24.	2.3	34
174	Multi-scale modeling for water resources planning and management in rural basins. Agricultural Water Management, 2005, 77, 4-20.	2.4	27
175	Drought class transition analysis through Markov and Loglinear models, an approach to early warning. Agricultural Water Management, 2005, 77, 59-81.	2.4	105
176	Using RZWQM to search improved practices for irrigated maize in Fergana, Uzbekistan. Agricultural Water Management, 2005, 77, 263-281.	2.4	15
177	Field assessment of the water saving potential with furrow irrigation in Fergana, Aral Sea basin. Agricultural Water Management, 2005, 77, 210-231.	2.4	65
178	GISAREG—A GIS based irrigation scheduling simulation model to support improved water use. Agricultural Water Management, 2005, 77, 159-179.	2.4	64
179	FAO-56 Dual Crop Coefficient Method for Estimating Evaporation from Soil and Application Extensions. Journal of Irrigation and Drainage Engineering - ASCE, 2005, 131, 2-13.	0.6	454
180	Andosols of Terceira, Azores: measurement and significance of soil hydraulic properties. Catena, 2004, 56, 145-154.	2.2	30

#	Article	IF	CITATIONS
181	Runoff and erosion in volcanic soils of Azores: simulation with OPUS. Catena, 2004, 56, 199-212.	2.2	37
182	Design and Performance Analysis of Low Pressure Irrigation Distribution Systems. Irrigation and Drainage Systems, 2003, 17, 305-324.	0.5	10
183	Soil macropore dynamics affected by tillage and irrigation for a silty loam alluvial soil in southern Portugal. Soil and Tillage Research, 2003, 70, 131-140.	2.6	139
184	Monitoring water and NO3-N in irrigated maize fields in the Sorraia Watershed, Portugal. Agricultural Water Management, 2003, 60, 199-216.	2.4	44
185	Irrigation management under water scarcity. Agricultural Water Management, 2002, 57, 175-206.	2.4	634
186	Evaluation and simulation analysis of microirrigation systems. , 2002, , .		0
187	Sprinkler irrigation systems design using ISADim. , 2002, , .		0
188	Assessment and simulation of atrazine in irrigated soils. Irrigation and Drainage, 2002, 51, 257-264.	0.8	3
189	Modelo de simulaçâo para projecto e avaliaçâo de sistemas de rega localizada. IngenierÃa Del Agua, 2002, 9, 453.	0.2	0
190	Revised FAO Procedures for Calculating Evapotranspiration: Irrigation and Drainage Paper No. 56 with Testing in Idaho. , 2001, , 1.		78
191	A simulation model for design and evaluation of micro-irrigation systems. Irrigation and Drainage, 2001, 50, 323-334.	0.8	9
192	Desempenho de sistemas de rega. IngenierÃa Del Agua, 2001, 8, 329.	0.2	1
193	KCISA, A PROGRAM TO COMPUTE TIME-AVERAGED CROP COEFFICIENTS. APPLICATION TO FIELD GROWN HORTICULTURAL CROPS Acta Horticulturae, 2000, , 535-542.	0.1	3
194	IRRIGATION SCHEDULING STRATEGIES FOR HORTICULTURAL FIELD CROPS UNDER LIMITED WATER AVAILABILITY. Acta Horticulturae, 2000, , 503-510.	0.1	4
195	Atrazine Transport in Irrigated Heavy- and Coarse-Textured Soils, Part I: Field Studies. Biosystems Engineering, 2000, 76, 165-174.	0.4	14
196	Atrazine Transport in Irrigated Heavy- and Coarse-Textured Soils, Part II: simulations with the Root Zone Water Quality Model. Biosystems Engineering, 2000, 76, 341-354.	0.4	8
197	Non-water-stressed baselines for irrigation scheduling with infrared thermometers: A new approach. Irrigation Science, 2000, 19, 101-106.	1.3	68
198	EVAPOTRANSPIRATION ESTIMATION FROM INFRARED SURFACE TEMPERATURE. II: THE SURFACE TEMPERATURE AS A WET BULB TEMPERATURE. Transactions of the American Society of Agricultural Engineers, 2000, 43, 599-602.	0.9	7

#	Article	IF	CITATIONS
199	EVAPOTRANSPIRATION ESTIMATION FROM INFRARED SURFACE TEMPERATURE. I: THE PERFORMANCE OF THE FLUX EQUATION. Transactions of the American Society of Agricultural Engineers, 2000, 43, 591-598.	0.9	11
200	Modelling surface resistance from climatic variables?. Agricultural Water Management, 2000, 42, 371-385.	2.4	91
201	Evaluating field measured soil hydraulic properties in water transport simulations using the RZWQM. Journal of Hydrology, 2000, 236, 78-90.	2.3	30
202	Evapotranspiration: Concepts and Future Trends. Journal of Irrigation and Drainage Engineering - ASCE, 1999, 125, 45-51.	0.6	165
203	Higher performance through combined improvements in irrigation methods and scheduling: a discussion. Agricultural Water Management, 1999, 40, 153-169.	2.4	105
204	Regional analysis of irrigation water requirements using kriging. Agricultural Water Management, 1999, 40, 221-233.	2.4	30
205	Modelling the local climate in island environments: water balance applications. Agricultural Water Management, 1999, 40, 393-403.	2.4	71
206	Evaluation of the RZWQM for the Simulation of Water and Nitrate Movement in Level-Basin, Fertigated Maize. Biosystems Engineering, 1998, 69, 331-341.	0.4	26
207	Model validation and crop coefficients for irrigation scheduling in the North China plain. Agricultural Water Management, 1998, 36, 233-246.	2.4	89
208	Simulating Atrazine Transport Using Root Zone Water Quality Model for Iowa Soil Profiles. Journal of Environmental Quality, 1997, 26, 153-167.	1.0	28
209	PROPOSED REVISION TO THE FAO PROCEDURE FOR ESTIMATING CROP WATER REQUIREMENTS. Acta Horticulturae, 1997, , 17-34.	0.1	17
210	Pedo-transfer functions for estimating unsaturated hydraulic properties of Portuguese soils. European Journal of Soil Science, 1997, 48, 387-400.	1.8	21
211	Simulation of irrigation demand hydrographs at sector level. Irrigation and Drainage Systems, 1996, 10, 159-178.	0.5	7
212	Research Agenda on Sustainability of Irrigated Agriculture. Journal of Irrigation and Drainage Engineering - ASCE, 1996, 122, 172-177.	0.6	14
213	Surface Irrigation Systems. , 1996, , 269-289.		3
214	Effect of Changing Irrigation Delivery Schedules During Periods of Limited Availability of Water. Biosystems Engineering, 1995, 61, 261-266.	0.4	9
215	Effect of Furrow Elevation Differences on Level-basin Performance. Transactions of the American Society of Agricultural Engineers, 1995, 38, 153-158.	0.9	20
216	Modelling of furrow irrigation. Advance with two-dimensional infiltration. Agricultural Water Management, 1995, 28, 201-221.	2.4	36

#	Article	IF	CITATIONS
217	Two-dimensional infiltration under furrow irrigation: modelling, its validation and applications. Agricultural Water Management, 1995, 27, 105-123.	2.4	20
218	Overestimation of soybean crop transpiration by sap flow measurements under field conditions in Central Portugal. Irrigation Science, 1994, 14, 135.	1.3	23
219	Influence of Spatial Variability of Saturated Hydraulic Conductivity on the Infiltration Process. , 1989, , 455-467.		3
220	Modernization of irrigation systems: A case of research, oriented to improve management. Irrigation and Drainage Systems, 1988, 2, 63-77.	0.5	2
221	Measuring conveyance efficiencies to improve irrigation water management. Irrigation and Drainage Systems, 1987, 1, 267-276.	0.5	9
222	SADREG, A Client-Server Application DSS For Design And Management Of Surface Irrigation. , 0, , .		0
223	A DSS for Design and Performance Analysis of Microirrigation Systems. , 0, , .		0