
Dongshi Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9300336/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Irregular LIPSS produced on metals by single linearly polarized femtosecond laser. International Journal of Extreme Manufacturing, 2022, 4, 015102.	12.7	50
2	Femtosecond Laser Generated Hierarchical Macropore/LIPSS Metasurfaces and Their Ultrabroadband Absorbance, Photothermal Properties, and Thermal-Induced Reflectance Oscillation. ACS Applied Electronic Materials, 2022, 4, 990-1001.	4.3	12
3	Liquid vortexes and flows induced by femtosecond laser ablation in liquid governing formation of circular and crisscross LIPSS. Opto-Electronic Advances, 2022, 5, 210066-210066.	13.3	23
4	Liquid vortexes and flows induced by femtosecond laser ablation in liquid governing formation of circular and crisscross LIPSS. Opto-Electronic Advances, 2022, 5, 210066-210066.	13.3	3
5	Hierarchical WO _{3–<i>x</i>} Ultrabroadband Absorbers and Photothermal Converters Grown from Femtosecond Laser-Induced Periodic Surface Structures. ACS Applied Materials & Interfaces, 2022, 14, 24046-24058.	8.0	5
6	Diverse nanomaterials synthesized by laser ablation of pure metals in liquids. Science China: Physics, Mechanics and Astronomy, 2022, 65, .	5.1	8
7	Laser ablation in liquids for nanomaterial synthesis: diversities of targets and liquids. JPhys Photonics, 2021, 3, 042002.	4.6	50
8	Femtosecond laser induced simultaneous functional nanomaterial synthesis, in situ deposition and hierarchical LIPSS nanostructuring for tunable antireflectance and iridescence applications. Journal of Materials Science and Technology, 2021, 89, 179-185.	10.7	27
9	Laser Ablation in Liquids for Nanomaterial Synthesis and Applications. , 2021, , 1-35.		1
10	Laser Ablation in Liquids for Nanomaterial Synthesis and Applications. , 2021, , 1481-1515.		3
11	Laser-synthesized graphite carbon encased gold nanoparticles with specific reaction channels for efficient oxygen reduction. Journal of Colloid and Interface Science, 2020, 563, 74-80.	9.4	10
12	Multiscale Hierarchical Micro/Nanostructures Created by Femtosecond Laser Ablation in Liquids for Polarization-Dependent Broadband Antireflection. Nanomaterials, 2020, 10, 1573.	4.1	19
13	Carbonized Hybrid Micro/Nanostructured Metasurfaces Produced by Femtosecond Laser Ablation in Organic Solvents for Biomimetic Antireflective Surfaces. ACS Applied Nano Materials, 2020, 3, 1855-1871.	5.0	43
14	Underwater persistent bubble-assisted femtosecond laser ablation for hierarchical micro/nanostructuring. International Journal of Extreme Manufacturing, 2020, 2, 015001.	12.7	54
15	Multiscale Hierarchical Micro/Nanostructures Created by Femtosecond Laser Ablation in Liquids for Polarization-Dependent Broadband Antireflection. Nanomaterials, 2020, 10, 1573.	4.1	1
16	Hierarchical anti-reflective laser-induced periodic surface structures (LIPSSs) on amorphous Si films for sensing applications. Nanoscale, 2020, 12, 13431-13441.	5.6	67
17	Femtosecond laser shockwave peening ablation in liquids for hierarchical micro/nanostructuring of brittle silicon and its biological application. International Journal of Extreme Manufacturing, 2020, 2, 045001.	12.7	31
18	Carbon-Encapsulated Metal/Metal Carbide/Metal Oxide Core–Shell Nanostructures Generated by Laser Ablation of Metals in Organic Solvents. ACS Applied Nano Materials, 2019, 2, 28-39.	5.0	86

Dongshi Zhang

#	Article	IF	CITATIONS
19	Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids. Opto-Electronic Advances, 2019, 2, 19000201-19000218.	13.3	82
20	Two Birds with One Stone: Spontaneous Size Separation and Growth Inhibition of Femtosecond Laser-Generated Surfactant-Free Metallic Nanoparticles via ex Situ SU-8 Functionalization. ACS Omega, 2018, 3, 10953-10966.	3.5	8
21	Spontaneous Shape Alteration and Size Separation of Surfactant-Free Silver Particles Synthesized by Laser Ablation in Acetone during Long-Period Storage. Nanomaterials, 2018, 8, 529.	4.1	28
22	Magnetic Fe@FeOx, Fe@C and α-Fe2O3 Single-Crystal Nanoblends Synthesized by Femtosecond Laser Ablation of Fe in Acetone. Nanomaterials, 2018, 8, 631.	4.1	33
23	Formation Mechanism of Laser-Synthesized Iron-Manganese Alloy Nanoparticles, Manganese Oxide Nanosheets and Nanofibers. Particle and Particle Systems Characterization, 2017, 34, 1600225.	2.3	36
24	Germanium Sub-Microspheres Synthesized by Picosecond Pulsed Laser Melting in Liquids: Educt Size Effects. Scientific Reports, 2017, 7, 40355.	3.3	39
25	Laser Synthesis and Processing of Colloids: Fundamentals and Applications. Chemical Reviews, 2017, 117, 3990-4103.	47.7	965
26	Recent Advances in Surfactantâ€Free, Surfaceâ€Charged, and Defectâ€Rich Catalysts Developed by Laser Ablation and Processing in Liquids. ChemNanoMat, 2017, 3, 512-533.	2.8	103
27	Perspective on how laser-ablated particles grow in liquids. Science China: Physics, Mechanics and Astronomy, 2017, 60, 1.	5.1	57
28	Perspective of laser-prototyping nanoparticle-polymer composites. Applied Surface Science, 2017, 392, 991-1003.	6.1	66
29	Debris-free rear-side picosecond laser ablation of thin germanium wafers in water with ethanol. Applied Surface Science, 2016, 367, 222-230.	6.1	69
30	Layered Seed-Growth of AgGe Football-like Microspheres via Precursor-Free Picosecond Laser Synthesis in Water. Scientific Reports, 2015, 5, 13661.	3.3	41
31	Rapid Nanoparticle-Polymer Composites Prototyping by Laser Ablation in Liquids. , 2015, , 2131-2141.		8
32	Superhydrophobic PDMS surfaces with three-dimensional (3D) pattern-dependent controllable adhesion. Applied Surface Science, 2014, 288, 579-583.	6.1	76
33	Bioinspired underwater superoleophobic surface with ultralow oil-adhesion achieved by femtosecond laser microfabrication. Journal of Materials Chemistry A, 2014, 2, 8790-8795.	10.3	160
34	A bioinspired planar superhydrophobic microboat. Journal of Micromechanics and Microengineering, 2014, 24, 035006.	2.6	26
35	Bioinspired superhydrophobic surfaces with directional Adhesion. RSC Advances, 2014, 4, 8138.	3.6	44
36	A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces. Journal of Materials Chemistry A, 2014, 2, 5499-5507.	10.3	172

Dongshi Zhang

#	Article	IF	CITATIONS
37	Bioinspired Wetting Surface via Laser Microfabrication. ACS Applied Materials & Interfaces, 2013, 5, 6777-6792.	8.0	194
38	Rapid Fabrication of Large-Area Concave Microlens Arrays on PDMS by a Femtosecond Laser. ACS Applied Materials & Interfaces, 2013, 5, 9382-9385.	8.0	122
39	Stable superhydrophobic surface with hierarchical mesh-porous structure fabricated by a femtosecond laser. Applied Physics A: Materials Science and Processing, 2013, 111, 243-249.	2.3	60
40	Femtosecond Laser Weaving Superhydrophobic Patterned PDMS Surfaces with Tunable Adhesion. Journal of Physical Chemistry C, 2013, 117, 24907-24912.	3.1	143
41	Controllable Adhesive Superhydrophobic Surfaces Based on PDMS Microwell Arrays. Langmuir, 2013, 29, 3274-3279.	3.5	117
42	A Simple Way To Achieve Pattern-Dependent Tunable Adhesion in Superhydrophobic Surfaces by a Femtosecond Laser. ACS Applied Materials & Interfaces, 2012, 4, 4905-4912.	8.0	141
43	Mutual wetting transition between isotropic and anisotropic on directional structures fabricated by femotosecond laser. Soft Matter, 2011, 7, 8337.	2.7	49
44	Anisotropic Wetting on Microstrips Surface Fabricated by Femtosecond Laser. Langmuir, 2011, 27, 359-365.	3.5	101
45	Femtosecond laser directly writing microholes in Bi(Nb0.998V0.002)O4 ceramic and multi-photon induced large scale nanometer wires array. Journal of Materials Science: Materials in Electronics, 2011, 22, 1-5.	2.2	7
46	Research on the technology of femtosecond laser micromachining based on image edge tracing. Science Bulletin, 2010, 55, 877-881.	1.7	3
47	Wetting characteristics on hierarchical structures patterned by a femtosecond laser. Journal of Micromechanics and Microengineering, 2010, 20, 075029.	2.6	42
48	Photoetching of spherical microlenses on glasses using a femtosecond laser. Optics Communications, 2009, 282, 4119-4123.	2.1	53
49	Fabrication of Periodic Microholes in BiNbO ₄ by Femtosecond Laser Pulses for the Applications of 2D Photonic Crystal Waveguide. Ferroelectrics, 2009, 387, 130-136.	0.6	1