Wei-Min Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9300284/publications.pdf Version: 2024-02-01

WELMIN DEN

#	Article	lF	CITATIONS
1	CO ₂ Copolymers from Epoxides: Catalyst Activity, Product Selectivity, and Stereochemistry Control. Accounts of Chemical Research, 2012, 45, 1721-1735.	15.6	576
2	Mechanistic Aspects of the Copolymerization of CO ₂ with Epoxides Using a Thermally Stable Single-Site Cobalt(III) Catalyst. Journal of the American Chemical Society, 2009, 131, 11509-11518.	13.7	311
3	Asymmetric Copolymerization of CO ₂ with <i>meso</i> â€Epoxides Mediated by Dinuclear Cobalt(III) Complexes: Unprecedented Enantioselectivity and Activity. Angewandte Chemie - International Edition, 2013, 52, 11594-11598.	13.8	207
4	Bifunctional Aluminum Catalyst for CO ₂ Fixation: Regioselective Ring Opening of Three-Membered Heterocyclic Compounds. Journal of Organic Chemistry, 2014, 79, 9771-9777.	3.2	147
5	Enhanced Asymmetric Induction for the Copolymerization of CO ₂ and Cyclohexene Oxide with Unsymmetric Enantiopure SalenCo(III) Complexes: Synthesis of Crystalline CO ₂ -Based Polycarbonate. Journal of the American Chemical Society, 2012, 134, 5682-5688.	13.7	140
6	Asymmetric Alternating Copolymerization of Meso-epoxides and Cyclic Anhydrides: Efficient Access to Enantiopure Polyesters. Journal of the American Chemical Society, 2016, 138, 11493-11496.	13.7	128
7	Binuclear chromium–salan complex catalyzed alternating copolymerization of epoxides and cyclic anhydrides. Polymer Chemistry, 2013, 4, 1439-1444.	3.9	111
8	Mechanistic Understanding of Dinuclear Cobalt(III) Complex Mediated Highly Enantioselective Copolymerization of <i>meso</i> -Epoxides with CO ₂ . Macromolecules, 2014, 47, 7775-7788.	4.8	108
9	Alternating copolymerization of CO2 and styrene oxide with Co(iii)-based catalyst systems: differences between styrene oxide and propylene oxide. Energy and Environmental Science, 2011, 4, 5084.	30.8	94
10	Role of the co-catalyst in the asymmetric coupling of racemic epoxides with CO2 using multichiral Co(iii) complexes: product selectivity and enantioselectivity. Chemical Science, 2012, 3, 2094.	7.4	93
11	Stereospecific CO ₂ Copolymers from 3,5-Dioxaepoxides: Crystallization and Functionallization. Macromolecules, 2014, 47, 1269-1276.	4.8	80
12	Crystalline Stereocomplexed Polycarbonates: Hydrogenâ€Bondâ€Driven Interlocked Orderly Assembly of the Opposite Enantiomers. Angewandte Chemie - International Edition, 2015, 54, 2241-2244.	13.8	74
13	Stereoregular polycarbonate synthesis: Alternating copolymerization of CO ₂ with aliphatic terminal epoxides catalyzed by multichiral cobalt(III) complexes. Journal of Polymer Science Part A, 2011, 49, 4894-4901.	2.3	73
14	Stereoregular poly(cyclohexene carbonate)s: Unique crystallization behavior. Chinese Journal of Polymer Science (English Edition), 2012, 30, 487-492.	3.8	73
15	Enantioselective Resolution Copolymerization of <i>Racemic</i> Epoxides and Anhydrides: Efficient Approach for Stereoregular Polyesters and Chiral Epoxides. Journal of the American Chemical Society, 2019, 141, 8937-8942.	13.7	70
16	Precise Synthesis of Poly(thioester)s with Diverse Structures by Copolymerization of Cyclic Thioanhydrides and Episulfides Mediated by Organic Ammonium Salts. Angewandte Chemie - International Edition, 2019, 58, 618-623.	13.8	69
17	Development of Highly Enantioselective Catalysts for Asymmetric Copolymerization of <i>meso</i> -Epoxides and Cyclic Anhydrides: Subtle Modification Resulting in Superior Enantioselectivity. ACS Catalysis, 2019, 9, 1915-1922.	11.2	67
18	Crystalline Hetero‧tereocomplexed Polycarbonates Produced from Amorphous Opposite Enantiomers Having Different Chemical Structures. Angewandte Chemie - International Edition, 2015, 54, 7042-7046.	13.8	59

Wei-Min Ren

#	Article	IF	CITATIONS
19	Synthesis of Chiral Sulfur ontaining Polymers: Asymmetric Copolymerization of <i>meso</i> â€Epoxides and Carbonyl Sulfide. Angewandte Chemie - International Edition, 2018, 57, 12670-12674.	13.8	55
20	Single-Site Bifunctional Catalysts for COX (X = O or S)/Epoxides Copolymerization: Combining High Activity, Selectivity, and Durability. Macromolecules, 2015, 48, 8445-8450.	4.8	50
21	Crystalline and Elastomeric Poly(monothiocarbonate)s Prepared from Copolymerization of COS and Achiral Epoxide. Macromolecules, 2017, 50, 63-68.	4.8	43
22	Highly regio- and stereoselective synthesis of cyclic carbonates from biomass-derived polyols <i>via</i> organocatalytic cascade reaction. Green Chemistry, 2019, 21, 6335-6341.	9.0	42
23	Intramolecularly Cooperative Catalysis for Copolymerization of Cyclic Thioanhydrides and Epoxides: A Dual Activation Strategy to Well-Defined Polythioesters. ACS Catalysis, 2020, 10, 6635-6644.	11.2	41
24	Crystalline Polythiocarbonate from Stereoregular Copolymerization of Carbonyl Sulfide and Epichlorohydrin. Macromolecules, 2016, 49, 2971-2976.	4.8	39
25	Functionalized Polyesters with Tunable Degradability Prepared by Controlled Ring-Opening (Co)polymerization of Lactones. Macromolecules, 2017, 50, 3131-3142.	4.8	38
26	Semiaromatic Poly(thioester) from the Copolymerization of Phthalic Thioanhydride and Epoxide: Synthesis, Structure, and Properties. Macromolecules, 2019, 52, 2439-2445.	4.8	38
27	Stereoregular CO ₂ Copolymers from Epoxides with an Electron-Withdrawing Group: Crystallization and Unexpected Stereocomplexation. Macromolecules, 2017, 50, 7062-7069.	4.8	34
28	The synthesis of degradable sulfur-containing polymers: precise control of structure and stereochemistry. Polymer Chemistry, 2021, 12, 6650-6666.	3.9	32
29	Enantioselective terpolymerization of racemic and <i>meso</i> -epoxides with anhydrides for preparation of chiral polyesters. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15429-15436.	7.1	31
30	Randomly Distributed Sulfur Atoms in the Main Chains of CO ₂ â€Based Polycarbonates: Enhanced Optical Properties. Angewandte Chemie - International Edition, 2021, 60, 4315-4321.	13.8	31
31	Mechanistic Aspects of Metal Valence Change in SalenCo(III)OAc-Catalyzed Hydrolytic Kinetic Resolution of Racemic Epoxides. Journal of Organic Chemistry, 2013, 78, 4801-4810.	3.2	28
32	Reversible Transformation between Amorphous and Crystalline States of Unsaturated Polyesters by <i>Cis</i> – <i>Trans</i> Isomerization. Angewandte Chemie - International Edition, 2019, 58, 17636-17640.	13.8	26
33	A sustainable approach for the synthesis of recyclable cyclic CO ₂ -based polycarbonates. Chemical Science, 2022, 13, 6283-6290.	7.4	26
34	Electrocarboxylation of <i>N</i> -Acylimines with Carbon Dioxide: Access to Substituted α-Amino Acids. Organic Letters, 2022, 24, 3565-3569.	4.6	25
35	Facile Synthesis of Wellâ€Defined Branched Sulfurâ€Containing Copolymers: Oneâ€Pot Copolymerization of Carbonyl Sulfide and Epoxide. Angewandte Chemie - International Edition, 2020, 59, 13633-13637.	13.8	23
36	Controlled Disassembly of Elemental Sulfur: An Approach to the Precise Synthesis of Polydisulfides. Angewandte Chemie - International Edition, 2022, 61, .	13.8	23

Wei-Min Ren

#	Article	IF	CITATIONS
37	Synthesis of Chiral Sulfurâ€Containing Polymers: Asymmetric Copolymerization of <i>meso</i> â€Epoxides and Carbonyl Sulfide. Angewandte Chemie, 2018, 130, 12852-12856.	2.0	22
38	A Single-Site Iron(III)-Salan Catalyst for Converting COS to Sulfur-Containing Polymers. Polymers, 2017, 9, 515.	4.5	17
39	Highly efficient conversion of CO ₂ to cyclic carbonates with a binary catalyst system in a microreactor: intensification of "electrophile–nucleophile―synergistic effect. RSC Advances, 2018, 8, 39182-39186.	3.6	15
40	Synthesis of Polycarbonate Block Terpolymers Using Robust Cobalt Catalyst Systems. Chinese Journal of Polymer Science (English Edition), 2019, 37, 1200-1204.	3.8	14
41	Alternating Copolymerization of SO ₂ with Epoxides Mediated by Simple Organic Ammonium Salts. Macromolecules, 2020, 53, 9901-9905.	4.8	14
42	Copolymerization of aziridines and cyclic anhydrides by metal-free catalysis strategy. European Polymer Journal, 2020, 136, 109900.	5.4	13
43	Alternating Copolymerization of trans-Internal Epoxides and Cyclic Anhydrides Mediated by Dinuclear Chromium Catalyst Systems. Macromolecules, 2019, 52, 5652-5657.	4.8	12
44	Mechanism-inspired Design of Heterodinuclear Catalysts for Copolymerization of Epoxide and Lactone. Chinese Journal of Polymer Science (English Edition), 2020, 38, 950-957.	3.8	11
45	Photoinduced Reversible Semicrystallineâ€toâ€Amorphous State Transitions of Stereoregular Azopolyesters. Angewandte Chemie - International Edition, 2021, 60, 17898-17903.	13.8	11
46	Synthesis of polyethers from epoxides <i>via</i> a binary organocatalyst system. Polymer Chemistry, 2021, 12, 6436-6443.	3.9	8
47	Tandem Lewis Pair Polymerization and Organocatalytic Ring-Opening Polymerization for Synthesizing Block and Brush Copolymers. Molecules, 2018, 23, 468.	3.8	7
48	Reversible Transformation between Amorphous and Crystalline States of Unsaturated Polyesters by Cis – Trans Isomerization. Angewandte Chemie, 2019, 131, 17800-17804.	2.0	6
49	Flexible Gradient Poly(ether-ester) from the Copolymerization of Epoxides and ε-Caprolactone Mediated by a Hetero-bimetallic Complex. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1013-1019.	3.8	6
50	Facile Access to Functionalized Poly(thioether)s via Anionic Ring-Opening Decarboxylative Polymerization of COS-Sourced α-Alkylidene Cyclic Thiocarbonates. Macromolecules, 2021, 54, 10395-10404.	4.8	5
51	COS-triggered oxygen/sulfur exchange of isatins: chemoselective synthesis of functionalized isoindigos and spirothiopyrans <i>via</i> self-condensation and the thio-Diels–Alder reaction. Organic and Biomolecular Chemistry, 2022, 20, 678-685.	2.8	5
52	Evaluation of the Lewis acidity of metal complexes using ESI mass spectrometry. European Journal of Mass Spectrometry, 2020, 26, 332-340.	1.0	4
53	Carboxylative Cyclization of 2-Butenoates with Carbon Dioxide: Access to Glutaconic Anhydrides. Journal of Organic Chemistry, 2020, 85, 11579-11588.	3.2	3
54	The copolymerization of SO ₂ with propylene oxide mediated by organic ammonium salts: a comprehensive study of the main-chain structure, living polymerization character and regioselectivity. Polymer Chemistry, 2022, 13, 3136-3143.	3.9	3

#	Article	IF	CITATIONS
55	Photoinduced Reversible Semicrystallineâ€toâ€Amorphous State Transitions of Stereoregular Azopolyesters. Angewandte Chemie, 2021, 133, 18042-18047.	2.0	2
56	Controlled Disassembly of Elemental Sulfur: An Approach to the Precise Synthesis of Polydisulfides. Angewandte Chemie, 0, , .	2.0	0