Peter B Reich

List of Publications by Citations

Source: https://exaly.com/author-pdf/9300040/peter-b-reich-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

282 726 147 92,477 h-index g-index citations papers 8.8 8.26 108,559 759 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
726	The worldwide leaf economics spectrum. <i>Nature</i> , 2004 , 428, 821-7	50.4	4915
725	A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. <i>Australian Journal of Botany</i> , 2003 , 51, 335	1.2	2483
724	The Influence of Functional Diversity and Composition on Ecosystem Processes. <i>Science</i> , 1997 , 277, 130)0 ₃ 1,302	2 1999
723	New handbook for standardised measurement of plant functional traits worldwide. <i>Australian Journal of Botany</i> , 2013 , 61, 167	1.2	1983
722	From tropics to tundra: global convergence in plant functioning. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1997 , 94, 13730-4	11.5	1664
721	TRY 🖟 global database of plant traits. Global Change Biology, 2011 , 17, 2905-2935	11.4	1623
720	Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. <i>Ecology Letters</i> , 2008 , 11, 1065-71	10	1605
719	Diversity and productivity in a long-term grassland experiment. Science, 2001, 294, 843-5	33.3	1565
718	The world-wide fastBlow[plant economics spectrum: a traits manifesto. <i>Journal of Ecology</i> , 2014 , 102, 275-301	6	1531
717	Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. <i>New Phytologist</i> , 2012 , 193, 30-50	9.8	1490
716	Assessing the generality of global leaf trait relationships. <i>New Phytologist</i> , 2005 , 166, 485-96	9.8	1343
715	Biodiversity and ecosystem stability in a decade-long grassland experiment. <i>Nature</i> , 2006 , 441, 629-32	50.4	1254
714	Leaf Life-Span in Relation to Leaf, Plant, and Stand Characteristics among Diverse Ecosystems. <i>Ecological Monographs</i> , 1992 , 62, 365-392	9	1213
713	Global patterns of plant leaf N and P in relation to temperature and latitude. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 11001-6	11.5	1203
712	The global spectrum of plant form and function. <i>Nature</i> , 2016 , 529, 167-71	50.4	1191
711	High plant diversity is needed to maintain ecosystem services. <i>Nature</i> , 2011 , 477, 199-202	50.4	907
710	GENERALITY OF LEAF TRAIT RELATIONSHIPS: A TEST ACROSS SIX BIOMES. <i>Ecology</i> , 1999 , 80, 1955-196	59 4.6	897

(2005-2014)

709	Three keys to the radiation of angiosperms into freezing environments. <i>Nature</i> , 2014 , 506, 89-92	50.4	896
708	Biodiversity as a barrier to ecological invasion. <i>Nature</i> , 2002 , 417, 636-8	50.4	821
707	Microbial diversity drives multifunctionality in terrestrial ecosystems. <i>Nature Communications</i> , 2016 , 7, 10541	17.4	699
706	Nitrogen limitation constrains sustainability of ecosystem response to CO2. <i>Nature</i> , 2006 , 440, 922-5	50.4	678
705	Biodiversity increases the resistance of ecosystem productivity to climate extremes. <i>Nature</i> , 2015 , 526, 574-7	50.4	647
704	Effects of plant species richness on invasion dynamics, disease outbreaks, insect abundances and diversity. <i>Ecology Letters</i> , 1999 , 2, 286-293	10	626
703	Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. <i>Oecologia</i> , 1993 , 96, 169-178	2.9	610
702	Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. <i>New Phytologist</i> , 2009 , 183, 980-992	9.8	606
701	Functional traits and the growth-mortality trade-off in tropical trees. <i>Ecology</i> , 2010 , 91, 3664-74	4.6	604
700	A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. <i>Global Ecology and Biogeography</i> , 2009 , 18, 137-149	6.1	595
699	Positive biodiversity-productivity relationship predominant in global forests. <i>Science</i> , 2016 , 354,	33.3	593
698	Quantifying global soil carbon losses in response to warming. <i>Nature</i> , 2016 , 540, 104-108	50.4	560
697	Modulation of leaf economic traits and trait relationships by climate. <i>Global Ecology and Biogeography</i> , 2005 , 14, 411-421	6.1	535
696	Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. <i>Functional Ecology</i> , 2001 , 15, 423-434	5.6	519
695	Impacts of biodiversity loss escalate through time as redundancy fades. <i>Science</i> , 2012 , 336, 589-92	33.3	518
694	Quantifying plant response to ozone: a unifying theory. <i>Tree Physiology</i> , 1987 , 3, 63-91	4.2	506
693	Leaf lifespan as a determinant of leaf structure and function among 23 amazonian tree species. <i>Oecologia</i> , 1991 , 86, 16-24	2.9	489
692	Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. <i>Ecology Letters</i> , 2005 , 8, 811-818	10	483

691	Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. <i>Nature</i> , 2001 , 410, 809-12	50.4	469
690	Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. <i>Journal of Ecology</i> , 2012 , 100, 742-749	6	457
689	Tree species effects on decomposition and forest floor dynamics in a common garden. <i>Ecology</i> , 2006 , 87, 2288-97	4.6	407
688	Ambient levels of ozone reduce net photosynthesis in tree and crop species. <i>Science</i> , 1985 , 230, 566-70	33.3	407
687	Modelling respiration of vegetation: evidence for a general temperature-dependent Q10. <i>Global Change Biology</i> , 2001 , 7, 223-230	11.4	403
686	TRY plant trait database - enhanced coverage and open access. <i>Global Change Biology</i> , 2020 , 26, 119-18	811.4	399
685	Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups. <i>Oecologia</i> , 1998 , 114, 471-482	2.9	393
684	The emergence and promise of functional biogeography. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 13690-6	11.5	391
683	Universal scaling of respiratory metabolism, size and nitrogen in plants. <i>Nature</i> , 2006 , 439, 457-61	50.4	388
682	Soil microbes drive the classic plant diversity-productivity pattern. <i>Ecology</i> , 2011 , 92, 296-303	4.6	386
681	Leaf structure (specific leaf area) modulates photosynthesistitrogen relations: evidence from within and across species and functional groups. <i>Functional Ecology</i> , 1998 , 12, 948-958	5.6	379
6 80	Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11911-6	11.5	371
679	Different photosynthesis-nitrogen relations in deciduous hardwood and evergreen coniferous tree species. <i>Oecologia</i> , 1995 , 104, 24-30	2.9	362
678	Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate. <i>Functional Ecology</i> , 1998 , 12, 395-405	5.6	357
677	Linking leaf and root trait syndromes among 39 grassland and savannah species. <i>New Phytologist</i> , 2005 , 167, 493-508	9.8	356
676	NITROGEN MINERALIZATION AND PRODUCTIVITY IN 50 HARDWOOD AND CONIFER STANDS ON DIVERSE SOILS. <i>Ecology</i> , 1997 , 78, 335-347	4.6	352
675	Fundamental trade-offs generating the worldwide leaf economics spectrum. <i>Ecology</i> , 2006 , 87, 535-41	4.6	340
674	Global climatic drivers of leaf size. <i>Science</i> , 2017 , 357, 917-921	33.3	334

673	Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light. <i>Functional Ecology</i> , 1998 , 12, 327-338	5.6	331
672	Plant ecology. Anthropogenic environmental changes affect ecosystem stability via biodiversity. <i>Science</i> , 2015 , 348, 336-40	33.3	322
671	Low-light carbon balance and shade tolerance in the seedlings of woody plants: do winter deciduous and broad-leaved evergreen species differ?. <i>New Phytologist</i> , 1999 , 143, 143-154	9.8	322
670	From selection to complementarity: shifts in the causes of biodiversity-productivity relationships in a long-term biodiversity experiment. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2007 , 274, 871-6	4.4	313
669	Carbon-Nitrogen Interactions in Terrestrial Ecosystems in Response to Rising Atmospheric Carbon Dioxide. <i>Annual Review of Ecology, Evolution, and Systematics</i> , 2006 , 37, 611-636	13.5	313
668	COMPARISONS OF STRUCTURE AND LIFE SPAN IN ROOTS AND LEAVES AMONG TEMPERATE TREES. <i>Ecological Monographs</i> , 2006 , 76, 381-397	9	307
667	Why are non-photosynthetic tissues generally C enriched compared with leaves in C plants? Review and synthesis of current hypotheses. <i>Functional Plant Biology</i> , 2009 , 36, 199-213	2.7	304
666	Water Stress and Tree Phenology in a Tropical Dry Forest in the Lowlands of Costa Rica. <i>Journal of Ecology</i> , 1984 , 72, 61	6	301
665	Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. <i>Ecology Letters</i> , 2008 , 11, 793-801	10	299
664	Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 10394-7	11.5	297
663	Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. <i>Journal of Ecology</i> , 2002 , 90, 534-543	6	287
662	PRESCRIBED FIRE IN OAK SAVANNA: FIRE FREQUENCY EFFECTS ON STAND STRUCTURE AND DYNAMICS 2001 , 11, 914-927		287
661	Functional traits, productivity and effects on nitrogen cycling of 33 grassland species. <i>Functional Ecology</i> , 2002 , 16, 563-574	5.6	285
660	Spatial Patterns and Succession in a Minnesota Southern-Boreal Forest. <i>Ecological Monographs</i> , 1995 , 65, 325-346	9	282
659	Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. <i>Ecology Letters</i> , 2011 , 14, 788-96	10	281
658	Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: Functional relations and potential climate feedbacks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 19336-41	11.5	275
657	Global leaf trait relationships: mass, area, and the leaf economics spectrum. <i>Science</i> , 2013 , 340, 741-4	33.3	266
656	Plant functional trait change across a warming tundra biome. <i>Nature</i> , 2018 , 562, 57-62	50.4	264

655	Are Shade Tolerance, Survival, and Growth Linked? Low Light and Nitrogen Effects on Hardwood Seedlings. <i>Ecology</i> , 1996 , 77, 841-853	4.6	263
654	Competition between tree seedlings and herbaceous vegetation: support for a theory of resource supply and demand. <i>Journal of Ecology</i> , 1998 , 86, 652-661	6	255
653	Phenology of tropical forests: patterns, causes, and consequences. <i>Canadian Journal of Botany</i> , 1995 , 73, 164-174		246
652	Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. <i>New Phytologist</i> , 2015 , 206, 614-36	9.8	244
651	Growth and physiology of Picea abies populations from elevational transects: common garden evidence for altitudinal ecotypes and cold adaptation. <i>Functional Ecology</i> , 1998 , 12, 573-590	5.6	244
650	Reinforcing loose foundation stones in trait-based plant ecology. <i>Oecologia</i> , 2016 , 180, 923-31	2.9	237
649	Extrapolating leaf CO exchange to the canopy: a generalized model of forest photosynthesis compared with measurements by eddy correlation. <i>Oecologia</i> , 1996 , 106, 257-265	2.9	237
648	Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert. <i>Global Change Biology</i> , 2004 , 10, 2121-2138	11.4	232
647	Species richness and the temporal stability of biomass production: a new analysis of recent biodiversity experiments. <i>American Naturalist</i> , 2014 , 183, 1-12	3.7	225
646	Leaf phosphorus influences the photosynthesis-nitrogen relation: a cross-biome analysis of 314 species. <i>Oecologia</i> , 2009 , 160, 207-12	2.9	225
645	Earthworm invasion into previously earthworm-free temperate and boreal forests. <i>Biological Invasions</i> , 2006 , 8, 1235-1245	2.7	222
644	Leaf age and season influence the relationships between leaf nitrogen, leaf mass per area and photosynthesis in maple and oak trees. <i>Plant, Cell and Environment</i> , 1991 , 14, 251-259	8.4	222
643	Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. <i>Biogeosciences</i> , 2012 , 9, 3547-3569	4.6	219
642	Which is a better predictor of plant traits: temperature or precipitation?. <i>Journal of Vegetation Science</i> , 2014 , 25, 1167-1180	3.1	217
641	Do species and functional groups differ in acquisition and use of C, N and water under varying atmospheric CO2 and N availability regimes? A field test with 16 grassland species. <i>New Phytologist</i> , 2001 , 150, 435-448	9.8	217
640	Mean mass-specific metabolic rates are strikingly similar across life's major domains: Evidence for life's metabolic optimum. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 16994-9	11.5	212
639	Conventional functional classification schemes underestimate the relationship with ecosystem functioning. <i>Ecology Letters</i> , 2006 , 9, 111-20	10	212
638	Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. <i>Ecology Letters</i> , 2010 , 13, 564-75	10	211

637	Convergence and correlations among leaf size and function in seed plants: a comparative test using independent contrasts. <i>American Journal of Botany</i> , 1999 , 86, 1272-1281	2.7	211
636	Global trait-environment relationships of plant communities. <i>Nature Ecology and Evolution</i> , 2018 , 2, 190	6 - 1.917	7 209
635	Shifting plant species composition in response to climate change stabilizes grassland primary production. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 4051-4056	11.5	208
634	Photosynthesis-nitrogen relations in Amazonian tree species: I. Patterns among species and communities. <i>Oecologia</i> , 1994 , 97, 62-72	2.9	207
633	Temperature response of soil respiration largely unaltered with experimental warming. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13797-13802	11.5	206
632	Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. <i>Nature</i> , 2018 , 553, 194-198	50.4	204
631	Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. <i>Nature</i> , 2019 , 569, 404-408	50.4	203
630	Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. <i>Nature Geoscience</i> , 2014 , 7, 920-924	18.3	202
629	Species and functional group diversity independently influence biomass accumulation and its response to CO2 and N. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 10101-6	11.5	200
628	Survival, growth, and photosynthesis of tree seedlings competing with herbaceous vegetation along a water-light-nitrogen gradient. <i>Plant Ecology</i> , 1999 , 145, 341-350	1.7	200
627	Fine root decomposition rates do not mirror those of leaf litter among temperate tree species. <i>Oecologia</i> , 2010 , 162, 505-13	2.9	198
626	Growth, biomass distribution and CO exchange of northern hardwood seedlings in high and low light: relationships with successional status and shade tolerance. <i>Oecologia</i> , 1993 , 94, 7-16	2.9	198
625	Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function. <i>Global Change Biology</i> , 2007 , 13, 980-989	11.4	197
624	Ectomycorrhizal fungal communities at forest edges. <i>Journal of Ecology</i> , 2005 , 93, 244-255	6	192
623	Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science. <i>Frontiers in Ecology and the Environment</i> , 2013 , 11, 147-155	5.5	191
622	A global method for calculating plant CSR ecological strategies applied across biomes world-wide. <i>Functional Ecology</i> , 2017 , 31, 444-457	5.6	191
621	Effects of elevated CO2, nitrogen deposition, and decreased species diversity on foliar fungal plant disease. <i>Global Change Biology</i> , 2003 , 9, 438-451	11.4	189
620	Acclimation of respiration to temperature and CO2 in seedlings of boreal tree species in relation to plant size and relative growth rate. <i>Global Change Biology</i> , 1999 , 5, 679-691	11.4	189

619	Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 13721-6	11.5	187
618	Spatial complementarity in tree crowns explains overyielding in species mixtures. <i>Nature Ecology and Evolution</i> , 2017 , 1, 63	12.3	186
617	Least-cost input mixtures of water and nitrogen for photosynthesis. American Naturalist, 2003, 161, 98-	131. 7	186
616	Long-term increase in nitrogen supply alters above- and below-ground ectomycorrhizal communities and increases the dominance of Russula spp. in a temperate oak savanna. <i>New Phytologist</i> , 2003 , 160, 239-253	9.8	186
615	SEED SIZE, NITROGEN SUPPLY, AND GROWTH RATE AFFECT TREE SEEDLING SURVIVAL IN DEEP SHADE. <i>Ecology</i> , 2000 , 81, 1887-1901	4.6	186
614	Global change belowground: impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity. <i>Global Change Biology</i> , 2012 , 18, 435-447	11.4	183
613	Predicting leaf physiology from simple plant and climate attributes: a global GLOPNET analysis 2007 , 17, 1982-8		181
612	Changes in hardwood forest understory plant communities in response to European earthworm invasions. <i>Ecology</i> , 2006 , 87, 1637-49	4.6	181
611	Interactive effects of nitrogen deposition, tropospheric ozone, elevated CO2 and land use history on the carbon dynamics of northern hardwood forests. <i>Global Change Biology</i> , 2002 , 8, 545-562	11.4	181
610	Global effects of soil and climate on leaf photosynthetic traits and rates. <i>Global Ecology and Biogeography</i> , 2015 , 24, 706-717	6.1	179
609	The biogeography and filtering of woody plant functional diversity in North and South America. <i>Global Ecology and Biogeography</i> , 2012 , 21, 798-808	6.1	179
608	Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. <i>Ecology Letters</i> , 2005 , 8, 636-6	42	179
607	FIRE AND VEGETATION EFFECTS ON PRODUCTIVITY AND NITROGEN CYCLING ACROSS A FORESTERASSLAND CONTINUUM. <i>Ecology</i> , 2001 , 82, 1703-1719	4.6	176
606	Evolutionarily stable strategy carbon allocation to foliage, wood, and fine roots in trees competing for light and nitrogen: an analytically tractable, individual-based model and quantitative comparisons to data. <i>American Naturalist</i> , 2011 , 177, 153-66	3.7	175
605	Climate warming will reduce growth and survival of Scots pine except in the far north. <i>Ecology Letters</i> , 2008 , 11, 588-97	10	175
604	Ecophysiology of exotic and native shrubs in Southern Wisconsin: I. Relationship of leaf characteristics, resource availability, and phenology to seasonal patterns of carbon gain. <i>Oecologia</i> , 1989 , 80, 356-367	2.9	174
603	Effects of European Earthworm Invasion on Soil Characteristics in Northern Hardwood Forests of Minnesota, USA. <i>Ecosystems</i> , 2005 , 8, 911-927	3.9	173
602	Changes in leaf nitrogen and carbohydrates underlie temperature and CO2 acclimation of dark respiration in five boreal tree species. <i>Plant, Cell and Environment</i> , 1999 , 22, 767-778	8.4	173

(2018-1983)

601	Effects of low concentrations of o(3) on net photosynthesis, dark respiration, and chlorophyll contents in aging hybrid poplar leaves. <i>Plant Physiology</i> , 1983 , 73, 291-6	6.6	173
600	Leaf Mass Per Area, Nitrogen Content and Photosynthetic Carbon Gain in Acer saccharum Seedlings in Contrasting Forest Light Environments. <i>Functional Ecology</i> , 1992 , 6, 423	5.6	172
599	Decade-long soil nitrogen constraint on the CO2 fertilization of plant biomass. <i>Nature Climate Change</i> , 2013 , 3, 278-282	21.4	167
598	Why are evergreen leaves so contrary about shade?. <i>Trends in Ecology and Evolution</i> , 2008 , 23, 299-303	10.9	165
597	Relative growth rate in relation to physiological and morphological traits for northern hardwood tree seedlings: species, light environment and ontogenetic considerations. <i>Oecologia</i> , 1993 , 96, 219-231	2.9	164
596	Tree Species Effects on Soil Organic Matter Dynamics: The Role of Soil Cation Composition. <i>Ecosystems</i> , 2007 , 10, 999-1018	3.9	163
595	Multiple elements of soil biodiversity drive ecosystem functions across biomes. <i>Nature Ecology and Evolution</i> , 2020 , 4, 210-220	12.3	160
594	Mechanisms responsible for the positive diversity productivity relationship in Minnesota grasslands. <i>Ecology Letters</i> , 2004 , 7, 661-668	10	159
593	Variation in growth rate and ecophysiology among 34 grassland and savanna species under contrasting N supply: a test of functional group differences. <i>New Phytologist</i> , 2003 , 157, 617-631	9.8	159
592	Climate, soil and plant functional types as drivers of global fine-root trait variation. <i>Journal of Ecology</i> , 2017 , 105, 1182-1196	6	155
591	Canopy dynamics and aboveground production of five tree species with different leaf longevities. <i>Tree Physiology</i> , 1993 , 12, 327-45	4.2	155
590	It is elemental: soil nutrient stoichiometry drives bacterial diversity. <i>Environmental Microbiology</i> , 2017 , 19, 1176-1188	5.2	154
589	How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. <i>New Phytologist</i> , 2015 , 208, 736-49	9.8	153
588	Boreal and temperate trees show strong acclimation of respiration to warming. <i>Nature</i> , 2016 , 531, 633-	650.4	153
587	BioTIME: A database of biodiversity time series for the Anthropocene. <i>Global Ecology and Biogeography</i> , 2018 , 27, 760-786	6.1	153
586	Invasions: the trail behind, the path ahead, and a test of a disturbing idea. <i>Journal of Ecology</i> , 2012 , 100, 116-127	6	153
585	Contributions of a global network of tree diversity experiments to sustainable forest plantations. <i>Ambio</i> , 2016 , 45, 29-41	6.5	151
584	Unexpected reversal of C versus C grass response to elevated CO during a 20-year field experiment. <i>Science</i> , 2018 , 360, 317-320	33.3	151

583	INFLUENCE OF LOGGING, FIRE, AND FOREST TYPE ON BIODIVERSITY AND PRODUCTIVITY IN SOUTHERN BOREAL FORESTS. <i>Ecology</i> , 2001 , 82, 2731-2748	4.6	151
582	Seedlings of five boreal tree species differ in acclimation of net photosynthesis to elevated CO(2) and temperature. <i>Tree Physiology</i> , 1998 , 18, 715-726	4.2	148
581	Leaf Carbon and Nutrient Assimilation and Conservation in Species of Differing Successional Status in an Oligotrophic Amazonian Forest. <i>Functional Ecology</i> , 1995 , 9, 65	5.6	148
580	Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 6889-94	11.5	147
579	Hydraulic trade-offs and space filling enable better predictions of vascular structure and function in plants. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 2272.	2 17 ·5	145
578	Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus. <i>Nature Communications</i> , 2011 , 2, 344	17.4	145
577	"Diminishing returns" in the scaling of functional leaf traits across and within species groups. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8891-6	11.5	143
576	Geographic range predicts photosynthetic and growth response to warming in co-occurring tree species. <i>Nature Climate Change</i> , 2015 , 5, 148-152	21.4	142
575	EXOTIC EUROPEAN EARTHWORM INVASION DYNAMICS IN NORTHERN HARDWOOD FORESTS OF MINNESOTA, USA 2005 , 15, 848-860		141
574	Multiple facets of biodiversity drive the diversity-stability relationship. <i>Nature Ecology and Evolution</i> , 2018 , 2, 1579-1587	12.3	140
573	Tree species effects on coupled cycles of carbon, nitrogen, and acidity in mineral soils at a common garden experiment. <i>Biogeochemistry</i> , 2012 , 111, 601-614	3.8	140
572	The scaling of leaf area and mass: the cost of light interception increases with leaf size. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2007 , 274, 2109-14	4.4	140
571	Photosynthesis-nitrogen relations in Amazonian tree species: II. Variation in nitrogen vis-a-vis specific leaf area influences mass- and area-based expressions. <i>Oecologia</i> , 1994 , 97, 73-81	2.9	140
570	Functional identity is the main driver of diversity effects in young tree communities. <i>Ecology Letters</i> , 2016 , 19, 638-47	10	140
569	Convergence in the temperature response of leaf respiration across biomes and plant functional types. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 3832-	7 ^{11.5}	139
568	Tree species diversity increases fine root productivity through increased soil volume filling. <i>Journal of Ecology</i> , 2013 , 101, 210-219	6	137
567	Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. <i>Nature</i> , 2018 , 562, 263-267	50.4	137
566	Elevated CO2 does not increase eucalypt forest productivity on a low-phosphorus soil. <i>Nature Climate Change</i> , 2017 , 7, 279-282	21.4	136

(2010-2007)

565	Wind-throw mortality in the southern boreal forest: effects of species, diameter and stand age. <i>Journal of Ecology</i> , 2007 , 95, 1261-1273	6	134
564	Nutrient conservation increases with latitude of origin in European Pinus sylvestris populations. <i>Oecologia</i> , 2003 , 136, 220-35	2.9	133
563	Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2010 , 277, 877-83	4.4	131
562	Minireviews: Neighborhood Effects, Disturbance Severity, and Community Stability in Forests. <i>Ecosystems</i> , 1999 , 2, 151-166	3.9	130
561	Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. <i>Global Change Biology</i> , 2018 , 24, 2390-2402	11.4	126
560	Thermal limits of leaf metabolism across biomes. <i>Global Change Biology</i> , 2017 , 23, 209-223	11.4	126
559	Decomposition of the finest root branching orders: linking belowground dynamics to fine-root function and structure. <i>Ecological Monographs</i> , 2011 , 81, 89-102	9	126
558	Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. <i>Nature Climate Change</i> , 2019 , 9, 684-689	21.4	125
557	Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence arbuscular mycorrhizal fungi in a grassland ecosystem. <i>New Phytologist</i> , 2011 , 192, 200-214	9.8	123
556	Will environmental changes reinforce the impact of global warming on the prairieforest border of central North America?. <i>Frontiers in Ecology and the Environment</i> , 2010 , 8, 371-378	5.5	123
555	SIMULATING OZONE EFFECTS ON FOREST PRODUCTIVITY: INTERACTIONS AMONG LEAF-, CANOPY-, AND STAND-LEVEL PROCESSES 1997 , 7, 1237-1251		123
554	Irradiance, temperature and rainfall influence leaf dark respiration in woody plants: evidence from comparisons across 20 sites. <i>New Phytologist</i> , 2006 , 169, 309-19	9.8	123
553	Interaction of ozone pollution and light effects on photosynthesis in a forest canopy experiment. <i>Plant, Cell and Environment</i> , 1995 , 18, 895-905	8.4	123
552	Ecology and ecosystem impacts of common buckthorn (Rhamnus cathartica): a review. <i>Biological Invasions</i> , 2007 , 9, 925-937	2.7	122
551	Evaluation of several measures of canopy openness as predictors of photosynthetic photon flux density in deeply shaded conifer-dominated forest understory. <i>Canadian Journal of Forest Research</i> , 1999 , 29, 1438-1444	1.9	122
550	Why is plant-growth response to elevated CO amplified when water is limiting, but reduced when nitrogen is limiting? A growth-optimisation hypothesis. <i>Functional Plant Biology</i> , 2008 , 35, 521-534	2.7	121
549	Key canopy traits drive forest productivity. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2012 , 279, 2128-34	4.4	120
548	Moving water well: comparing hydraulic efficiency in twigs and trunks of coniferous, ring-porous, and diffuse-porous saplings from temperate and tropical forests. <i>New Phytologist</i> , 2010 , 186, 439-50	9.8	118

547	Early stage litter decomposition across biomes. Science of the Total Environment, 2018, 628-629, 1369-1	394 2	117
546	Fire frequency and tree canopy structure influence plant species diversity in a forest-grassland ecotone. <i>Plant Ecology</i> , 2007 , 194, 5-16	1.7	116
545	Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2016 , 371,	5.8	114
544	Role of phosphorus and nitrogen in photosynthetic and whole plant carbon gain and nutrient use efficiency in eastern white pine. <i>Oecologia</i> , 1988 , 77, 25-33	2.9	113
543	Spatially disjunct effects of co-occurring competition and facilitation. <i>Ecology Letters</i> , 2005 , 8, 1191-200	010	112
542	Reconciling Apparent Discrepancies Among Studies Relating Life Span, Structure and Function of Leaves in Contrasting Plant Life Forms and Climates: 'The Blind Men and the Elephant Retold'. <i>Functional Ecology</i> , 1993 , 7, 721	5.6	112
541	Growth, nutrition and gas exchange of Pinus resinosa following artificial defoliation. <i>Trees - Structure and Function</i> , 1993 , 7, 67	2.6	111
540	Elevated CO2 reduces losses of plant diversity caused by nitrogen deposition. <i>Science</i> , 2009 , 326, 1399-	49923	110
539	Lack of functional redundancy in the relationship between microbial diversity and ecosystem functioning. <i>Journal of Ecology</i> , 2016 , 104, 936-946	6	110
538	The fate of carbon in a mature forest under carbon dioxide enrichment. <i>Nature</i> , 2020 , 580, 227-231	50.4	109
537	Biodiversity simultaneously enhances the production and stability of community biomass, but the effects are independent. <i>Ecology</i> , 2013 , 94, 1697-707	4.6	108
536	FIRE SUPPRESSION AND ECOSYSTEM CARBON STORAGE. <i>Ecology</i> , 2000 , 81, 2680-2685	4.6	108
535	Elevated carbon dioxide ameliorates the effects of ozone on photosynthesis and growth: species respond similarly regardless of photosynthetic pathway or plant functional group. <i>New Phytologist</i> , 1998 , 138, 315-325	9.8	107
534	Building a better foundation: improving root-trait measurements to understand and model plant and ecosystem processes. <i>New Phytologist</i> , 2017 , 215, 27-37	9.8	105
533	Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors. <i>Global Change Biology</i> , 2015 , 21, 4076-85	11.4	105
532	Increasing plant diversity effects on productivity with time due to delayed soil biota effects on plants. <i>Basic and Applied Ecology</i> , 2012 , 13, 571-578	3.2	104
531	A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. <i>Ecology</i> , 2016 , 97, 65-74	4.6	103
530	Mapping local and global variability in plant trait distributions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E10937-E10946	11.5	103

(1996-2015)

529	Plant diversity effects on soil microbial functions and enzymes are stronger than warming in a grassland experiment. <i>Ecology</i> , 2015 , 96, 99-112	4.6	103
528	Short Communication: Leaf trait relationships in Australian plant species. <i>Functional Plant Biology</i> , 2004 , 31, 551-558	2.7	103
527	Constraints to nitrogen acquisition of terrestrial plants under elevated CO2. <i>Global Change Biology</i> , 2015 , 21, 3152-68	11.4	102
526	Leaf gas exchange responses of 13 prairie grassland species to elevated CO2 and increased nitrogen supply. <i>New Phytologist</i> , 2001 , 150, 405-418	9.8	102
525	Phenology and Ecophysiology of the Tropical Tree, Tabebuia Neochrysantha (Bignoniaceae). <i>Ecology</i> , 1982 , 63, 294-299	4.6	102
524	REGIONAL LEGACIES OF LOGGING: DEPARTURE FROM PRESETTLEMENT FOREST CONDITIONS IN NORTHERN MINNESOTA 2005 , 15, 726-744		101
523	Global relationship of wood and leaf litter decomposability: the role of functional traits within and across plant organs. <i>Global Ecology and Biogeography</i> , 2014 , 23, 1046-1057	6.1	100
522	Impacts of trait variation through observed traitfilimate relationships on performance of an Earth system model: a conceptual analysis. <i>Biogeosciences</i> , 2013 , 10, 5497-5515	4.6	99
521	LEAF DEMOGRAPHY AND PHENOLOGY IN AMAZONIAN RAIN FOREST: A CENSUS OF 40 000 LEAVES OF 23 TREE SPECIES. <i>Ecological Monographs</i> , 2004 , 74, 3-23	9	99
520	Climate determines vascular traits in the ecologically diverse genus Eucalyptus. <i>Ecology Letters</i> , 2016 , 19, 240-8	10	99
519	Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. <i>New Phytologist</i> , 2019 , 222, 768-784	9.8	99
518	Fire Affects Ecophysiology and Community Dynamics of Central Wisconsin Oak Forest Regeneration. <i>Ecology</i> , 1990 , 71, 2179-2190	4.6	98
517	Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. <i>Science Advances</i> , 2019 , 5, eaaz1834	14.3	98
516	Ecosystem responses to elevated CO governed by plant-soil interactions and the cost of nitrogen acquisition. <i>New Phytologist</i> , 2018 , 217, 507-522	9.8	98
515	Interannual growth response of Norway spruce to climate along an altitudinal gradient in the Tatra Mountains, Poland. <i>Trees - Structure and Function</i> , 2006 , 20, 735-746	2.6	97
514	Carbon content and climate variability drive global soil bacterial diversity patterns. <i>Ecological Monographs</i> , 2016 , 86, 373-390	9	97
513	Divergent effects of elevated CO2, N fertilization, and plant diversity on soil C and N dynamics in a grassland field experiment. <i>Plant and Soil</i> , 2005 , 272, 41-52	4.2	96
512	Needle Respiration and Nitrogen Concentration in Scots Pine Populations from a Broad Latitudinal Range: A Common Garden Test with Field-Grown Trees. <i>Functional Ecology</i> , 1996 , 10, 768	5.6	96

511	The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide. <i>ISME Journal</i> , 2012 , 6, 259-72	11.9	95
510	Shifting phenology and abundance under experimental warming alters trophic relationships and plant reproductive capacity. <i>Ecology</i> , 2011 , 92, 1201-7	4.6	95
509	Rapid temperature acclimation of leaf respiration rates in Quercus alba and Quercus rubra. <i>Tree Physiology</i> , 2003 , 23, 969-76	4.2	93
508	Foliar respiration acclimation to temperature and temperature variable Q10 alter ecosystem carbon balance. <i>Global Change Biology</i> , 2005 , 11, 435-449	11.4	93
507	The capacity to cope with climate warming declines from temperate to tropical latitudes in two widely distributed Eucalyptus species. <i>Global Change Biology</i> , 2015 , 21, 459-72	11.4	91
506	PATHWAYS IN OLD-FIELD SUCCESSION TO WHITE PINE: SEED RAIN, SHADE, AND CLIMATE EFFECTS. <i>Ecological Monographs</i> , 2005 , 75, 363-378	9	90
505	Temperate tree expansion into adjacent boreal forest patches facilitated by warmer temperatures. <i>Ecography</i> , 2014 , 37, 152-161	6.5	89
504	Shocks to the system: community assembly of the oak savanna in a 40-year fire frequency experiment. <i>Ecology</i> , 2012 , 93, S52-S69	4.6	89
503	The Time Value of Leaf Area. American Naturalist, 2000, 155, 649-656	3.7	89
502	The effect of defoliation intensity and history on photosynthesis, growth and carbon reserves of two conifers with contrasting leaf lifespans and growth habits. <i>New Phytologist</i> , 1999 , 144, 121-132	9.8	89
501	RootBhoot Relations 2002 , 205-220		89
500	Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies. <i>Functional Ecology</i> , 2015 , 29, 615-626	5.6	88
499	Effects of earthworm invasion on plant species richness in northern hardwood forests. <i>Conservation Biology</i> , 2007 , 21, 997-1008	6	88
498	Legume species identity and soil nitrogen supply determine symbiotic nitrogen-fixation responses to elevated atmospheric [CO2]. <i>New Phytologist</i> , 2005 , 167, 523-30	9.8	88
497	Genetic and environmental control of seasonal carbohydrate dynamics in trees of diverse Pinus sylvestris populations. <i>Tree Physiology</i> , 2000 , 20, 837-847	4.2	88
496	An Approach to Spatially Distributed Modeling of Net Primary Production (NPP) at the Landscape Scale and Its Application in Validation of EOS NPP Products. <i>Remote Sensing of Environment</i> , 1999 , 70, 69-81	13.2	88
495	Functional distinctiveness of major plant lineages. <i>Journal of Ecology</i> , 2014 , 102, 345-356	6	87
494	Global quantification of contrasting leaf life span strategies for deciduous and evergreen species in response to environmental conditions. <i>Global Ecology and Biogeography</i> , 2012 , 21, 224-235	6.1	87

493	Growth and biomass partitioning of populations of European Pinus sylvestris L. under simulated 50 th and 60 th N daylengths: evidence for photoperiodic ecotypes. <i>New Phytologist</i> , 1992 , 120, 561-574	9.8	86
492	Biogeographic variation in evergreen conifer needle longevity and impacts on boreal forest carbon cycle projections. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 13703-8	11.5	85
491	Understorey diversity in southern boreal forests is regulated by productivity and its indirect impacts on resource availability and heterogeneity. <i>Journal of Ecology</i> , 2012 , 100, 539-545	6	85
490	Coupling of respiration, nitrogen, and sugars underlies convergent temperature acclimation in Pinus banksiana across wide-ranging sites and populations. <i>Global Change Biology</i> , 2008 , 14, 782-797	11.4	85
489	A brown-world cascade in the dung decomposer food web of an alpine meadow: effects of predator interactions and warming. <i>Ecological Monographs</i> , 2011 , 81, 313-328	9	84
488	Water relations and gas exchange of Acer saccharum seedlings in contrasting natural light and water regimes. <i>Tree Physiology</i> , 1992 , 10, 1-20	4.2	84
487	Mechanisms underlying global temperature-related patterns in leaf longevity. <i>Global Ecology and Biogeography</i> , 2013 , 22, 982-993	6.1	84
486	Living close to your neighbors: the importance of both competition and facilitation in plant communities. <i>Ecology</i> , 2014 , 95, 2213-23	4.6	83
485	BHPMF h hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography. <i>Global Ecology and Biogeography</i> , 2015 , 24, 1510-1521	6.1	83
484	Evidence that longer needle retention of spruce and pine populations at high elevations and high latitudes is largely a phenotypic response. <i>Tree Physiology</i> , 1996 , 16, 643-7	4.2	83
483	Biodiversity and Ecosystem Properties. <i>Science</i> , 1997 , 278, 1865c-1869	33.3	83
482	Nitrogen deposition and plant species interact to influence soil carbon stabilization. <i>Ecology Letters</i> , 2004 , 7, 1192-1198	10	82
481	Photosynthetic differences contribute to competitive advantage of evergreen angiosperm trees over evergreen conifers in productive habitats. <i>New Phytologist</i> , 2003 , 160, 329-336	9.8	82
480	Phosphorus accumulates faster than nitrogen globally in freshwater ecosystems under anthropogenic impacts. <i>Ecology Letters</i> , 2016 , 19, 1237-46	10	82
479	Acclimation of respiratory temperature responses in northern and southern populations of Pinus banksiana. <i>New Phytologist</i> , 2009 , 181, 218-229	9.8	81
478	The photosynthesis l eaf nitrogen relationship at ambient and elevated atmospheric carbon dioxide: a meta-analysis. <i>Global Change Biology</i> , 1999 , 5, 331-346	11.4	81
477	Relationships of leaf dark respiration with light environment and tissue nitrogen content in juveniles of 11 cold-temperate tree species. <i>Oecologia</i> , 2000 , 123, 318-329	2.9	80
476	Effects of low level O3 exposure on leaf diffusive conductance and water-use efficiency in hybrid poplar. <i>Plant, Cell and Environment</i> , 1984 , 7, 661-668	8.4	79

475	Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4.2) using plant trait information. <i>Geoscientific Model Development</i> , 2016 , 9, 2415-2440	6.3	79
474	Global-scale environmental control of plant photosynthetic capacity 2015 , 25, 2349-65		78
473	Acclimation of photosynthetic temperature optima of temperate and boreal tree species in response to experimental forest warming. <i>Global Change Biology</i> , 2015 , 21, 1342-57	11.4	78
472	Acclimation of leaf respiration to temperature is rapid and related to specific leaf area, soluble sugars and leaf nitrogen across three temperate deciduous tree species. <i>Functional Ecology</i> , 2005 , 19, 640-647	5.6	78
471	Trade-offs in low-light CO2 exchange: a component of variation in shade tolerance among cold temperate tree seedlings. <i>Functional Ecology</i> , 2000 , 14, 155-165	5.6	78
470	A trade-off between plant and soil carbon storage under elevated CO. <i>Nature</i> , 2021 , 591, 599-603	50.4	78
469	Do deer and shrubs override canopy gap size effects on growth and survival of yellow birch, northern red oak, eastern white pine, and eastern hemlock seedlings?. <i>Forest Ecology and Management</i> , 2012 , 267, 134-143	3.9	76
468	Quantifying effects of biodiversity on ecosystem functioning across times and places. <i>Ecology Letters</i> , 2018 , 21, 763-778	10	75
467	Species with greater seed mass are more tolerant of conspecific neighbours: a key driver of early survival and future abundances in a tropical forest. <i>Ecology Letters</i> , 2016 , 19, 1071-80	10	75
466	Interactive Effects of Time, CO2, N, and Diversity on Total Belowground Carbon Allocation and Ecosystem Carbon Storage in a Grassland Community. <i>Ecosystems</i> , 2009 , 12, 1037-1052	3.9	75
465	Regional extent of an ecosystem engineer: earthworm invasion in northern hardwood forests 2007 , 17, 1666-77		75
464	Response of Ulmus americana seedlings to varying nitrogen and water status. 2 Water and nitrogen use efficiency in photosynthesis. <i>Tree Physiology</i> , 1989 , 5, 173-84	4.2	75
463	Using Participatory Scenarios to Stimulate Social Learning for Collaborative Sustainable Development. <i>Ecology and Society</i> , 2012 , 17,	4.1	74
462	Effects of plant diversity, N fertilization, and elevated carbon dioxide on grassland soil N cycling in a long-term experiment. <i>Global Change Biology</i> , 2013 , 19, 1249-61	11.4	74
461	Connecting the Green and Brown Worlds: Allometric and Stoichiometric Predictability of Above-and Below-Ground Networks. <i>Advances in Ecological Research</i> , 2013 , 49, 69-175	4.6	74
460	Multi-trait interactions, not phylogeny, fine-tune leaf size reduction with increasing altitude. <i>Annals of Botany</i> , 2011 , 107, 455-65	4.1	73
459	Restoring Savanna Using Fire: Impact on the Breeding Bird Community. <i>Restoration Ecology</i> , 2000 , 8, 30-40	3.1	73
458	Plant functional group responses to fire frequency and tree canopy cover gradients in oak savannas and woodlands. <i>Journal of Vegetation Science</i> , 2007 , 18, 3-12	3.1	72

457	Predicting soil carbon loss with warming. <i>Nature</i> , 2018 , 554, E4-E5	50.4	71
456	Untangling positive and negative biotic interactions: views from above and below ground in a forest ecosystem. <i>Ecology</i> , 2010 , 91, 3641-55	4.6	71
455	Conservation implications of browsing by Odocoileus virginianus in remnant upland Thuja occidentalis forests. <i>Biological Conservation</i> , 2000 , 93, 359-369	6.2	71
454	Legume abundance along successional and rainfall gradients in Neotropical forests. <i>Nature Ecology and Evolution</i> , 2018 , 2, 1104-1111	12.3	71
453	Reduced feeding activity of soil detritivores under warmer and drier conditions. <i>Nature Climate Change</i> , 2018 , 8, 75-78	21.4	70
452	Resource limitation in a competitive context determines complex plant responses to experimental resource additions. <i>Ecology</i> , 2013 , 94, 2505-17	4.6	70
451	Shared ectomycorrhizal fungi between a herbaceous perennial (Helianthemum bicknellii) and oak (Quercus) seedlings. <i>New Phytologist</i> , 2004 , 164, 375-382	9.8	70
450	Trade-offs in seedling survival, growth, and physiology among hardwood species of contrasting successional status along a light-availability gradient. <i>Canadian Journal of Forest Research</i> , 2001 , 31, 16	0 2-9 61	6 ⁷⁰
449	Extinction risk and threats to plants and fungi. Plants People Planet, 2020, 2, 389-408	4.1	70
448	Global change effects on plant communities are magnified by time and the number of global change factors imposed. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 17867-17873	11.5	69
447	Advancing biodiversity-ecosystem functioning science using high-density tree-based experiments over functional diversity gradients. <i>Oecologia</i> , 2014 , 174, 609-21	2.9	69
446	An empirical assessment of tree branching networks and implications for plant allometric scaling models. <i>Ecology Letters</i> , 2013 , 16, 1069-78	10	69
445	Growth of Acer saccharum seedlings in deeply shaded understories of northern Wisconsin: effects of nitrogen and water availability. <i>Canadian Journal of Forest Research</i> , 1997 , 27, 237-247	1.9	69
444	Exotic earthworm effects on hardwood forest floor, nutrient availability and native plants: a mesocosm study. <i>Oecologia</i> , 2008 , 155, 509-18	2.9	69
443	Response of Ulmus americana seedlings to varying nitrogen and water status. 1 Photosynthesis and growth. <i>Tree Physiology</i> , 1989 , 5, 159-72	4.2	69
442	Overstorey tree species regulate colonization by native and exotic plants: a source of positive relationships between understorey diversity and invasibility. <i>Diversity and Distributions</i> , 2008 , 14, 666-6	575	68
441	Leaf-level light compensation points in shade-tolerant woody seedlings. <i>New Phytologist</i> , 2005 , 166, 710-3	9.8	68
440	Influence of Pre-Dawn Water Potential and Soil-To-Leaf Hydraulic Conductance on Maximum Daily Leaf Diffusive Conductance in Two Oak Species. <i>Functional Ecology</i> , 1989 , 3, 719	5.6	68

439	Simulated climate warming alters phenological synchrony between an outbreak insect herbivore and host trees. <i>Oecologia</i> , 2014 , 175, 1041-9	2.9	67
438	Understanding ecological variation across species: area-based vs mass-based expression of leaf traits. <i>New Phytologist</i> , 2013 , 199, 322-323	9.8	67
437	Implications of improved representations of plant respiration in a changing climate. <i>Nature Communications</i> , 2017 , 8, 1602	17.4	67
436	When Do Ecosystem Services Depend on Rare Species?. <i>Trends in Ecology and Evolution</i> , 2019 , 34, 746-7	5& 0.9	66
435	The effect of experimental warming and precipitation change on proteolytic enzyme activity: positive feedbacks to nitrogen availability are not universal. <i>Global Change Biology</i> , 2012 , 18, 2617-2625	11.4	66
434	Elevated CO2 stimulates grassland soil respiration by increasing carbon inputs rather than by enhancing soil moisture. <i>Global Change Biology</i> , 2011 , 17, 3546-3563	11.4	66
433	Elevated carbon dioxide alters the structure of soil microbial communities. <i>Applied and Environmental Microbiology</i> , 2012 , 78, 2991-5	4.8	66
432	Seed rain, safe sites, competing vegetation, and soil resources spatially structure white pine regeneration and recruitment. <i>Canadian Journal of Forest Research</i> , 2003 , 33, 1892-1904	1.9	66
431	Light environment alters response to ozone stress in seedlings of Acer saccharum Marsh, and hybrid Populus L.: I. In situ net photosynthesis, dark respiration and growth. <i>New Phytologist</i> , 1993 , 124, 627-636	9.8	66
430	Effects of O3 and acidic rain on photosynthesis and growth in sugar maple and northern red oak seedlings. <i>Environmental Pollution Series A, Ecological and Biological</i> , 1986 , 40, 1-15		66
429	Synthesis and future research directions linking tree diversity to growth, survival, and damage in a global network of tree diversity experiments. <i>Environmental and Experimental Botany</i> , 2018 , 152, 68-89	5.9	65
428	Light, earthworms, and soil resources as predictors of diversity of 10 soil invertebrate groups across monocultures of 14 tree species. <i>Soil Biology and Biochemistry</i> , 2016 , 92, 184-198	7.5	65
427	Ectomycorrhizal fungal response to warming is linked to poor host performance at the boreal-temperate ecotone. <i>Global Change Biology</i> , 2017 , 23, 1598-1609	11.4	65
426	No globally consistent effect of ectomycorrhizal status on foliar traits. New Phytologist, 2012, 196, 845-	858	65
425	The response of soil CO2 flux to changes in atmospheric CO2, nitrogen supply and plant diversity. <i>Global Change Biology</i> , 2001 , 7, 947-953	11.4	65
424	Scots pine fine roots adjust along a 2000-km latitudinal climatic gradient. <i>New Phytologist</i> , 2016 , 212, 389-99	9.8	65
423	Relative importance of soil properties and microbial community for soil functionality: insights from a microbial swap experiment. <i>Functional Ecology</i> , 2016 , 30, 1862-1873	5.6	64
422	Responses of leaf structure and photosynthetic properties to intra-canopy light gradients: a common garden test with four broadleaf deciduous angiosperm and seven evergreen conifer tree species. <i>Oecologia</i> , 2012 , 170, 11-24	2.9	64

421	The impact of elevated CO2, increased nitrogen availability and biodiversity on plant tissue quality and decomposition. <i>Global Change Biology</i> , 2007 , 13, 1960-1971	11.4	64
420	Photosynthesis and Leaf Nitrogen in Five Amazonian Tree Species During Early Secondary Succession. <i>Ecology</i> , 1996 , 77, 581-594	4.6	64
419	Convergent acclimation of leaf photosynthesis and respiration to prevailing ambient temperatures under current and warmer climates in Eucalyptus tereticornis. <i>New Phytologist</i> , 2016 , 212, 354-67	9.8	64
418	Microbial richness and composition independently drive soil multifunctionality. <i>Functional Ecology</i> , 2017 , 31, 2330-2343	5.6	63
417	Photosynthetic responses of 13 grassland species across 11 years of free-air CO2 enrichment is modest, consistent and independent of N supply. <i>Global Change Biology</i> , 2011 , 17, 2893-2904	11.4	63
416	Controls on declining carbon balance with leaf age among 10 woody species in Australian woodland: do leaves have zero daily net carbon balances when they die?. <i>New Phytologist</i> , 2009 , 183, 153-166	9.8	63
415	Climate change-associated trends in net biomass change are age dependent in western boreal forests of Canada. <i>Ecology Letters</i> , 2016 , 19, 1150-8	10	63
414	The impact of material used for minirhizotron tubes for root research. New Phytologist, 2003, 160, 533-	5 4 .\$	62
413	Discordance in spatial patterns of white pine (Pinus strobus) size-classes in a patchy near-boreal forest. <i>Journal of Ecology</i> , 2001 , 89, 280-291	6	62
412	Effects of litter traits, soil biota, and soil chemistry on soil carbon stocks at a common garden with 14 tree species. <i>Biogeochemistry</i> , 2015 , 123, 313-327	3.8	61
411	Nematode community shifts in response to experimental warming and canopy conditions are associated with plant community changes in the temperate-boreal forest ecotone. <i>Oecologia</i> , 2014 , 175, 713-23	2.9	61
410	Does relatedness matter? Phylogenetic density-dependent survival of seedlings in a tropical forest. <i>Ecology</i> , 2014 , 95, 940-51	4.6	61
409	Differential Above- and Below-ground Biomass Accumulation of European Pinus sylvestris Populations in a 12-year-old Provenance Experiment. <i>Scandinavian Journal of Forest Research</i> , 1999 , 14, 7-17	1.7	61
408	A global scale mechanistic model of photosynthetic capacity (LUNA V1.0). <i>Geoscientific Model Development</i> , 2016 , 9, 587-606	6.3	61
407	Ectomycorrhizal fungal diversity and saprotrophic fungal diversity are linked to different tree community attributes in a field-based tree experiment. <i>Molecular Ecology</i> , 2016 , 25, 4032-46	5.7	61
406	Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems. <i>Nature Ecology and Evolution</i> , 2017 , 1, 1639-1642	12.3	60
405	Global changes alter plant multi-element stoichiometric coupling. New Phytologist, 2019, 221, 807-817	9.8	60
404	Climate legacies drive global soil carbon stocks in terrestrial ecosystems. <i>Science Advances</i> , 2017 , 3, e16	502098	59

403	Divergent drivers of leaf trait variation within species, among species, and among functional groups. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 5480	0- 5 485	59
402	Strong thermal acclimation of photosynthesis in tropical and temperate wet-forest tree species: the importance of altered Rubisco content. <i>Global Change Biology</i> , 2017 , 23, 2783-2800	11.4	59
401	Temperature and ontogeny mediate growth response to elevated CO in seedlings of five boreal tree species. <i>New Phytologist</i> , 1998 , 140, 197-210	9.8	59
400	Is oak establishment in old-fields and savanna openings context dependent?. <i>Journal of Ecology</i> , 2007 , 95, 309-320	6	59
399	Legume presence increases photosynthesis and N concentrations of co-occurring non-fixers but does not modulate their responsiveness to carbon dioxide enrichment. <i>Oecologia</i> , 2003 , 137, 22-31	2.9	59
398	Global biogeography of plant chemistry: filling in the blanks. New Phytologist, 2005, 168, 263-6	9.8	59
397	Effects of ozone and acid rain on white pine (Pinus strobus) seedlings grown in five soils. I. Net photosynthesis and growth. <i>Canadian Journal of Botany</i> , 1987 , 65, 977-987		59
396	Effects of O3, SO2, and acidic rain on mycorrhizal infection in northern red oak seedlings. <i>Canadian Journal of Botany</i> , 1985 , 63, 2049-2055		59
395	Nematode functional guilds, not trophic groups, reflect shifts in soil food webs and processes in response to interacting global change factors. <i>Pedobiologia</i> , 2015 , 58, 23-32	1.7	58
394	Sapling growth responses to warmer temperatures BooledIby browse pressure. <i>Global Change Biology</i> , 2012 , 18, 3455-3463	11.4	58
393	A methodology to derive global maps of leaf traits using remote sensing and climate data. <i>Remote Sensing of Environment</i> , 2018 , 218, 69-88	13.2	58
392	Body size, geometry, longevity and metabolism: do plant leaves behave like animal bodies?. <i>Trends in Ecology and Evolution</i> , 2001 , 16, 674-680	10.9	57
391	Does physiological acclimation to climate warming stabilize the ratio of canopy respiration to photosynthesis?. <i>New Phytologist</i> , 2016 , 211, 850-63	9.8	57
390	Decomposer diversity and identity influence plant diversity effects on ecosystem functioning. <i>Ecology</i> , 2012 , 93, 2227-40	4.6	56
389	Testing the link between functional diversity and ecosystem functioning in a Minnesota grassland experiment. <i>PLoS ONE</i> , 2012 , 7, e52821	3.7	56
388	Environmental and developmental controls on specific leaf area are little modified by leaf allometry. <i>Functional Ecology</i> , 2008 , 22, 565-576	5.6	55
387	Soil Processes Affected by Sixteen Grassland Species Grown under Different Environmental Conditions. <i>Soil Science Society of America Journal</i> , 2006 , 70, 770-777	2.5	55
386	Interaction of elevated CO2 and O3 on growth, photosynthesis and respiration of three perennial species grown in low and high nitrogen. <i>Physiologia Plantarum</i> , 1996 , 97, 674-684	4.6	55

385	Seed mass effects on germination and growth of diverse European Scots pine populations. <i>Canadian Journal of Forest Research</i> , 1994 , 24, 306-320	1.9	55	
384	Global convergence in leaf respiration from estimates of thermal acclimation across time and space. <i>New Phytologist</i> , 2015 , 207, 1026-37	9.8	54	
383	Positive feedbacks between decomposition and soil nitrogen availability along fertility gradients. <i>Plant and Soil</i> , 2013 , 367, 347-361	4.2	54	
382	Species, diversity, and density affect tree seedling mortality from Armillaria root rot. <i>Canadian Journal of Forest Research</i> , 1997 , 27, 1509-1512	1.9	54	
381	Land use and habitat gradients determine bird community diversity and abundance in suburban, rural and reserve landscapes of Minnesota, USA. <i>Biological Conservation</i> , 2007 , 135, 527-541	6.2	54	
380	Influence of low concentrations of ozone on growth, biomass partitioning and leaf senescence in young hybrid poplar plants. <i>Environmental Pollution Series A, Ecological and Biological</i> , 1985 , 39, 39-51		54	
379	Interactive effects of global warming and global worming on the initial establishment of native and exotic herbaceous plant species. <i>Oikos</i> , 2012 , 121, 1121-1133	4	53	
378	Above- and below-ground plant inputs both fuel soil food webs. <i>Soil Biology and Biochemistry</i> , 2012 , 45, 156-160	7.5	53	
377	Linking direct and indirect pathways mediating earthworms, deer, and understory composition in Great Lakes forests. <i>Biological Invasions</i> , 2013 , 15, 1057-1066	2.7	53	
376	Soil organic carbon stability in forests: Distinct effects of tree species identity and traits. <i>Global Change Biology</i> , 2018 , 25, 1529	11.4	53	
375	Future global productivity will be affected by plant trait response to climate. <i>Scientific Reports</i> , 2018 , 8, 2870	4.9	52	
374	Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent. <i>National Science Review</i> , 2018 , 5, 728-739	10.8	52	
373	Seeing the forest for the heterogeneous trees: stand-scale resource distributions emerge from tree-scale structure 2012 , 22, 1578-88		52	
372	Stoichiometric response of nitrogen-fixing and non-fixing dicots to manipulations of CO2, nitrogen, and diversity. <i>Oecologia</i> , 2007 , 151, 687-96	2.9	52	
371	Plant diversity, CO2, and N influence inorganic and organic N leaching in grasslands. <i>Ecology</i> , 2007 , 88, 490-500	4.6	52	
370	Elevated CO and plant species richness impact arbuscular mycorrhizal fungal spore communities. <i>New Phytologist</i> , 2003 , 157, 579-588	9.8	52	
369	Ecophysiology of exotic and native shrubs in Southern Wisconsin: II. Annual growth and carbon gain. <i>Oecologia</i> , 1989 , 80, 368-373	2.9	52	
368	Adaptation to changing environment in Scots pine populations across a latitudinal gradient. <i>Silva Fennica</i> , 1998 , 32,	1.9	52	

367	Improving ecosystem productivity modeling through spatially explicit estimation of optimal light use efficiency. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2014 , 119, 1755-1769	3.7	51
366	Vertical variation in canopy structure and CO(2) exchange of oak-maple forests: influence of ozone, nitrogen, and other factors on simulated canopy carbon gain. <i>Tree Physiology</i> , 1990 , 7, 329-345	4.2	51
365	Primary and secondary host plants differ in leaf-level photosynthetic response to herbivory: evidence from Alnus and Betula grazed by the alder beetle, Agelastica alni. <i>New Phytologist</i> , 1998 , 140, 239-249	9.8	50
364	Allometric Equations for Estimation of Ash-free Dry Mass from Length Measurements for Selected European Earthworm Species (Lumbricidae) in the Western Great Lakes Region. <i>American Midland Naturalist</i> , 2004 , 151, 179-185	0.7	50
363	Fine-scale environmental variation and structure of understorey plant communities in two old-growth pine forests. <i>Journal of Ecology</i> , 2003 , 91, 283-293	6	50
362	The economic value of grassland species for carbon storage. <i>Science Advances</i> , 2017 , 3, e1601880	14.3	49
361	Opposite relationships between invasibility and native species richness at patch versus landscape scales. <i>Oikos</i> , 2005 , 109, 81-88	4	49
360	Light environment alters response to ozone stress in seedlings of Acer saccharum Marsh, and hybrid Populus L.: II. Diagnostic gas exchange and leaf chemistry. <i>New Phytologist</i> , 1993 , 124, 637-646	9.8	49
359	Effects of low concentrations of O3, leaf age and water stress on leaf diffusive conductance and water use efficiency in soybean. <i>Physiologia Plantarum</i> , 1985 , 63, 58-64	4.6	49
358	BUGS in the analysis of biodiversity experiments: species richness and composition are of similar importance for grassland productivity. <i>PLoS ONE</i> , 2011 , 6, e17434	3.7	49
357	Traits linked with species invasiveness and community invasibility vary with time, stage and indicator of invasion in a long-term grassland experiment. <i>Ecology Letters</i> , 2019 , 22, 593-604	10	49
356	Convergence and correlations among leaf size and function in seed plants: a comparative test using independent contrasts. <i>American Journal of Botany</i> , 1999 , 86, 1272-81	2.7	49
355	Species richness and traits predict overyielding in stem growth in an early-successional tree diversity experiment. <i>Ecology</i> , 2017 , 98, 2601-2614	4.6	48
354	The role of plant species in biomass production and response to elevated CO2 and N. <i>Ecology Letters</i> , 2003 , 6, 623-625	10	48
353	Correlations among leaf traits provide a significant constraint on the estimate of global gross primary production. <i>Geophysical Research Letters</i> , 2012 , 39, n/a-n/a	4.9	47
352	Taxonomic identity, phylogeny, climate and soil fertility as drivers of leaf traits across Chinese grassland biomes. <i>Journal of Plant Research</i> , 2010 , 123, 551-61	2.6	47
351	Neighbourhood effects in forests: implications for within-stand patch structure. <i>Journal of Ecology</i> , 1998 , 86, 149-161	6	47
350	Contrasting growth response of an N2-fixing and non-fixing forb to elevated CO2: dependence on soil N supply. <i>Plant and Soil</i> , 2003 , 255, 475-486	4.2	47

(1986-2003)

349	Widespread foliage ISN depletion under elevated CO2: inferences for the nitrogen cycle. <i>Global Change Biology</i> , 2003 , 9, 1582-1590	11.4	47	
348	Needle nutrients in geographically diverse Pinus sylvestris L. populations. <i>Annals of Forest Science</i> , 2002 , 59, 1-18	3.1	47	
347	Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment. <i>Global Change Biology</i> , 2015 , 21, 2334-48	11.4	46	
346	Invasive species' leaf traits and dissimilarity from natives shape their impact on nitrogen cycling: a meta-analysis. <i>New Phytologist</i> , 2017 , 213, 128-139	9.8	46	
345	Experimental and observational studies find contrasting responses of soil nutrients to climate change. <i>ELife</i> , 2017 , 6,	8.9	46	
344	Climate and interrelated tree regeneration drivers in mixed temperateBoreal forests. <i>Landscape Ecology</i> , 2013 , 28, 149-159	4.3	45	
343	Perspectives on development of definitions and values related to old-growth forests. <i>Environmental Reviews</i> , 2003 , 11, S9-S22	4.5	45	
342	Oak Tree Effects on Soil and Herbaceous Vegetation in Savannas and Pastures in Wisconsin. <i>American Midland Naturalist</i> , 1993 , 130, 31	0.7	45	
341	Climate and soils together regulate photosynthetic carbon isotope discrimination within C3 plants worldwide. <i>Global Ecology and Biogeography</i> , 2018 , 27, 1056-1067	6.1	45	
340	Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 12	192-12	266	
339	Warming alters the energetic structure and function but not resilience of soil food webs. <i>Nature Climate Change</i> , 2017 , 7, 895-900	21.4	44	
338	Trophic cascades, invasive species and body-size hierarchies interactively modulate climate change responses of ecotonal temperate-boreal forest. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2012 , 367, 2955-61	5.8	44	
337	Canopy feedbacks and microtopography regulate conifer seedling distribution in two Minnesota conifer-deciduous forests. <i>Ecoscience</i> , 1997 , 4, 353-364	1.1	44	
336	Responses of hardwood regeneration to fire in mesic forest openings. I. Post-fire community dynamics. <i>Canadian Journal of Forest Research</i> , 1997 , 27, 1822-1831	1.9	44	
335	Experimental climate warming alters aspen and birch phytochemistry and performance traits for an outbreak insect herbivore. <i>Global Change Biology</i> , 2015 , 21, 2698-2710	11.4	43	
334	Maintenance of leaf N controls the photosynthetic CO2 response of grassland species exposed to 9 years of free-air CO2 enrichment. <i>Global Change Biology</i> , 2010 , 16, 2076-2088	11.4	43	
333	Effects of plant species diversity, atmospheric [CO2], and N addition on gross rates of inorganic N release from soil organic matter. <i>Global Change Biology</i> , 2006 , 12, 1400-1408	11.4	43	
332	Response of Soybean to Low Concentrations of Ozone: I. Reductions in Leaf and Whole Plant Net Photosynthesis and Leaf Chlorophyll Content. <i>Journal of Environmental Quality</i> , 1986 , 15, 31-36	3.4	43	

331	Deficits of biodiversity and productivity linger a century after agricultural abandonment. <i>Nature Ecology and Evolution</i> , 2019 , 3, 1533-1538	12.3	43
330	Canopy gap size influences niche partitioning of the ground-layer plant community in a northern temperate forest. <i>Journal of Plant Ecology</i> , 2013 , 6, 101-112	1.7	42
329	Litter decomposition in earthworm-invaded northern hardwood forests: Role of invasion degree and litter chemistry. <i>Ecoscience</i> , 2008 , 15, 536-544	1.1	42
328	Short-term carbon cycling responses of a mature eucalypt woodland to gradual stepwise enrichment of atmospheric CO2 concentration. <i>Global Change Biology</i> , 2016 , 22, 380-90	11.4	41
327	Daily environmental conditions determine the competition acilitation balance for plant water status. <i>Journal of Ecology</i> , 2015 , 103, 648-656	6	41
326	Tree rings detect earthworm invasions and their effects in northern Hardwood forests. <i>Biological Invasions</i> , 2010 , 12, 1053-1066	2.7	41
325	Vegetation change: a reunifying concept in plant ecology. <i>Perspectives in Plant Ecology, Evolution and Systematics</i> , 2005 , 7, 69-76	3	41
324	Causes and Consequences of Variation in Conifer Leaf Life-Span 1995 , 225-254		41
323	Ecophysiological Investigations of Understory Eastern Redcedar in Central Missouri. <i>Ecology</i> , 1983 , 64, 1355-1366	4.6	41
322	Metagenomic reconstruction of nitrogen cycling pathways in a CO2-enriched grassland ecosystem. <i>Soil Biology and Biochemistry</i> , 2017 , 106, 99-108	7.5	40
321	Biodiversity influences plant productivity through niche-efficiency. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 5738-43	11.5	40
320	A species-level model for metabolic scaling in trees I. Exploring boundaries to scaling space within and across species. <i>Functional Ecology</i> , 2012 , 26, 1054-1065	5.6	40
319	Modest enhancement of nitrogen conservation via retranslocation in response to gradients in N supply and leaf N status. <i>Plant and Soil</i> , 2009 , 316, 193-204	4.2	40
318	Intra- and interspecific performance in growth and reproduction increase with altitude: a case study with two Saxifraga species from northern Spain. <i>Functional Ecology</i> , 2009 , 23, 111-118	5.6	40
317	Controls over leaf and litter calcium concentrations among temperate trees. <i>Biogeochemistry</i> , 2007 , 86, 175-187	3.8	40
316	Seedbed and moisture availability determine safe sites for early Thuja occidentalis (Cupressaceae) regeneration. <i>American Journal of Botany</i> , 2000 , 87, 1807-1814	2.7	40
315	Relationship of aluminium and calcium to net CO exchange among diverse Scots pine provenances under pollution stress in Poland. <i>Oecologia</i> , 1994 , 97, 82-92	2.9	40
314	The Diversity and Co-occurrence Patterns of NEFixing Communities in a COEEnriched Grassland Ecosystem. <i>Microbial Ecology</i> , 2016 , 71, 604-15	4.4	39

(1988-2015)

313	Fungal communities respond to long-term CO2 elevation by community reassembly. <i>Applied and Environmental Microbiology</i> , 2015 , 81, 2445-54	4.8	39
312	Combinations of Abiotic Factors Differentially Alter Production of Plant Secondary Metabolites in Five Woody Plant Species in the Boreal-Temperate Transition Zone. <i>Frontiers in Plant Science</i> , 2018 , 9, 1257	6.2	39
311	The wave towards a new steady state: effects of earthworm invasion on soil microbial functions. <i>Biological Invasions</i> , 2011 , 13, 2191-2196	2.7	39
310	Climate Change. The carbon dioxide exchange. <i>Science</i> , 2010 , 329, 774-5	33.3	39
309	Measurement of leaf longevity of 14 species of grasses and forbs using a novel approach. <i>New Phytologist</i> , 1999 , 142, 475-481	9.8	39
308	Coppicing affects growth, root:shoot relations and ecophysiology of potted Quercus rubra seedlings. <i>Physiologia Plantarum</i> , 1993 , 89, 751-760	4.6	39
307	Elevated carbon dioxide accelerates the spatial turnover of soil microbial communities. <i>Global Change Biology</i> , 2016 , 22, 957-64	11.4	39
306	Complex facilitation and competition in a temperate grassland: loss of plant diversity and elevated CO2 have divergent and opposite effects on oak establishment. <i>Oecologia</i> , 2013 , 171, 449-58	2.9	38
305	Influence of Disturbance on Temperate Forest Productivity. <i>Ecosystems</i> , 2013 , 16, 95-110	3.9	38
304	Neighborhood effects, disturbance, and succession in forests of the western Great Lakes Region1. <i>Ecoscience</i> , 1995 , 2, 148-158	1.1	38
303	Effects of ozone and acid rain on white pine (Pinus strobus) seedlings grown in five soils. II. Mycorrhizal infection. <i>Canadian Journal of Botany</i> , 1988 , 66, 1510-1516		38
302	Response of Soybean to Low Concentrations of Ozone: II. Effects on Growth, Biomass Allocation, and Flowering. <i>Journal of Environmental Quality</i> , 1986 , 15, 161-167	3.4	38
301	Erosion reduces soil microbial diversity, network complexity and multifunctionality. <i>ISME Journal</i> , 2021 , 15, 2474-2489	11.9	38
300	Soil microbial, nematode, and enzymatic responses to elevated CO2, N fertilization, warming, and reduced precipitation. <i>Soil Biology and Biochemistry</i> , 2019 , 135, 184-193	7.5	37
299	Acclimation of leaf respiration consistent with optimal photosynthetic capacity. <i>Global Change Biology</i> , 2020 , 26, 2573	11.4	37
298	Do temperate tree species diversity and identity influence soil microbial community function and composition?. <i>Ecology and Evolution</i> , 2017 , 7, 7965-7974	2.8	37
297	Using Scenario Visioning and Participatory System Dynamics Modeling to Investigate the Future: Lessons from Minnesota 2050. <i>Sustainability</i> , 2010 , 2, 2686-2706	3.6	37
296	Effects of ozone and acid rain on white pine (Pinus strobus) seedlings grown in five soils. III. Nutrient relations. <i>Canadian Journal of Botany</i> , 1988 , 66, 1517-1531		37

295	Changes with Leaf Age in Stomatal Function and Water Status of Several Tropical Tree Species. <i>Biotropica</i> , 1988 , 20, 60	2.3	37
294	A global trait-based approach to estimate leaf nitrogen functional allocation from observations. <i>Ecological Applications</i> , 2017 , 27, 1421-1434	4.9	36
293	An evolutionary perspective on leaf economics: phylogenetics of leaf mass per area in vascular plants. <i>Ecology and Evolution</i> , 2014 , 4, 2799-811	2.8	36
292	First-year seedlings and climate change: species-specific responses of 15 North American tree species. <i>Oikos</i> , 2014 , 123, 1331-1340	4	36
291	Elevated COIInfluences microbial carbon and nitrogen cycling. BMC Microbiology, 2013, 13, 124	4.5	36
290	Identifying environmental drivers of greenhouse gas emissions under warming and reduced rainfall in borealEemperate forests. <i>Functional Ecology</i> , 2017 , 31, 2356-2368	5.6	36
289	Leaf Litter Disappearance in Earthworm-Invaded Northern Hardwood Forests: Role of Tree Species and the Chemistry and Diversity of Litter. <i>Ecosystems</i> , 2012 , 15, 913-926	3.9	36
288	Incorporating temperature-sensitive Q10 and foliar respiration acclimation algorithms modifies modeled ecosystem responses to global change. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2013 , 118, 77-90	3.7	36
287	Do evergreen and deciduous trees have different effects on net N mineralization in soil?. <i>Ecology</i> , 2012 , 93, 1463-72	4.6	36
286	Leaf physiological versus morphological acclimation to high-light exposure at different stages of foliar development in oak. <i>Tree Physiology</i> , 2008 , 28, 761-71	4.2	36
285	Light response in seedlings of a temperate (Quercus petraea) and a sub-Mediterranean species (Quercus pyrenaica): contrasting ecological strategies as potential keys to regeneration performance in mixed marginal populations. <i>Plant Ecology</i> , 2008 , 195, 273-285	1.7	36
284	Tree Patches Show Greater N Losses but Maintain Higher Soil N Availability than Grassland Patches in a Frequently Burned Oak Savanna. <i>Ecosystems</i> , 2006 , 9, 441-452	3.9	36
283	Multiple scale composition and spatial distribution patterns of the north-eastern Minnesota presettlement forest. <i>Journal of Ecology</i> , 2001 , 89, 538-554	6	36
282	Effects of winter temperatures, spring degree-day accumulation, and insect population source on phenological synchrony between forest tent caterpillar and host trees. <i>Forest Ecology and Management</i> , 2016 , 362, 241-250	3.9	35
281	Harvest-Created Canopy Gaps Increase Species and Functional Trait Diversity of the Forest Ground-Layer Community. <i>Forest Science</i> , 2014 , 60, 335-344	1.4	35
280	Lifetime return on investment increases with leaf lifespan among 10 Australian woodland species. <i>New Phytologist</i> , 2012 , 193, 409-19	9.8	35
279	Effects of density and ontogeny on size and growth ranks of three competing tree species. <i>Journal of Ecology</i> , 2009 , 97, 277-288	6	35
278	Canopy type, forest floor, predation, and competition influence conifer seedling emergence and early survival in two Minnesota conifer-deciduous forests. <i>Canadian Journal of Forest Research</i> , 1998 , 28, 196-205	1.9	35

277	Variation and evolution of C:N ratio among different organs enable plants to adapt to N-limited environments. <i>Global Change Biology</i> , 2019 , 26, 2534	11.4	35	
276	Tree communities rapidly alter soil microbial resistance and resilience to drought. <i>Functional Ecology</i> , 2015 , 29, 570-578	5.6	34	
275	Are leaf functional traits invariant with plant size and what is invariance and way?. Functional Ecology, 2014 , 28, 1330-1343	5.6	34	
274	Contrasting leaf trait scaling relationships in tropical and temperate wet forest species. <i>Functional Ecology</i> , 2013 , 27, 522-534	5.6	34	
273	Native Perennial Grassland Species for Bioenergy: Establishment and Biomass Productivity. <i>Agronomy Journal</i> , 2011 , 103, 509-519	2.2	34	
272	Ectomycorrhizal identity determines respiration and concentrations of nitrogen and non-structural carbohydrates in root tips: a test using Pinus sylvestris and Quercus robur saplings. <i>Tree Physiology</i> , 2010 , 30, 648-54	4.2	34	
271	Strong ecological but weak evolutionary effects of elevated CO2 on a recombinant inbred population of Arabidopsis thaliana. <i>New Phytologist</i> , 2007 , 175, 351-362	9.8	34	
270	Dark respiration rate increases with plant size in saplings of three temperate tree species despite decreasing tissue nitrogen and nonstructural carbohydrates. <i>Tree Physiology</i> , 2006 , 26, 915-23	4.2	34	
269	Loss of Stomatal Function in Ageing Hybrid Poplar Leaves. <i>Annals of Botany</i> , 1984 , 53, 691-698	4.1	34	
268	Side-swiped: Ecological cascades emanating from earthworm invasion. <i>Frontiers in Ecology and the Environment</i> , 2019 , 17, 502-510	5.5	33	
267	Biodiversity, Nitrogen Deposition, and CO2 Affect Grassland Soil Carbon Cycling but not Storage. <i>Ecosystems</i> , 2012 , 15, 580-590	3.9	33	
266	Ontogenetic patterns of leaf CO2 exchange, morphology and chemistry in Betula pendula trees. <i>Trees - Structure and Function</i> , 2000 , 14, 271-281	2.6	33	
265	Ontogenetic shift in the scaling of dark respiration with whole-plant mass in seven shrub species. <i>Functional Ecology</i> , 2010 , 24, 502-512	5.6	32	
264	Soil modification by different tree species influences the extent of seedling ectomycorrhizal infection. <i>Mycorrhiza</i> , 2006 , 16, 73-79	3.9	32	
263	Elevated [CO2] and increased N supply reduce leaf disease and related photosynthetic impacts on Solidago rigida. <i>Oecologia</i> , 2006 , 149, 519-25	2.9	32	
262	Acid Rain and Ozone Influence Mycorrhizal Infection in Tree Seedlings. <i>Journal of the Air Pollution Control Association</i> , 1986 , 36, 724-726		32	
261	The imprint of plants on ecosystem functioning: A data-driven approach. <i>International Journal of Applied Earth Observation and Geoinformation</i> , 2015 , 43, 119-131	7.3	31	
260	Responses of hardwood regeneration to fire in mesic forest openings. II. Leaf gas exchange, nitrogen concentration, and water status. <i>Canadian Journal of Forest Research</i> , 1997 , 27, 1832-1840	1.9	31	

259	Direct inhibition of leaf dark respiration by elevated CO2 is minor in 12 grassland species. <i>New Phytologist</i> , 2001 , 150, 419-424	9.8	31
258	Coppicing alters ecophysiology of Quercus rubrasaplings in Wisconsin forest openings. <i>Physiologia Plantarum</i> , 1993 , 89, 741-750	4.6	31
257	Light environment alters response to ozone stress in seedlings of Acer saccharum Marsh, and hybrid Populus L.: III. Consequences for performance of gypsy moth. <i>New Phytologist</i> , 1993 , 124, 647-65	5P.8	31
256	The results of biodiversity-ecosystem functioning experiments are realistic. <i>Nature Ecology and Evolution</i> , 2020 , 4, 1485-1494	12.3	31
255	Biogeographic bases for a shift in crop CDNDP stoichiometries during domestication. <i>Ecology Letters</i> , 2016 , 19, 564-75	10	31
254	Leaf economics and plant hydraulics drive leaf: wood area ratios. New Phytologist, 2019, 224, 1544-155	6 9.8	30
253	Losses in microbial functional diversity reduce the rate of key soil processes. <i>Soil Biology and Biochemistry</i> , 2019 , 135, 267-274	7·5	30
252	Using revegetation to suppress invasive plants in grasslands and forests. <i>Journal of Applied Ecology</i> , 2018 , 55, 2362-2373	5.8	30
251	Community phylogenetic diversity and abiotic site characteristics influence abundance of the invasive plant Rhamnus cathartica L <i>Journal of Plant Ecology</i> , 2014 , 7, 202-209	1.7	30
250	Elevated CO2 and nitrogen supply alter leaf longevity of grassland species. <i>New Phytologist</i> , 2001 , 150, 397-403	9.8	30
249	Biogeographic differences in shoot elongation pattern among European Scots pine populations. <i>Forest Ecology and Management</i> , 2001 , 148, 207-220	3.9	30
248	Estimating themissing species bias in plant trait measurements. <i>Journal of Vegetation Science</i> , 2015 , 26, 828-838	3.1	29
247	Fame, glory and neglect in meta-analyses. <i>Trends in Ecology and Evolution</i> , 2011 , 26, 493-4	10.9	29
246	Responses of hardwood regeneration to fire in mesic forest openings. III. Whole-plant growth, biomass distribution, and nitrogen and carbohydrate relations. <i>Canadian Journal of Forest Research</i> , 1997 , 27, 1841-1850	1.9	29
245	Transgenerational effects of global environmental change: long-term CO(2) and nitrogen treatments influence offspring growth response to elevated CO(2). <i>Oecologia</i> , 2008 , 158, 141-50	2.9	29
244	Invasive earthworms interact with abiotic conditions to influence the invasion of common buckthorn (Rhamnus cathartica). <i>Oecologia</i> , 2015 , 178, 219-30	2.9	28
243	Global root traits (GRooT) database. Global Ecology and Biogeography, 2021, 30, 25-37	6.1	28
242	Variation in leaf and twig CO2 flux as a function of plant size: a comparison of seedlings, saplings and trees. <i>Tree Physiology</i> , 2013 , 33, 713-29	4.2	27

(2011-2008)

241	Direct and indirect effects of CO2, nitrogen, and community diversity on plant-enemy interactions. <i>Ecology</i> , 2008 , 89, 226-36	4.6	27	
240	Leaf-level resource use for evergreen and deciduous conifers along a resource availability gradient. <i>Functional Ecology</i> , 2000 , 14, 281-292	5.6	27	
239	LEAF STOMATAL DENSITY AND DIFFUSIVE CONDUCTANCE IN THREE AMPHISTOMATOUS HYBRID POPLAR CULTIVARS. <i>New Phytologist</i> , 1984 , 98, 231-239	9.8	27	
238	Plant-driven niche differentiation of ammonia-oxidizing bacteria and archaea in global drylands. <i>ISME Journal</i> , 2019 , 13, 2727-2736	11.9	26	
237	Globally consistent influences of seasonal precipitation limit grassland biomass response to elevated CO. <i>Nature Plants</i> , 2019 , 5, 167-173	11.5	26	
236	Range size and growth temperature influence Eucalyptus species responses to an experimental heatwave. <i>Global Change Biology</i> , 2019 , 25, 1665-1684	11.4	26	
235	Aridity Decouples C:N:P Stoichiometry Across Multiple Trophic Levels in Terrestrial Ecosystems. <i>Ecosystems</i> , 2018 , 21, 459-468	3.9	26	
234	A species-level model for metabolic scaling of trees II. Testing in a ring- and diffuse-porous species. <i>Functional Ecology</i> , 2012 , 26, 1066-1076	5.6	26	
233	The effects of eastern red cedar (Juniperus virginiana) invasion and removal on a dry bluff prairie ecosystem. <i>Biological Invasions</i> , 2010 , 12, 241-252	2.7	26	
232	Evidence that the negative relationship between seed mass and relative growth rate is not physiological but linked to species identity: a within-family analysis of Scots pine. <i>Tree Physiology</i> , 2008 , 28, 1077-82	4.2	26	
231	Productivity of Evergreen and Deciduous Temperate Forests 2001 , 245-283		26	
230	Plant diversity maintains multiple soil functions in future environments. ELife, 2018, 7,	8.9	26	
229	Recent deforestation drove the spike in Amazonian fires. Environmental Research Letters, 2020, 15, 121	06.3	26	
228	A common thermal niche among geographically diverse populations of the widely distributed tree species Eucalyptus tereticornis: No evidence for adaptation to climate-of-origin. <i>Global Change Biology</i> , 2017 , 23, 5069-5082	11.4	25	
227	Species-rich boreal forests grew more and suffered less mortality than species-poor forests under the environmental change of the past half-century. <i>Ecology Letters</i> , 2019 , 22, 999-1008	10	25	
226	Adaptation to elevated CO2 in different biodiversity contexts. <i>Nature Communications</i> , 2016 , 7, 12358	17.4	25	
225	Do vegetation boundaries display smooth or abrupt spatial transitions along environmental gradients? Evidence from the prairieforest biome boundary of historic Minnesota, USA. <i>Journal of Vegetation Science</i> , 2013 , 24, 1129-1140	3.1	25	
224	Vegetation controls vary across space and spatial scale in a historic grassland-forest biome boundary. <i>Ecography</i> , 2011 , 34, 402-414	6.5	25	

223	Ectomycorrhizal fungal communities of oak savanna are distinct from forest communities. <i>Mycologia</i> , 2009 , 101, 473-83	2.4	25
222	Response Mechanisms of Conifers to Air Pollutants 1995 , 255-308		25
221	Low level O3 and/or SO2 exposure causes a linear decline in soybean yield. <i>Environmental Pollution Series A, Ecological and Biological</i> , 1984 , 34, 345-355		25
220	Climate modifies response of non-native and native species richness to nutrient enrichment. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2016 , 371,	5.8	25
219	A traits-based test of the home-field advantage in mixed-species tree litter decomposition. <i>Annals of Botany</i> , 2015 , 116, 781-8	4.1	24
218	Potential climate change impacts on temperate forest ecosystem processes. <i>Canadian Journal of Forest Research</i> , 2013 , 43, 939-950	1.9	24
217	Nitrogen cycling, forest canopy reflectance, and emergent properties of ecosystems. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, E2437	11.5	24
216	Limited potential for terrestrial carbon sequestration to offset fossil-fuel emissions in the upper midwestern US. <i>Frontiers in Ecology and the Environment</i> , 2010 , 8, 409-413	5.5	24
215	European larch and eastern white pine respond similarly during three years of partial defoliation. <i>Tree Physiology</i> , 2000 , 20, 283-287	4.2	24
214	LONG-TERM EFFECTS OF DEFOLIATION ON RED PINE SUITABILITY TO INSECTS FEEDING ON DIVERSE PLANT TISSUES. <i>Ecology</i> , 1998 , 79, 2352-2364	4.6	24
213	Logging versus fire: how does disturbance type influence the abundance of Pinus strobus regeneration?. <i>Silva Fennica</i> , 2004 , 38,	1.9	24
212	Shifting Impacts of Climate Change: Long-Term Patterns of Plant Response to Elevated CO2, Drought, and Warming Across Ecosystems. <i>Advances in Ecological Research</i> , 2016 , 55, 437-473	4.6	24
211	Potential and limitations of inferring ecosystem photosynthetic capacity from leaf functional traits. <i>Ecology and Evolution</i> , 2016 , 6, 7352-7366	2.8	24
210	Traditional plant functional groups explain variation in economic but not size-related traits across the tundra biome. <i>Global Ecology and Biogeography</i> , 2019 , 28, 78-95	6.1	24
209	Tertiary remnants and Holocene colonizers: Genetic structure and phylogeography of Scots pine reveal higher genetic diversity in young boreal than in relict Mediterranean populations and a dual colonization of Fennoscandia. <i>Diversity and Distributions</i> , 2017 , 23, 540-555	5	23
208	Indirect effects drive evolutionary responses to global change. New Phytologist, 2014, 201, 335-343	9.8	23
207	Phylogenetic community structure in Minnesota oak savanna is influenced by spatial extent and environmental variation. <i>Ecography</i> , 2009 , no-no	6.5	23
206	Detecting wind disturbance severity and canopy heterogeneity in boreal forest by coupling high-spatial resolution satellite imagery and field data. <i>Remote Sensing of Environment</i> , 2010 , 114, 299-	-308 ^{.2}	23

(2017-2003)

205	The dependence of root system properties on root system biomass of 10 North American grassland species. <i>Plant and Soil</i> , 2003 , 250, 39-47	4.2	23	
204	Good-Enough RFLP Matcher (GERM) program. <i>Mycorrhiza</i> , 2003 , 13, 171-2	3.9	23	
203	Altered root growth and plant chemistry of Pinus sylvestris seedlings subjected to aluminum in nutrient solution. <i>Trees - Structure and Function</i> , 1996 , 10, 135-144	2.6	23	
202	Reduction in growth of hybrid poplar following field exposure to low levels of O3 and (or) SO2. <i>Canadian Journal of Botany</i> , 1984 , 62, 2835-2841		23	
201	General destabilizing effects of eutrophication on grassland productivity at multiple spatial scales. <i>Nature Communications</i> , 2020 , 11, 5375	17.4	23	
200	Climate and competition affect growth and survival of transplanted sugar maple seedlings along a 1700-km gradient. <i>Ecological Monographs</i> , 2017 , 87, 130-157	9	22	
199	Partitioning the effect of composition and diversity of tree communities on leaf litter decomposition and soil respiration. <i>Oikos</i> , 2017 , 126, 959-971	4	22	
198	Wilderness Conservation in an Era of Global Warming and Invasive Species: A Case Study from Minnesota's Boundary Waters Canoe Area Wilderness. <i>Natural Areas Journal</i> , 2009 , 29, 385-393	0.8	22	
197	Physiological and phenological responses of oak seedlings to oak forest soil in the absence of trees. <i>Tree Physiology</i> , 2007 , 27, 133-40	4.2	22	
196	The resource economics of chemical and structural defenses across nitrogen supply gradients. <i>Oecologia</i> , 2003 , 137, 547-56	2.9	22	
195	Comparing the Importance of Seedbed and Canopy Type in the Restoration of Upland Thuja occidentalis Forests of Northeastern Minnesota. <i>Restoration Ecology</i> , 2001 , 9, 386-396	3.1	22	
194	Minnesota forest ecosystem vulnerability assessment and synthesis: a report from the Northwoods Climate Change Response Framework project 2014 ,		22	
193	Allometry of fine roots in forest ecosystems. <i>Ecology Letters</i> , 2019 , 22, 322-331	10	22	
192	Biogeographic variation in temperature sensitivity of decomposition in forest soils. <i>Global Change Biology</i> , 2020 , 26, 1873-1885	11.4	22	
191	Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests. <i>Biogeosciences</i> , 2017 , 14, 4663-4690	4.6	21	
190	Effect of Simulated Climate Warming on the Ectomycorrhizal Fungal Community of Boreal and Temperate Host Species Growing Near Their Shared Ecotonal Range Limits. <i>Microbial Ecology</i> , 2018 , 75, 348-363	4.4	21	
189	Local ecotypic and species range-related adaptation influence photosynthetic temperature optima in deciduous broadleaved trees. <i>Plant Ecology</i> , 2012 , 213, 113-125	1.7	21	
188	Incorporation of plant traits in a land surface model helps explain the global biogeographical distribution of major forest functional types. <i>Global Ecology and Biogeography</i> , 2017 , 26, 304-317	6.1	21	

187	Below-ground resources limit seedling growth in forest understories but do not alter biomass distribution. <i>Annals of Forest Science</i> , 2003 , 60, 319-330	3.1	21
186	Grassland species effects on soil CO2 flux track the effects of elevated CO2 and nitrogen. <i>New Phytologist</i> , 2001 , 150, 425-434	9.8	21
185	Pollution, Habitat Destruction, and Biodiversity in Poland. <i>Conservation Biology</i> , 1994 , 8, 943-960	6	21
184	Biodiversityproductivity relationships are key to nature-based climate solutions. <i>Nature Climate Change</i> , 2021 , 11, 543-550	21.4	21
183	The partitioning of gross primary production for young Eucalyptus tereticornis trees under experimental warming and altered water availability. <i>New Phytologist</i> , 2019 , 222, 1298-1312	9.8	21
182	Ambient changes exceed treatment effects on plant species abundance in global change experiments. <i>Global Change Biology</i> , 2018 , 24, 5668-5679	11.4	21
181	Phenological responses of temperate and boreal trees to warming depend on ambient spring temperatures, leaf habit, and geographic range. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 10397-10405	11.5	20
180	Predicting leaf area index from scaling principles: corroboration and consequences. <i>Tree Physiology</i> , 2003 , 23, 1171-9	4.2	20
179	Variation in aboveground net primary production of diverse European Pinus sylvestris populations. <i>Trees - Structure and Function</i> , 2000 , 14, 415-421	2.6	20
178	Water Relations: Soil Fertility, and Plant Nutrient Composition of a Pygmy Oak Ecosystem. <i>Ecology</i> , 1980 , 61, 400-416	4.6	20
177	Limited evidence for spatial resource partitioning across temperate grassland biodiversity experiments. <i>Ecology</i> , 2020 , 101, e02905	4.6	20
176	Negative to positive shifts in diversity effects on soil nitrogen over time. <i>Nature Sustainability</i> , 2021 , 4, 225-232	22.1	20
175	Global plant trait relationships extend to the climatic extremes of the tundra biome. <i>Nature Communications</i> , 2020 , 11, 1351	17.4	19
174	Repeated fire shifts carbon and nitrogen cycling by changing plant inputs and soil decomposition across ecosystems. <i>Ecological Monographs</i> , 2020 , 90, e01409	9	19
173	Robustness of trait connections across environmental gradients and growth forms. <i>Global Ecology and Biogeography</i> , 2019 , 28, 1806-1826	6.1	19
172	Cold adaptation drives variability in needle structure and anatomy in Pinus sylvestris L. along a 1,900[km temperate B oreal transect. <i>Functional Ecology</i> , 2017 , 31, 2212-2223	5.6	19
171	What controls the concentration of various aliphatic lipids in soil?. <i>Soil Biology and Biochemistry</i> , 2013 , 63, 14-17	7.5	19
170	CO2, nitrogen, and diversity differentially affect seed production of prairie plants. <i>Ecology</i> , 2009 , 90, 1810-20	4.6	19

(2015-2008)

169	Fungal diversity of Norway spruce litter: effects of site conditions and premature leaf fall caused by bark beetle outbreak. <i>Microbial Ecology</i> , 2008 , 56, 332-40	4.4	19
168	Herbivore and pathogen damage on grassland and woodland plants: a test of the herbivore uncertainty principle. <i>Ecology Letters</i> , 2002 , 5, 531-539	10	19
167	Needle CO. <i>Trees - Structure and Function</i> , 1997 , 12, 82	2.6	19
166	The influence of soil age on ecosystem structure and function across biomes. <i>Nature Communications</i> , 2020 , 11, 4721	17.4	19
165	A trait-based ecosystem model suggests that long-term responsiveness to rising atmospheric CO2 concentration is greater in slow-growing than fast-growing plants. <i>Functional Ecology</i> , 2013 , 27, 1011-10	022	18
164	Biomass growth response to spatial pattern of variable-retention harvesting in a northern Minnesota pine ecosystem 2014 , 24, 2078-88		18
163	Comparing indices of understory light availability between hemlock and hardwood forest patches. <i>Canadian Journal of Forest Research</i> , 2009 , 39, 1949-1957	1.9	18
162	Elevated atmospheric CO2: a nurse plant substitute for oak seedlings establishing in old fields. <i>Global Change Biology</i> , 2007 , 13, 2308-2316	11.4	18
161	Do tall trees scale physiological heights?. <i>Trends in Ecology and Evolution</i> , 2000 , 15, 41-42	10.9	18
160	Strong photosynthetic acclimation and enhanced water-use efficiency in grassland functional groups persist over 21 lyears of CO enrichment, independent of nitrogen supply. <i>Global Change Biology</i> , 2019 , 25, 3031-3044	11.4	17
159	Intraspecific variation in soy across the leaf economics spectrum. <i>Annals of Botany</i> , 2019 , 123, 107-120	4.1	17
158	The scaling of fine root nitrogen versus phosphorus in terrestrial plants: A global synthesis. <i>Functional Ecology</i> , 2019 , 33, 2081-2094	5.6	17
157	Fine-scale heterogeneity in overstory composition contributes to heterogeneity of wildfire severity in southern boreal forest. <i>Journal of Forest Research</i> , 2011 , 16, 203-214	1.4	17
156	Nutritional Status of Pollen and Needles of Diverse Pinus Sylvestris Populations Grown at Sites with Contrasting Pollution. <i>Water, Air, and Soil Pollution</i> , 1999 , 110, 195-212	2.6	17
155	Low phosphorus supply constrains plant responses to elevated CO : A meta-analysis. <i>Global Change Biology</i> , 2020 , 26, 5856-5873	11.4	17
154	Disentangling species and functional group richness effects on soil N cycling in a grassland ecosystem. <i>Global Change Biology</i> , 2017 , 23, 4717-4727	11.4	16
153	The changing role of fire in mediating the relationships among oaks, grasslands, mesic temperate forests, and boreal forests in the Lake States. <i>Journal of Sustainable Forestry</i> , 2017 , 36, 421-432	1.2	16
152	Responses of two understory herbs, Maianthemum canadense and Eurybia macrophylla, to experimental forest warming: early emergence is the key to enhanced reproductive output. <i>American Journal of Botany</i> , 2015 , 102, 1610-24	2.7	16

151	Leaf size of woody dicots predicts ecosystem primary productivity. <i>Ecology Letters</i> , 2020 , 23, 1003-101	310	16
150	Resident plant diversity and introduced earthworms have contrasting effects on the success of invasive plants. <i>Biological Invasions</i> , 2014 , 16, 2181-2193	2.7	16
149	Reducing greenhouse gas emissions for climate stabilization: framing regional options. <i>Environmental Science & Environmental </i>	10.3	16
148	Antagonistic effects of species on C respiration and net N mineralization in soils from mixed coniferous plantations. <i>Forest Ecology and Management</i> , 2009 , 257, 1112-1118	3.9	16
147	The differential sensitivity of red pine and quaking aspen to competition. <i>Canadian Journal of Forest Research</i> , 1995 , 25, 1731-1737	1.9	16
146	SOME PHYSIOLOGICAL RESPONSES OF THEOBROMA CACAO VAR. CATONGO SEEDLINGS TO AIR HUMIDITY. <i>New Phytologist</i> , 1987 , 107, 591-602	9.8	16
145	Ecophysiology and Insect Herbivory 1995 , 125-180		16
144	Global fern and lycophyte richness explained: How regional and local factors shape plot richness. <i>Journal of Biogeography</i> , 2020 , 47, 59-71	4.1	16
143	Synergistic effects of four climate change drivers on terrestrial carbon cycling. <i>Nature Geoscience</i> , 2020 , 13, 787-793	18.3	16
142	Decadal changes in fire frequencies shift tree communities and functional traits. <i>Nature Ecology and Evolution</i> , 2021 , 5, 504-512	12.3	16
141	Altered root growth and plant chemistry of Pinus sylvestris seedlings subjected to aluminum in nutrient solution. <i>Trees - Structure and Function</i> , 1996 , 10, 135-144	2.6	16
140	Peeking beneath the hood of the leaf economics spectrum. <i>New Phytologist</i> , 2017 , 214, 1395-1397	9.8	15
139	Warming shifts 'worming': effects of experimental warming on invasive earthworms in northern North America. <i>Scientific Reports</i> , 2014 , 4, 6890	4.9	15
138	Experimental warming advances phenology of groundlayer plants at the boreal-temperate forest ecotone. <i>American Journal of Botany</i> , 2018 , 105, 851-861	2.7	15
137	New cohort growth and survival in variable retention harvests of a pine ecosystem in Minnesota, USA. <i>Forest Ecology and Management</i> , 2013 , 310, 327-335	3.9	15
136	Habitat preference, growth form, vegetative dispersal and population size of lichens along a wildfire severity gradient. <i>Bryologist</i> , 2006 , 109, 527-540	0.7	15
135	Growing-season temperature and precipitation are independent drivers of global variation in xylem hydraulic conductivity. <i>Global Change Biology</i> , 2020 , 26, 1833-1841	11.4	15
134	Frequent burning causes large losses of carbon from deep soil layers in a temperate savanna. Journal of Ecology, 2020 , 108, 1426-1441	6	14

133	Is it getting hot in here? Adjustment of hydraulic parameters in six boreal and temperate tree species after 5 years of warming. <i>Global Change Biology</i> , 2016 , 22, 4124-4133	11.4	14
132	Three years of soil respiration in a mature eucalypt woodland exposed to atmospheric CO2 enrichment. <i>Biogeochemistry</i> , 2018 , 139, 85-101	3.8	14
131	Frequency and timing of stem removal influence Corylus americana resprout vigor in oak savanna. <i>Forest Ecology and Management</i> , 2011 , 261, 136-142	3.9	14
130	Population size and fire intensity determine post-fire abundance in grassland lichens. <i>Applied Vegetation Science</i> , 2005 , 8, 193-198	3.3	14
129	Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling		14
128	Shrub type dominates the vertical distribution of leaf C: N: P stoichiometry across an extensive altitudinal gradient. <i>Biogeosciences</i> , 2018 , 15, 2033-2053	4.6	14
127	Light mediates the relationship between community diversity and trait plasticity in functionally and phylogenetically diverse tree mixtures. <i>Journal of Ecology</i> , 2020 , 108, 1617-1634	6	13
126	Implications of contrasted above- and below-ground biomass responses in a diversity experiment with trees. <i>Journal of Ecology</i> , 2020 , 108, 405-414	6	13
125	correction: Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. <i>Nature</i> , 2001 , 411, 824	50.4	12
124	Rising Temperature May Trigger Deep Soil Carbon Loss Across Forest Ecosystems. <i>Advanced Science</i> , 2020 , 7, 2001242	13.6	12
123	Biotic homogenization destabilizes ecosystem functioning by decreasing spatial asynchrony. <i>Ecology</i> , 2021 , 102, e03332	4.6	12
122	Trade-offs in juvenile growth potential vs. shade tolerance among subtropical rain forest trees on soils of contrasting fertility. <i>Functional Ecology</i> , 2016 , 30, 845-855	5.6	12
121	Neighborhood diversity simultaneously increased and decreased susceptibility to contrasting herbivores in an early stage forest diversity experiment. <i>Journal of Ecology</i> , 2019 , 107, 1492-1505	6	12
120	Surprising lack of sensitivity of biochemical limitation of photosynthesis of nine tree species to open-air experimental warming and reduced rainfall in a southern boreal forest. <i>Global Change Biology</i> , 2020 , 26, 746-759	11.4	12
119	Legumes regulate grassland soil N cycling and its response to variation in species diversity and N supply but not CO. <i>Global Change Biology</i> , 2019 , 25, 2396-2409	11.4	11
118	Uncertainty Quantified Matrix Completion Using Bayesian Hierarchical Matrix Factorization 2014,		11
117	Does the exception prove the rule? (Reply). <i>Nature</i> , 2007 , 445, E10-E11	50.4	11
116	An open-air system for exposing forest-canopy branches to ozone pollution. <i>Plant, Cell and Environment</i> , 1994 , 17, 211-218	8.4	11

115	Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs. <i>Nature Ecology and Evolution</i> , 2021 , 5, 1123-1134	12.3	11
114	Remote spectral detection of biodiversity effects on forest biomass. <i>Nature Ecology and Evolution</i> , 2021 , 5, 46-54	12.3	11
113	Experimentally testing the species-habitat size relationship on soil bacteria: A proof of concept. <i>Soil Biology and Biochemistry</i> , 2018 , 123, 200-206	7·5	11
112	Explaining ontogenetic shifts in root-shoot scaling with transient dynamics. <i>Annals of Botany</i> , 2014 , 114, 513-24	4.1	10
111	Becoming less tolerant with age: sugar maple, shade, and ontogeny. <i>Oecologia</i> , 2015 , 179, 1011-21	2.9	10
110	Needle CO2 exchange, structure and defense traits in relation to needle age in Pinus heldreichii Christ h relict of Tertiary flora. <i>Trees - Structure and Function</i> , 1997 , 12, 82-89	2.6	10
109	Geographic origin of Pinus sylvestris populations influences the effects of air pollution on flowering and growth. <i>Water, Air, and Soil Pollution</i> , 1992 , 62, 201-212	2.6	10
108	Oscillations in stomatal conductance of hybrid poplar leaves in the light and dark. <i>Physiologia Plantarum</i> , 1984 , 61, 541-548	4.6	10
107	Differential Above- and Below-ground Biomass Accumulation of European Pinus sylvestris Populations in a 12-year-old Provenance Experiment		10
106	Diversity-dependent soil acidification under nitrogen enrichment constrains biomass productivity. <i>Global Change Biology</i> , 2020 , 26, 6594-6603	11.4	10
105	Some plants like it warmer: Increased growth of three selected invasive plant species in soils with a history of experimental warming. <i>Pedobiologia</i> , 2014 , 57, 57-60	1.7	9
104	Effects of elevated CO on fine root biomass are reduced by aridity but enhanced by soil nitrogen: A global assessment. <i>Scientific Reports</i> , 2017 , 7, 15355	4.9	9
103	Further re-analyses looking for effects of phylogenetic diversity on community biomass and stability. <i>Functional Ecology</i> , 2015 , 29, 1607-1610	5.6	9
102	Elevated carbon dioxide is predicted to promote coexistence among competing species in a trait-based model. <i>Ecology and Evolution</i> , 2015 , 5, 4717-33	2.8	9
101	Diversity and stability in plant communities (Reply). <i>Nature</i> , 2007 , 446, E7-E8	50.4	9
100	Fire and Vegetation Effects on Productivity and Nitrogen Cycling across a Forest-Grassland Continuum. <i>Ecology</i> , 2001 , 82, 1703	4.6	9
99	Diversity-dependent plantBoil feedbacks underlie long-term plant diversity effects on primary productivity. <i>Ecosphere</i> , 2019 , 10, e02704	3.1	8
98	High plant species diversity indirectly mitigates CO2- and N-induced effects on grasshopper growth. <i>Acta Oecologica</i> , 2008 , 34, 194-201	1.7	8

97	A global scale mechanistic model of the photosynthetic capacity		8
96	Stimulation of soil respiration by elevated CO is enhanced under nitrogen limitation in a decade-long grassland study. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 33317-33324	11.5	8
95	Reduction in soybean yield after exposure to ozone and sulfur dioxide using a linear gradient exposure technique. <i>Water, Air, and Soil Pollution</i> , 1982 , 17, 29-36	2.6	8
94	Similar factors underlie tree abundance in forests in native and alien ranges. <i>Global Ecology and Biogeography</i> , 2020 , 29, 281-294	6.1	8
93	Consistent leaf respiratory response to experimental warming of three North American deciduous trees: a comparison across seasons, years, habitats and sites. <i>Tree Physiology</i> , 2017 , 37, 285-300	4.2	8
92	The three major axes of terrestrial ecosystem function. <i>Nature</i> , 2021 , 598, 468-472	50.4	8
91	Long-Term Nitrogen Addition Does Not Increase Soil Carbon Storage or Cycling Across Eight Temperate Forest and Grassland Sites on a Sandy Outwash Plain. <i>Ecosystems</i> , 2019 , 22, 1592-1605	3.9	7
90	Biodiversity bottleneck: seedling establishment under changing climatic conditions at the boreallemperate ecotone. <i>Plant Ecology</i> , 2018 , 219, 691-704	1.7	7
89	Vessel diameter and related hydraulic traits of 31 Eucalyptus species arrayed along a gradient of water availability. <i>Ecology</i> , 2016 , 97, 1626	4.6	7
88	Lost in trait space: species-poor communities are inflexible in properties that drive ecosystem functioning. <i>Advances in Ecological Research</i> , 2019 , 91-131	4.6	7
87	Temperature and leaf nitrogen affect performance of plant species at range overlap. <i>Ecosphere</i> , 2015 , 6, art186	3.1	7
86	Ontogenetic patterns of leaf CO2 exchange, morphology and chemistry in Betula pendula trees 2000 , 14, 271		7
85	Fine root classification matters: nutrient levels in different functional categories, orders and diameters of roots in boreal Pinus sylvestris across a latitudinal gradient. <i>Plant and Soil</i> , 2020 , 447, 507-	5 2 0	7
84	Microbial assimilation of new photosynthate is altered by plant species richness and nitrogen deposition. <i>Biogeochemistry</i> , 2009 , 94, 233-242	3.8	6
83	Biomass and toxicity responses of poison ivy (Toxicodendron radicans) to elevated atmospheric CO2: comment. <i>Ecology</i> , 2008 , 89, 581-5; discussion 585-7	4.6	6
82	Whole-plant CO2 exchange of seedlings of two Pinus sylvestris L. provenances grown under simulated photoperiodic conditions of 50°1 and 60°1 N. <i>Trees - Structure and Function</i> , 1992 , 6, 225	2.6	6
81	The number of tree species on Earth <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119,	11.5	6
8o	Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation Nature Ecology and Evolution, 2021,	12.3	6

79	Fire in upper Midwestern oak forest ecosystems: an oak forest restoration and management handbook 2015 ,		6
78	Microbial functional genes commonly respond to elevated carbon dioxide. <i>Environment International</i> , 2020 , 144, 106068	12.9	6
77	Earthworm invasion into previously earthworm-free temperate and boreal forests 2006, 35-45		6
76	Testing Darwin naturalization conundrum based on taxonomic, phylogenetic, and functional dimensions of vascular plants. <i>Ecological Monographs</i> , 2020 , 90, e01420	9	5
75	No evidence of homeostatic regulation of leaf temperature in Eucalyptus parramattensis trees: integration of CO flux and oxygen isotope methodologies. <i>New Phytologist</i> , 2020 , 228, 1511-1523	9.8	5
74	Does root respiration in Australian rainforest tree seedlings acclimate to experimental warming?. <i>Tree Physiology</i> , 2020 , 40, 1192-1204	4.2	5
73	Phenology matters: Extended spring and autumn canopy cover increases biotic resistance of forests to invasion by common buckthorn (Rhamnus cathartica). <i>Forest Ecology and Management</i> , 2020 , 464, 118067	3.9	5
72	Size-related shifts in carbon gain and growth responses to light differ among rainforest evergreens of contrasting shade tolerance. <i>Oecologia</i> , 2018 , 187, 609-623	2.9	5
71	A tale of two studies: Detection and attribution of the impacts of invasive plants in observational surveys. <i>Journal of Applied Ecology</i> , 2018 , 55, 1780-1789	5.8	5
70	Reply to Fisher: Nitrogen-albedo relationship in forests remains robust and thought-provoking. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, E17-E17	11.5	5
69	Living on the edge: Ecology of an incipient Betula-fungal community growing on brick walls. <i>Trees - Structure and Function</i> , 2007 , 21, 239-247	2.6	5
68	Biodiversity promotes ecosystem functioning despite environmental change. <i>Ecology Letters</i> , 2021 ,	10	5
67	Interaction of elevated CO2 and O3 on growth, photosynthesis and respiration of three perennial species grown in low and high nitrogen. <i>Physiologia Plantarum</i> , 1996 , 97, 674-684	4.6	5
66	Temporal variability in production is not consistently affected by global change drivers across herbaceous-dominated ecosystems. <i>Oecologia</i> , 2020 , 194, 735-744	2.9	5
65	Disease and fire interact to influence transitions between savanna-forest ecosystems over a multi-decadal experiment. <i>Ecology Letters</i> , 2021 , 24, 1007-1017	10	5
64	Response to Comment on "Unexpected reversal of C versus C grass response to elevated CO during a 20-year field experiment". <i>Science</i> , 2018 , 361,	33.3	5
63	Springtail community structure is influenced by functional traits but not biogeographic origin of leaf litter in soils of novel forest ecosystems. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2018 , 285,	4.4	5
62	Evidence, causes, and consequences of declining nitrogen availability in terrestrial ecosystems <i>Science</i> , 2022 , 376, eabh3767	33.3	5

61	Warming and disturbance alter soil microbiome diversity and function in a northern forest ecotone. <i>FEMS Microbiology Ecology</i> , 2020 , 96,	4.3	4
60	Interactive effects of elevated CO, warming, reduced rainfall, and nitrogen on leaf gas exchange in five perennial grassland species. <i>Plant, Cell and Environment</i> , 2020 , 43, 1862-1878	8.4	4
59	Intraspecies variation in a widely distributed tree species regulates the responses of soil microbiome to different temperature regimes. <i>Environmental Microbiology Reports</i> , 2018 , 10, 167-178	3.7	4
58	Do plants increase resource acquisition potential in the face of resource shortfalls, and if so, how?. <i>New Phytologist</i> , 2018 , 219, 1142-1144	9.8	4
57	Impacts of trait variation through observed trait-climate relationships on performance of a representative Earth System model: a conceptual analysis 2012 ,		4
56	Field data to benchmark the carbon-cycle models for tropical forests		4
55	Sensitivity of grassland carbon pools to plant diversity, elevated CO, and soil nitrogen addition over 19 years. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	4
54	Seven Ways a Warming Climate Can Kill the Southern Boreal Forest. <i>Forests</i> , 2021 , 12, 560	2.8	4
53	Reply to Adams et al.: Empirical versus process-based approaches to modeling temperature responses of leaf respiration. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E5996-E5997	11.5	4
52	Short- and long-term responses of photosynthetic capacity to temperature in four boreal tree species in a free-air warming and rainfall manipulation experiment. <i>Tree Physiology</i> , 2021 , 41, 89-102	4.2	4
51	Response to Comment on "Mycorrhizal association as a primary control of the CO2 fertilization effect". <i>Science</i> , 2017 , 355, 358	33.3	3
50	Effects of soil warming history on the performances of congeneric temperate and boreal herbaceous plant species and their associations with soil biota. <i>Journal of Plant Ecology</i> , 2016 , rtw066	1.7	3
49	Amur maple (Acer ginnala): an emerging invasive plant in North America. <i>Biological Invasions</i> , 2018 , 20, 2997-3007	2.7	3
48	Response to Comment on "Unexpected reversal of C versus C grass response to elevated CO during a 20-year field experiment". <i>Science</i> , 2018 , 361,	33.3	3
47	Invasive plants in Minnesota are Joining the locals IA trait-based analysis. <i>Journal of Vegetation Science</i> , 2018 , 29, 746-755	3.1	3
46	Zanne et al. reply. <i>Nature</i> , 2015 , 521, E6-7	50.4	3
45	Accelerating a Silvicultural Metamorphosis?A Critique of Silviculture: Managing for Complexity. Klaus J. Puettmann , Christian Messier , and K. David Coates . Island Press, 2008. 206 pp., illus. \$30.00 (ISBN 9781597261463 paper) <i>BioScience</i> , 2009 , 59, 807-809	5.7	3
44	Variation in response of five identical steady-state porometers1. <i>Plant, Cell and Environment</i> , 1988 , 11, 785-786	8.4	3

43	Climate-Biome Envelope Shifts Create Enormous Challenges and Novel Opportunities for Conservation. <i>Forests</i> , 2020 , 11, 1015	2.8	3
42	Evolutionary patterns in the geographic range size of Atlantic Forest plants. <i>Ecography</i> , 2020 , 43, 1510-	1 6 . 3 0	3
41	Determinants of community compositional change are equally affected by global change. <i>Ecology Letters</i> , 2021 , 24, 1892-1904	10	3
40	Forest value: More than commercial-Response. <i>Science</i> , 2016 , 354, 1541-1542	33.3	3
39	Enhanced light interception and light use efficiency explain overyielding in young tree communities. <i>Ecology Letters</i> , 2021 , 24, 996-1006	10	3
38	Tree species diversity enhances plant-soil interactions in a temperate forest in northeast China. Forest Ecology and Management, 2021 , 491, 119160	3.9	3
37	Assessing environmental changes in grasslands. <i>Science</i> , 2003 , 299, 1844-5; author reply 1844-5	33.3	2
36	Leaf to Landscape. <i>Ecological Studies</i> , 2004 , 207-227	1.1	2
35	Contrasting responses of woody and grassland ecosystems to increased CO as water supply varies <i>Nature Ecology and Evolution</i> , 2022 ,	12.3	2
34	Grand challenges in biodiversity-ecosystem functioning research in the era of science-policy platforms require explicit consideration of feedbacks. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2021 , 288, 20210783	4.4	2
33	Plant Biodiversity and Responses to Elevated Carbon Dioxide. <i>Global Change - the IGBP Series</i> , 2007 , 103	3-112	2
32	Global Root Traits (GRooT) Database		2
31	Coppicing affects growth, root:shoot relations and ecophysiology of potted Quercus rubra seedlings. <i>Physiologia Plantarum</i> , 1993 , 89, 751-760	4.6	2
30	Increased light availability due to forestry mowing of invasive European buckthorn promotes its regeneration. <i>Restoration Ecology</i> , 2020 , 28, 475-482	3.1	2
29	A fingerprint of climate change across pine forests of Sweden. <i>Ecology Letters</i> , 2020 , 23, 1739-1746	10	2
28	Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4.2) using plant trait information 2016 ,		2
27	A graphical null model for scaling biodiversity (cosystem functioning relationships. <i>Journal of Ecology</i> , 2021 , 109, 1549-1560	6	2
26	Remarkable Similarity in Timing of Absorptive Fine-Root Production Across 11 Diverse Temperate Tree Species in a Common Garden. <i>Frontiers in Plant Science</i> , 2020 , 11, 623722	6.2	2

25	BII-Implementation: The causes and consequences of plant biodiversity across scales in a rapidly changing world. <i>Research Ideas and Outcomes</i> ,7,	2.5	2
24	Projected impacts of climate and land use changes on the habitat of Atlantic Forest plants in Brazil. <i>Global Ecology and Biogeography</i> , 2021 , 30, 2016-2028	6.1	2
23	INFLUENCE OF LOGGING, FIRE, AND FOREST TYPE ON BIODIVERSITY AND PRODUCTIVITY IN SOUTHERN BOREAL FORESTS 2001 , 82, 2731		1
22	Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function. <i>Global Change Biology</i> , 2007 , 070621084512038-???	11.4	1
21	The results of biodiversity-ecosystem functioning experiments are realistic		1
20	Biotic and abiotic drivers of soil microbial functions across tree diversity experiments		1
19	Top-down and bottom-up controls on soil carbon and nitrogen cycling with repeated burning across four ecosystems		1
18	Testing Darwin naturalization conundrum based on taxonomic, phylogenetic and functional dimensions of vascular plants		1
17	Improving collaborations between empiricists and modelers to advance grassland community dynamics in ecosystem models. <i>New Phytologist</i> , 2020 , 228, 1467-1471	9.8	1
16	Seeing the Canopy for the Branches: Improved Within Canopy Scaling of Leaf Nitrogen. <i>Journal of Advances in Modeling Earth Systems</i> , 2020 , 12, e2020MS002237	7.1	1
15	Assessing the relevant time frame for temperature acclimation of leaf dark respiration: A test with 10 boreal and temperate species. <i>Global Change Biology</i> , 2021 , 27, 2945-2958	11.4	1
14	Species-specific flowering phenology responses to experimental warming and drought alter herbaceous plant species overlap in a temperate-boreal forest community. <i>Annals of Botany</i> , 2021 , 127, 203-211	4.1	1
13	Promise and pitfalls of modeling grassland soil moisture in a free-air CO2 enrichment experiment (BioCON) using the SHAW model. <i>Pedosphere</i> , 2021 , 31, 783-795	5	1
12	Fosamine ammonium impacts on the targeted invasive shrub Rhamnus cathartica and non-target herbs. <i>Invasive Plant Science and Management</i> , 2020 , 13, 210-215	1	O
11	Response to comment on "Climate legacies drive global soil carbon stocks in terrestrial ecosystem". <i>Science Advances</i> , 2018 , 4, eaat1296	14.3	O
10	Century-scale wood nitrogen isotope trajectories from an oak savanna with variable fire frequencies. <i>Biogeosciences</i> , 2020 , 17, 4509-4522	4.6	O
9	An alternative, portable method for extracting microarthropods from forest soil. <i>Acta Oecologica</i> , 2020 , 109, 103655	1.7	0
8	Exotics are more complementary over time in tree biodiversity acosystem functioning experiments. Functional Ecology, 2021, 35, 2550	5.6	О

7	Phenological niche overlap between invasive buckthorn (Rhamnus cathartica) and native woody species. <i>Forest Ecology and Management</i> , 2021 , 498, 119568	3.9	О
6	Tree diversity effects on soil microbial biomass and respiration are context dependent across forest diversity experiments. <i>Global Ecology and Biogeography</i> , 2022 , 31, 872-885	6.1	O
5	A reply to Jarchow and Liebman. Frontiers in Ecology and the Environment, 2011, 9, 262-263	5.5	
4	Sources of variation in porometry data. <i>Plant, Cell and Environment</i> , 1990 , 13, 879-879	8.4	
3	Industrial Pollutants Tend to Increase Genetic Diversity: Evidence from Field-Grown European Scots Pine Populations 1999 , 395-402		
2	Updated respiration routines alter spatio-temporal patterns of carbon cycling in a global land surface model. <i>Environmental Research Letters</i> , 2021 , 16, 104015	6.2	
1	Seedbed and moisture availability determine safe sites for early Thuja occidentalis (Cupressaceae)	2.7	