
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9300040/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The worldwide leaf economics spectrum. Nature, 2004, 428, 821-827.                                                                                                                         | 27.8 | 6,489     |
| 2  | A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 2003, 51, 335.                                           | 0.6  | 3,071     |
| 3  | New handbook for standardised measurement of plant functional traits worldwide. Australian<br>Journal of Botany, 2013, 61, 167.                                                            | 0.6  | 2,818     |
| 4  | The Influence of Functional Diversity and Composition on Ecosystem Processes. Science, 1997, 277, 1300-1302.                                                                               | 12.6 | 2,414     |
| 5  | The worldâ€wide â€~fast–slow' plant economics spectrum: a traits manifesto. Journal of Ecology, 2014,<br>102, 275-301.                                                                     | 4.0  | 2,379     |
| 6  | The global spectrum of plant form and function. Nature, 2016, 529, 167-171.                                                                                                                | 27.8 | 2,022     |
| 7  | Biomass allocation to leaves, stems and roots: metaâ€analyses of interspecific variation and environmental control. New Phytologist, 2012, 193, 30-50.                                     | 7.3  | 2,012     |
| 8  | TRY – a global database of plant traits. Global Change Biology, 2011, 17, 2905-2935.                                                                                                       | 9.5  | 2,002     |
| 9  | From tropics to tundra: Global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 13730-13734.                   | 7.1  | 1,979     |
| 10 | Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 2008, 11, 1065-1071.                                              | 6.4  | 1,913     |
| 11 | Diversity and Productivity in a Long-Term Grassland Experiment. Science, 2001, 294, 843-845.                                                                                               | 12.6 | 1,873     |
| 12 | Assessing the generality of global leaf trait relationships. New Phytologist, 2005, 166, 485-496.                                                                                          | 7.3  | 1,704     |
| 13 | Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature, 2006, 441, 629-632.                                                                                    | 27.8 | 1,668     |
| 14 | Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the<br>National Academy of Sciences of the United States of America, 2004, 101, 11001-11006. | 7.1  | 1,544     |
| 15 | Leaf Life‧pan in Relation to Leaf, Plant, and Stand Characteristics among Diverse Ecosystems.<br>Ecological Monographs, 1992, 62, 365-392.                                                 | 5.4  | 1,385     |
| 16 | Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 2016,<br>7, 10541.                                                                         | 12.8 | 1,365     |
| 17 | Three keys to the radiation of angiosperms into freezing environments. Nature, 2014, 506, 89-92.                                                                                           | 27.8 | 1,284     |
| 18 | High plant diversity is needed to maintain ecosystem services. Nature, 2011, 477, 199-202.                                                                                                 | 27.8 | 1,195     |

| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | GENERALITY OF LEAF TRAIT RELATIONSHIPS: A TEST ACROSS SIX BIOMES. Ecology, 1999, 80, 1955-1969.                                                                                                         | 3.2  | 1,091     |
| 20 | TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.                                                                                                 | 9.5  | 1,038     |
| 21 | Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 2015, 526, 574-577.                                                                                        | 27.8 | 1,032     |
| 22 | Biodiversity as a barrier to ecological invasion. Nature, 2002, 417, 636-638.                                                                                                                           | 27.8 | 935       |
| 23 | Quantifying global soil carbon losses in response to warming. Nature, 2016, 540, 104-108.                                                                                                               | 27.8 | 879       |
| 24 | Positive biodiversity-productivity relationship predominant in global forests. Science, 2016, 354, .                                                                                                    | 12.6 | 864       |
| 25 | Functional traits and the growth–mortality tradeâ€off in tropical trees. Ecology, 2010, 91, 3664-3674.                                                                                                  | 3.2  | 788       |
| 26 | Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature, 2006, 440, 922-925.                                                                                                 | 27.8 | 780       |
| 27 | A global study of relationships between leaf traits, climate and soil measures of nutrient fertility.<br>Global Ecology and Biogeography, 2009, 18, 137-149.                                            | 5.8  | 767       |
| 28 | Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi,<br>foliar nutrient concentrations, and nitrogen availability. New Phytologist, 2009, 183, 980-992. | 7.3  | 744       |
| 29 | Effects of plant species richness on invasion dynamics, disease outbreaks, insect abundances and diversity. Ecology Letters, 1999, 2, 286-293.                                                          | 6.4  | 723       |
| 30 | Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia, 1993, 96, 169-178.                                                                   | 2.0  | 685       |
| 31 | Impacts of Biodiversity Loss Escalate Through Time as Redundancy Fades. Science, 2012, 336, 589-592.                                                                                                    | 12.6 | 672       |
| 32 | Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography, 2005, 14, 411-421.                                                                              | 5.8  | 669       |
| 33 | Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-nutrient habitats. Functional Ecology, 2001, 15, 423-434.                                           | 3.6  | 648       |
| 34 | Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species.<br>Ecology Letters, 2005, 8, 811-818.                                                                | 6.4  | 586       |
| 35 | Forest productivity increases with evenness, species richness and trait variation: a global<br>metaâ€analysis. Journal of Ecology, 2012, 100, 742-749.                                                  | 4.0  | 585       |
| 36 | Global climatic drivers of leaf size. Science, 2017, 357, 917-921.                                                                                                                                      | 12.6 | 580       |

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Quantifying plant response to ozone: a unifying theory. Tree Physiology, 1987, 3, 63-91.                                                                                                                               | 3.1  | 557       |
| 38 | Leaf lifespan as a determinant of leaf structure and function among 23 amazonian tree species.<br>Oecologia, 1991, 86, 16-24.                                                                                          | 2.0  | 546       |
| 39 | Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology and Evolution, 2020, 4, 210-220.                                                                                        | 7.8  | 543       |
| 40 | The emergence and promise of functional biogeography. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13690-13696.                                                         | 7.1  | 525       |
| 41 | Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature, 2001, 410, 809-810.                                                                                                      | 27.8 | 517       |
| 42 | Soil microbes drive the classic plant diversity–productivity pattern. Ecology, 2011, 92, 296-303.                                                                                                                      | 3.2  | 517       |
| 43 | Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science, 2015, 348, 336-340.                                                                                                          | 12.6 | 516       |
| 44 | Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity.<br>Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11911-11916.                 | 7.1  | 511       |
| 45 | Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature, 2006, 439, 457-461.                                                                                                                  | 27.8 | 484       |
| 46 | TREE SPECIES EFFECTS ON DECOMPOSITION AND FOREST FLOOR DYNAMICS IN A COMMON GARDEN.<br>Ecology, 2006, 87, 2288-2297.                                                                                                   | 3.2  | 482       |
| 47 | Leaf structure (specific leaf area) modulates photosynthesis-nitrogen relations: evidence from within and across species and functional groups. Functional Ecology, 1998, 12, 948-958.                                 | 3.6  | 479       |
| 48 | Modelling respiration of vegetation: evidence for a general temperature-dependent Q 10. Global Change Biology, 2001, 7, 223-230.                                                                                       | 9.5  | 461       |
| 49 | Ambient Levels of Ozone Reduce Net Photosynthesis in Tree and Crop Species. Science, 1985, 230, 566-570.                                                                                                               | 12.6 | 454       |
| 50 | Plant functional trait change across a warming tundra biome. Nature, 2018, 562, 57-62.                                                                                                                                 | 27.8 | 451       |
| 51 | Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test<br>across biomes and functional groups. Oecologia, 1998, 114, 471-482.                                          | 2.0  | 441       |
| 52 | Shifting plant species composition in response to climate change stabilizes grassland primary<br>production. Proceedings of the National Academy of Sciences of the United States of America, 2018,<br>115, 4051-4056. | 7.1  | 431       |
| 53 | Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen<br>concentration in nine boreal tree species differing in relative growth rate. Functional Ecology, 1998,<br>12, 395-405.         | 3.6  | 430       |
| 54 | NITROGEN MINERALIZATION AND PRODUCTIVITY IN 50 HARDWOOD AND CONIFER STANDS ON DIVERSE SOILS. Ecology, 1997, 78, 335-347.                                                                                               | 3.2  | 429       |

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | FUNDAMENTAL TRADE-OFFS GENERATING THE WORLDWIDE LEAF ECONOMICS SPECTRUM. Ecology, 2006, 87, 535-541.                                                                                                                          | 3.2  | 422       |
| 56 | Water Stress and Tree Phenology in a Tropical Dry Forest in the Lowlands of Costa Rica. Journal of Ecology, 1984, 72, 61.                                                                                                     | 4.0  | 413       |
| 57 | Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytologist, 2005, 167, 493-508.                                                                                                           | 7.3  | 413       |
| 58 | Different photosynthesis-nitrogen relations in deciduous hardwood and evergreen coniferous tree species. Oecologia, 1995, 104, 24-30.                                                                                         | 2.0  | 409       |
| 59 | Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecology Letters, 2011, 14, 788-796.                                             | 6.4  | 406       |
| 60 | Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory.<br>Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10394-10397.                      | 7.1  | 400       |
| 61 | Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light. Functional Ecology, 1998, 12, 327-338.                                | 3.6  | 397       |
| 62 | Global trait–environment relationships of plant communities. Nature Ecology and Evolution, 2018, 2,<br>1906-1917.                                                                                                             | 7.8  | 397       |
| 63 | COMPARISONS OF STRUCTURE AND LIFE SPAN IN ROOTS AND LEAVES AMONG TEMPERATE TREES.<br>Ecological Monographs, 2006, 76, 381-397.                                                                                                | 5.4  | 377       |
| 64 | From selection to complementarity: shifts in the causes of biodiversity–productivity relationships in<br>a long-term biodiversity experiment. Proceedings of the Royal Society B: Biological Sciences, 2007, 274,<br>871-876. | 2.6  | 375       |
| 65 | Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecology Letters, 2008, 11, 793-801.                                                                                                      | 6.4  | 373       |
| 66 | Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 2019, 569, 404-408.                                                                                                        | 27.8 | 371       |
| 67 | Carbon-Nitrogen Interactions in Terrestrial Ecosystems in Response to Rising Atmospheric Carbon<br>Dioxide. Annual Review of Ecology, Evolution, and Systematics, 2006, 37, 611-636.                                          | 8.3  | 366       |
| 68 | Global Leaf Trait Relationships: Mass, Area, and the Leaf Economics Spectrum. Science, 2013, 340,<br>741-744.                                                                                                                 | 12.6 | 361       |
| 69 | Low-light carbon balance and shade tolerance in the seedlings of woody plants: do winter deciduous and broad-leaved evergreen species differ?. New Phytologist, 1999, 143, 143-154.                                           | 7.3  | 354       |
| 70 | Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New<br>Phytologist, 2015, 206, 614-636.                                                                                | 7.3  | 350       |
| 71 | Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Functional Plant Biology, 2009, 36, 199.                                             | 2.1  | 348       |
| 72 | Reinforcing loose foundation stones in trait-based plant ecology. Oecologia, 2016, 180, 923-931.                                                                                                                              | 2.0  | 335       |

| #  | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Convergence towards higher leaf mass per area in dry and nutrientâ€poor habitats has different<br>consequences for leaf life span. Journal of Ecology, 2002, 90, 534-543.                                                                              | 4.0  | 334       |
| 74 | PRESCRIBED FIRE IN OAK SAVANNA: FIRE FREQUENCY EFFECTS ON STAND STRUCTURE AND DYNAMICS. , 2001, 11, 914-927.                                                                                                                                           |      | 333       |
| 75 | Functional traits, productivity and effects on nitrogen cycling of 33 grassland species. Functional Ecology, 2002, 16, 563-574.                                                                                                                        | 3.6  | 331       |
| 76 | A global method for calculating plant <scp>CSR</scp> ecological strategies applied across biomes worldâ€wide. Functional Ecology, 2017, 31, 444-457.                                                                                                   | 3.6  | 330       |
| 77 | Are Shade Tolerance, Survival, and Growth Linked? Low Light and Nitrogen Effects on Hardwood Seedlings. Ecology, 1996, 77, 841-853.                                                                                                                    | 3.2  | 327       |
| 78 | Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: Functional<br>relations and potential climate feedbacks. Proceedings of the National Academy of Sciences of the<br>United States of America, 2008, 105, 19336-19341. | 7.1  | 326       |
| 79 | Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity.<br>Nature, 2018, 553, 194-198.                                                                                                                           | 27.8 | 325       |
| 80 | Which is a better predictor of plant traits: temperature or precipitation?. Journal of Vegetation Science, 2014, 25, 1167-1180.                                                                                                                        | 2.2  | 323       |
| 81 | Spatial Patterns and Succession in a Minnesota Southernâ€Boreal Forest. Ecological Monographs, 1995, 65, 325-346.                                                                                                                                      | 5.4  | 321       |
| 82 | Phenology of tropical forests: patterns, causes, and consequences. Canadian Journal of Botany, 1995,<br>73, 164-174.                                                                                                                                   | 1.1  | 309       |
| 83 | Species Richness and the Temporal Stability of Biomass Production: A New Analysis of Recent<br>Biodiversity Experiments. American Naturalist, 2014, 183, 1-12.                                                                                         | 2.1  | 309       |
| 84 | Temperature response of soil respiration largely unaltered with experimental warming. Proceedings of the United States of America, 2016, 113, 13797-13802.                                                                                             | 7.1  | 308       |
| 85 | Multiple facets of biodiversity drive the diversity–stability relationship. Nature Ecology and Evolution, 2018, 2, 1579-1587.                                                                                                                          | 7.8  | 296       |
| 86 | Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences, 2012, 9, 3547-3569.                                                                                    | 3.3  | 295       |
| 87 | Growth and physiology of Picea abies populations from elevational transects: common garden evidence for altitudinal ecotypes and cold adaptation. Functional Ecology, 1998, 12, 573-590.                                                               | 3.6  | 291       |
| 88 | BioTIME: A database of biodiversity time series for the Anthropocene. Global Ecology and Biogeography, 2018, 27, 760-786.                                                                                                                              | 5.8  | 289       |
| 89 | Spatial complementarity in tree crowns explains overyielding in species mixtures. Nature Ecology and Evolution, 2017, 1, 63.                                                                                                                           | 7.8  | 285       |
| 90 | Competition between tree seedlings and herbaceous vegetation: support for a theory of resource supply and demand. Journal of Ecology, 1998, 86, 652-661.                                                                                               | 4.0  | 283       |

| #   | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Mean mass-specific metabolic rates are strikingly similar across life's major domains: Evidence for<br>life's metabolic optimum. Proceedings of the National Academy of Sciences of the United States of<br>America, 2008, 105, 16994-16999. | 7.1  | 276       |
| 92  | Leaf phosphorus influences the photosynthesis–nitrogen relation: a cross-biome analysis of 314 species. Oecologia, 2009, 160, 207-212.                                                                                                       | 2.0  | 274       |
| 93  | Erosion reduces soil microbial diversity, network complexity and multifunctionality. ISME Journal, 2021, 15, 2474-2489.                                                                                                                      | 9.8  | 273       |
| 94  | Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nature Climate<br>Change, 2019, 9, 684-689.                                                                                                                 | 18.8 | 269       |
| 95  | A trade-off between plant and soil carbon storage under elevated CO2. Nature, 2021, 591, 599-603.                                                                                                                                            | 27.8 | 268       |
| 96  | Extrapolating leaf CO2 exchange to the canopy: a generalized model of forest photosynthesis compared with measurements by eddy correlation. Oecologia, 1996, 106, 257-265.                                                                   | 2.0  | 266       |
| 97  | Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert. Global Change Biology, 2004, 10, 2121-2138.                        | 9.5  | 265       |
| 98  | Convergence and correlations among leaf size and function in seed plants: a comparative test using independent contrasts. American Journal of Botany, 1999, 86, 1272-1281.                                                                   | 1.7  | 262       |
| 99  | Leaf age and season influence the relationships between leaf nitrogen, leaf mass per area and photosynthesis in maple and oak trees. Plant, Cell and Environment, 1991, 14, 251-259.                                                         | 5.7  | 255       |
| 100 | Global effects of soil and climate on leaf photosynthetic traits and rates. Global Ecology and Biogeography, 2015, 24, 706-717.                                                                                                              | 5.8  | 254       |
| 101 | Leastâ€Cost Input Mixtures of Water and Nitrogen for Photosynthesis. American Naturalist, 2003, 161,<br>98-111.                                                                                                                              | 2.1  | 252       |
| 102 | Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO <sub>2</sub> . Ecology Letters, 2010, 13, 564-575.                                                                     | 6.4  | 252       |
| 103 | Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nature<br>Geoscience, 2014, 7, 920-924.                                                                                                          | 12.9 | 251       |
| 104 | Earthworm invasion into previously earthworm-free temperate and boreal forests. Biological<br>Invasions, 2006, 8, 1235-1245.                                                                                                                 | 2.4  | 250       |
| 105 | Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots.<br>Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13721-13726.                                   | 7.1  | 249       |
| 106 | Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature, 2018, 562, 263-267.                                                                                                                     | 27.8 | 248       |
| 107 | Leaf Mass Per Area, Nitrogen Content and Photosynthetic Carbon Gain in Acer saccharum Seedlings in<br>Contrasting Forest Light Environments. Functional Ecology, 1992, 6, 423.                                                               | 3.6  | 245       |
| 108 | Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Science Advances, 2019, 5, eaaz1834.                                                                             | 10.3 | 245       |

| #   | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Effects of elevated CO2 , nitrogen deposition, and decreased species diversity on foliar fungal plant disease. Global Change Biology, 2003, 9, 438-451.                                                                           | 9.5 | 243       |
| 110 | It is elemental: soil nutrient stoichiometry drives bacterial diversity. Environmental Microbiology, 2017, 19, 1176-1188.                                                                                                         | 3.8 | 242       |
| 111 | Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Global Change Biology, 2018, 24, 2390-2402.                                                                        | 9.5 | 242       |
| 112 | Extinction risk and threats to plants and fungi. Plants People Planet, 2020, 2, 389-408.                                                                                                                                          | 3.3 | 242       |
| 113 | Do species and functional groups differ in acquisition and use of C, N and water under varying atmospheric CO2 and N availability regimes? A field test with 16 grassland species. New Phytologist, 2001, 150, 435-448.           | 7.3 | 240       |
| 114 | How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytologist, 2015, 208, 736-749.                                                            | 7.3 | 239       |
| 115 | Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function. Global Change Biology, 2007, 13, 980-989.                                                      | 9.5 | 238       |
| 116 | Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science. Frontiers in Ecology and the Environment, 2013, 11, 147-155.                                            | 4.0 | 237       |
| 117 | Photosynthesis-nitrogen relations in Amazonian tree species. Oecologia, 1994, 97, 62-72.                                                                                                                                          | 2.0 | 236       |
| 118 | Conventional functional classification schemes underestimate the relationship with ecosystem functioning. Ecology Letters, 2006, 9, 111-120.                                                                                      | 6.4 | 236       |
| 119 | Title is missing!. Plant Ecology, 1999, 145, 341-350.                                                                                                                                                                             | 1.6 | 235       |
| 120 | The biogeography and filtering of woody plant functional diversity in North and South America.<br>Global Ecology and Biogeography, 2012, 21, 798-808.                                                                             | 5.8 | 235       |
| 121 | Climate, soil and plant functional types as drivers of global fineâ€root trait variation. Journal of Ecology, 2017, 105, 1182-1196.                                                                                               | 4.0 | 234       |
| 122 | Species and functional group diversity independently influence biomass accumulation and its<br>response to CO2 and N. Proceedings of the National Academy of Sciences of the United States of<br>America, 2004, 101, 10101-10106. | 7.1 | 233       |
| 123 | Global change belowground: impacts of elevated <scp><scp>CO<sub>2</sub></scp></scp> , nitrogen,<br>and summer drought on soil food webs and biodiversity. Global Change Biology, 2012, 18, 435-447.                               | 9.5 | 233       |
| 124 | Fine root decomposition rates do not mirror those of leaf litter among temperate tree species.<br>Oecologia, 2010, 162, 505-513.                                                                                                  | 2.0 | 229       |
| 125 | Growth, biomass distribution and CO2 exchange of northern hardwood seedlings in high and low<br>light: relationships with successional status and shade tolerance. Oecologia, 1993, 94, 7-16.                                     | 2.0 | 225       |
| 126 | SEED SIZE, NITROGEN SUPPLY, AND GROWTH RATE AFFECT TREE SEEDLING SURVIVAL IN DEEP SHADE.<br>Ecology, 2000, 81, 1887-1901.                                                                                                         | 3.2 | 222       |

| #   | Article                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Ectomycorrhizal fungal communities at forest edges. Journal of Ecology, 2005, 93, 244-255.                                                                                                                                                                          | 4.0  | 219       |
| 128 | Evolutionarily Stable Strategy Carbon Allocation to Foliage, Wood, and Fine Roots in Trees Competing<br>for Light and Nitrogen: An Analytically Tractable, Individual-Based Model and Quantitative<br>Comparisons to Data. American Naturalist, 2011, 177, 153-166. | 2.1  | 218       |
| 129 | The fate of carbon in a mature forest under carbon dioxide enrichment. Nature, 2020, 580, 227-231.                                                                                                                                                                  | 27.8 | 218       |
| 130 | Longâ€ŧerm increase in nitrogen supply alters above―and belowâ€ground ectomycorrhizal communities<br>and increases the dominance of Russula spp. in a temperate oak savanna. New Phytologist, 2003, 160,<br>239-253.                                                | 7.3  | 216       |
| 131 | Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecology Letters, 2005, 8, 636-642.                                                                                                                                                          | 6.4  | 215       |
| 132 | Acclimation of respiration to temperature and CO 2 in seedlings of boreal tree species in relation to plant size and relative growth rate. Global Change Biology, 1999, 5, 679-691.                                                                                 | 9.5  | 214       |
| 133 | Thermal limits of leaf metabolism across biomes. Global Change Biology, 2017, 23, 209-223.                                                                                                                                                                          | 9.5  | 213       |
| 134 | Boreal and temperate trees show strong acclimation of respiration to warming. Nature, 2016, 531, 633-636.                                                                                                                                                           | 27.8 | 212       |
| 135 | Unexpected reversal of C <sub>3</sub> versus C <sub>4</sub> grass response to elevated CO<br><sub>2</sub> during a 20-year field experiment. Science, 2018, 360, 317-320.                                                                                           | 12.6 | 212       |
| 136 | Climate warming will reduce growth and survival of Scots pine except in the far north. Ecology<br>Letters, 2008, 11, 588-597.                                                                                                                                       | 6.4  | 210       |
| 137 | PREDICTING LEAF PHYSIOLOGY FROM SIMPLE PLANT AND CLIMATE ATTRIBUTES: A GLOBAL GLOPNET ANALYSIS. Ecological Applications, 2007, 17, 1982-1988.                                                                                                                       | 3.8  | 207       |
| 138 | FIRE AND VEGETATION EFFECTS ON PRODUCTIVITY AND NITROGEN CYCLING ACROSS A FOREST–GRASSLAND CONTINUUM. Ecology, 2001, 82, 1703-1719.                                                                                                                                 | 3.2  | 206       |
| 139 | Effects of European Earthworm Invasion on Soil Characteristics in Northern Hardwood Forests of<br>Minnesota, USA. Ecosystems, 2005, 8, 911-927.                                                                                                                     | 3.4  | 206       |
| 140 | Interactive effects of nitrogen deposition, tropospheric ozone, elevated CO2 and land use history on the carbon dynamics of northern hardwood forests. Global Change Biology, 2002, 8, 545-562.                                                                     | 9.5  | 205       |
| 141 | Plant diversity effects on soil food webs are stronger than those of elevated CO <sub>2</sub> and N deposition in a long-term grassland experiment. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6889-6894.          | 7.1  | 204       |
| 142 | Contributions of a global network of tree diversity experiments to sustainable forest plantations.<br>Ambio, 2016, 45, 29-41.                                                                                                                                       | 5.5  | 203       |
| 143 | Decade-long soil nitrogen constraint on the CO2 fertilization of plant biomass. Nature Climate Change, 2013, 3, 278-282.                                                                                                                                            | 18.8 | 202       |
| 144 | Effects of Low Concentrations of O <sub>3</sub> on Net Photosynthesis, Dark Respiration, and Chlorophyll Contents in Aging Hybrid Poplar Leaves. Plant Physiology, 1983, 73, 291-296.                                                                               | 4.8  | 201       |

| #   | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | CHANGES IN HARDWOOD FOREST UNDERSTORY PLANT COMMUNITIES IN RESPONSE TO EUROPEAN EARTHWORM INVASIONS. Ecology, 2006, 87, 1637-1649.                                                                                      | 3.2  | 201       |
| 146 | Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus. Nature<br>Communications, 2011, 2, 344.                                                                                                   | 12.8 | 201       |
| 147 | Ecophysiology of exotic and native shrubs in Southern Wisconsin. Oecologia, 1989, 80, 356-367.                                                                                                                          | 2.0  | 198       |
| 148 | Convergence in the temperature response of leaf respiration across biomes and plant functional types. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3832-3837.            | 7.1  | 198       |
| 149 | Elevated CO2 does not increase eucalypt forest productivity on a low-phosphorus soil. Nature<br>Climate Change, 2017, 7, 279-282.                                                                                       | 18.8 | 198       |
| 150 | Tree Species Effects on Soil Organic Matter Dynamics: The Role of Soil Cation Composition.<br>Ecosystems, 2007, 10, 999-1018.                                                                                           | 3.4  | 193       |
| 151 | Why are evergreen leaves so contrary about shade?. Trends in Ecology and Evolution, 2008, 23, 299-303.                                                                                                                  | 8.7  | 193       |
| 152 | Changes in leaf nitrogen and carbohydrates underlie temperature and CO2acclimation of dark respiration in five boreal tree species. Plant, Cell and Environment, 1999, 22, 767-778.                                     | 5.7  | 192       |
| 153 | Leaf Carbon and Nutrient Assimilation and Conservation in Species of Differing Successional Status in an Oligotrophic Amazonian Forest. Functional Ecology, 1995, 9, 65.                                                | 3.6  | 187       |
| 154 | Hydraulic trade-offs and space filling enable better predictions of vascular structure and function in plants. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22722-22727. | 7.1  | 186       |
| 155 | Lack of functional redundancy in the relationship between microbial diversity and ecosystem functioning. Journal of Ecology, 2016, 104, 936-946.                                                                        | 4.0  | 185       |
| 156 | Photosynthesis-nitrogen relations in Amazonian tree species. Oecologia, 1994, 97, 73-81.                                                                                                                                | 2.0  | 184       |
| 157 | Mechanisms responsible for the positive diversity-productivity relationship in Minnesota grasslands.<br>Ecology Letters, 2004, 7, 661-668.                                                                              | 6.4  | 184       |
| 158 | Tree species effects on coupled cycles of carbon, nitrogen, and acidity in mineral soils at a common garden experiment. Biogeochemistry, 2012, 111, 601-614.                                                            | 3.5  | 184       |
| 159 | The scaling of leaf area and mass: the cost of light interception increases with leaf size. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2109-2115.                                              | 2.6  | 183       |
| 160 | Functional identity is the main driver of diversity effects in young tree communities. Ecology Letters, 2016, 19, 638-647.                                                                                              | 6.4  | 182       |
| 161 | Invasions: the trail behind, the path ahead, and a test of a disturbing idea. Journal of Ecology, 2012, 100, 116-127.                                                                                                   | 4.0  | 180       |
| 162 | Variation in growth rate and ecophysiology among 34 grassland and savanna species under contrasting N supply: a test of functional group differences. New Phytologist, 2003, 157, 617-631.                              | 7.3  | 179       |

| #   | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Geographic range predicts photosynthetic and growth response to warming in co-occurring treeAspecies. Nature Climate Change, 2015, 5, 148-152.                                                               | 18.8 | 179       |
| 164 | INFLUENCE OF LOGGING, FIRE, AND FOREST TYPE ON BIODIVERSITY AND PRODUCTIVITY IN SOUTHERN BOREAL FORESTS. Ecology, 2001, 82, 2731-2748.                                                                       | 3.2  | 177       |
| 165 | "Diminishing returns" in the scaling of functional leaf traits across and within species groups.<br>Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8891-8896.   | 7.1  | 177       |
| 166 | Early stage litter decomposition across biomes. Science of the Total Environment, 2018, 628-629, 1369-1394.                                                                                                  | 8.0  | 177       |
| 167 | Relative growth rate in relation to physiological and morphological traits for northern hardwood<br>tree seedlings: species, light environment and ontogenetic considerations. Oecologia, 1993, 96, 219-231. | 2.0  | 176       |
| 168 | Tree species diversity increases fine root productivity through increased soil volume filling. Journal of Ecology, 2013, 101, 210-219.                                                                       | 4.0  | 175       |
| 169 | Carbon content and climate variability drive global soil bacterial diversity patterns. Ecological<br>Monographs, 2016, 86, 373-390.                                                                          | 5.4  | 173       |
| 170 | Canopy dynamics and aboveground production of five tree species with different leaf longevities. Tree Physiology, 1993, 12, 327-345.                                                                         | 3.1  | 171       |
| 171 | Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. New Phytologist, 2019, 222, 768-784.                                                        | 7.3  | 171       |
| 172 | Plant diversity effects on grassland productivity are robust to both nutrient enrichment and<br>drought. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150277.        | 4.0  | 169       |
| 173 | EXOTIC EUROPEAN EARTHWORM INVASION DYNAMICS IN NORTHERN HARDWOOD FORESTS OF MINNESOTA, USA. , 2005, 15, 848-860.                                                                                             |      | 167       |
| 174 | A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. Ecology, 2016, 97, 65-74.                                                               | 3.2  | 165       |
| 175 | Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 877-883.                 | 2.6  | 163       |
| 176 | Seedlings of five boreal tree species differ in acclimation of net photosynthesis to elevated CO2 and temperature. Tree Physiology, 1998, 18, 715-726.                                                       | 3.1  | 162       |
| 177 | Building a better foundation: improving rootâ€ŧrait measurements to understand and model plant and ecosystem processes. New Phytologist, 2017, 215, 27-37.                                                   | 7.3  | 159       |
| 178 | Mapping local and global variability in plant trait distributions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10937-E10946.                                | 7.1  | 159       |
| 179 | When Do Ecosystem Services Depend on Rare Species?. Trends in Ecology and Evolution, 2019, 34, 746-758.                                                                                                      | 8.7  | 159       |
| 180 | Minireviews: Neighborhood Effects, Disturbance Severity, and Community Stability in Forests.<br>Ecosystems, 1999, 2, 151-166.                                                                                | 3.4  | 158       |

| #   | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecology<br>Letters, 2018, 21, 763-778.                                                                                                         | 6.4 | 157       |
| 182 | Windâ€ŧhrow mortality in the southern boreal forest: effects of species, diameter and stand age.<br>Journal of Ecology, 2007, 95, 1261-1273.                                                                                         | 4.0 | 155       |
| 183 | Nutrient conservation increases with latitude of origin in European Pinus sylvestris populations.<br>Oecologia, 2003, 136, 220-235.                                                                                                  | 2.0 | 154       |
| 184 | Will environmental changes reinforce the impact of global warming on the prairie–forest border of central North America?. Frontiers in Ecology and the Environment, 2010, 8, 371-378.                                                | 4.0 | 153       |
| 185 | Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence arbuscular mycorrhizal fungi in a grassland ecosystem. New Phytologist, 2011, 192, 200-214.                                           | 7.3 | 153       |
| 186 | Reconciling Apparent Discrepancies Among Studies Relating Life Span, Structure and Function of<br>Leaves in Contrasting Plant Life Forms and Climates: `The Blind Men and the Elephant Retold'.<br>Functional Ecology, 1993, 7, 721. | 3.6 | 152       |
| 187 | Irradiance, temperature and rainfall influence leaf dark respiration in woody plants: evidence from comparisons across 20 sites. New Phytologist, 2006, 169, 309-319.                                                                | 7.3 | 150       |
| 188 | Decomposition of the finest root branching orders: linking belowground dynamics to fine-root function and structure. Ecological Monographs, 2011, 81, 89-102.                                                                        | 5.4 | 149       |
| 189 | Phenology and Ecophysiology of the Tropical Tree, Tabebuia Neochrysantha (Bignoniaceae). Ecology,<br>1982, 63, 294-299.                                                                                                              | 3.2 | 147       |
| 190 | Key canopy traits drive forest productivity. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2128-2134.                                                                                                          | 2.6 | 147       |
| 191 | Growth, nutrition and gas exchange of Pinus resinosa following artificial defoliation. Trees -<br>Structure and Function, 1993, 7, 67.                                                                                               | 1.9 | 146       |
| 192 | Fire frequency and tree canopy structure influence plant species diversity in a forest-grassland ecotone. Plant Ecology, 2007, 194, 5-16.                                                                                            | 1.6 | 146       |
| 193 | Biodiversity simultaneously enhances the production and stability of community biomass, but the effects are independent. Ecology, 2013, 94, 1697-1707.                                                                               | 3.2 | 146       |
| 194 | Constraints to nitrogen acquisition of terrestrial plants under elevated <scp>CO</scp> <sub>2</sub> .<br>Global Change Biology, 2015, 21, 3152-3168.                                                                                 | 9.5 | 146       |
| 195 | Ecology and ecosystem impacts of common buckthorn (Rhamnus cathartica): a review. Biological<br>Invasions, 2007, 9, 925-937.                                                                                                         | 2.4 | 145       |
| 196 | Plant diversity effects on soil microbial functions and enzymes are stronger than warming in a grassland experiment. Ecology, 2015, 96, 99-112.                                                                                      | 3.2 | 144       |
| 197 | Moving water well: comparing hydraulic efficiency in twigs and trunks of coniferous, ringâ€porous,<br>and diffuseâ€porous saplings from temperate and tropical forests. New Phytologist, 2010, 186, 439-450.                         | 7.3 | 143       |
| 198 | SIMULATING OZONE EFFECTS ON FOREST PRODUCTIVITY: INTERACTIONS AMONG LEAF-, CANOPY-, AND STAND-LEVEL PROCESSES. , 1997, 7, 1237-1251.                                                                                                 |     | 141       |

| #   | ARTICLE                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Evaluation of several measures of canopy openness as predictors of photosynthetic photon flux<br>density in deeply shaded conifer-dominated forest understory. Canadian Journal of Forest Research,<br>1999, 29, 1438-1444.      | 1.7  | 141       |
| 200 | Clobal change effects on plant communities are magnified by time and the number of global change<br>factors imposed. Proceedings of the National Academy of Sciences of the United States of America,<br>2019, 116, 17867-17873. | 7.1  | 141       |
| 201 | Increasing plant diversity effects on productivity with time due to delayed soil biota effects on plants.<br>Basic and Applied Ecology, 2012, 13, 571-578.                                                                       | 2.7  | 140       |
| 202 | Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and<br>Asia. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117,<br>12192-12200.         | 7.1  | 140       |
| 203 | Ecosystem responses to elevated <scp>CO</scp> <sub>2</sub> governed by plant–soil interactions and the cost of nitrogen acquisition. New Phytologist, 2018, 217, 507-522.                                                        | 7.3  | 139       |
| 204 | Role of phosphorus and nitrogen in photosynthetic and whole plant carbon gain and nutrient use efficiency in eastern white pine. Oecologia, 1988, 77, 25-33.                                                                     | 2.0  | 137       |
| 205 | Climate determines vascular traits in the ecologically diverse genus <i>Eucalyptus</i> . Ecology<br>Letters, 2016, 19, 240-248.                                                                                                  | 6.4  | 137       |
| 206 | Global relationship of wood and leaf litter decomposability: the role of functional traits within and across plant organs. Global Ecology and Biogeography, 2014, 23, 1046-1057.                                                 | 5.8  | 136       |
| 207 | Interaction of ozone pollution and light effects on photosynthesis in a forest canopy experiment.<br>Plant, Cell and Environment, 1995, 18, 895-905.                                                                             | 5.7  | 135       |
| 208 | Fire Affects Ecophysiology and Community Dynamics of Central Wisconsin Oak Forest Regeneration.<br>Ecology, 1990, 71, 2179-2190.                                                                                                 | 3.2  | 134       |
| 209 | Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global<br>environmental change factors. Global Change Biology, 2015, 21, 4076-4085.                                                           | 9.5  | 134       |
| 210 | Why is plant-growth response to elevated CO2 amplified when water is limiting, but reduced when nitrogen is limiting? A growth-optimisation hypothesis. Functional Plant Biology, 2008, 35, 521.                                 | 2.1  | 133       |
| 211 | Elevated CO <sub>2</sub> Reduces Losses of Plant Diversity Caused by Nitrogen Deposition. Science, 2009, 326, 1399-1402.                                                                                                         | 12.6 | 132       |
| 212 | <scp>BHPMF</scp> – a hierarchical <scp>B</scp> ayesian approach to gapâ€filling and trait prediction for macroecology and functional biogeography. Global Ecology and Biogeography, 2015, 24, 1510-1521.                         | 5.8  | 132       |
| 213 | FIRE SUPPRESSION AND ECOSYSTEM CARBON STORAGE. Ecology, 2000, 81, 2680-2685.                                                                                                                                                     | 3.2  | 131       |
| 214 | Spatially disjunct effects of co-occurring competition and facilitation. Ecology Letters, 2005, 8, 1191-1200.                                                                                                                    | 6.4  | 131       |
| 215 | Phosphorus accumulates faster than nitrogen globally in freshwater ecosystems under anthropogenic impacts. Ecology Letters, 2016, 19, 1237-1246.                                                                                 | 6.4  | 129       |
| 216 | Microbial richness and composition independently drive soil multifunctionality. Functional Ecology, 2017, 31, 2330-2343.                                                                                                         | 3.6  | 126       |

| #   | Article                                                                                                                                                                                                                  | IF         | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| 217 | Needle Respiration and Nitrogen Concentration in Scots Pine Populations from a Broad Latitudinal<br>Range: A Common Garden Test with Field-Grown Trees. Functional Ecology, 1996, 10, 768.                               | 3.6        | 125       |
| 218 | Species richness, but not phylogenetic diversity, influences community biomass production and<br>temporal stability in a reâ€examination of 16 grassland biodiversity studies. Functional Ecology, 2015, 29,<br>615-626. | 3.6        | 124       |
| 219 | Variation and evolution of C:N ratio among different organs enable plants to adapt to Nâ€limited environments. Global Change Biology, 2020, 26, 2534-2543.                                                               | 9.5        | 124       |
| 220 | Short Communication: Leaf trait relationships in Australian plant species. Functional Plant Biology, 2004, 31, 551.                                                                                                      | 2.1        | 123       |
| 221 | Impacts of trait variation through observed trait–climate relationships on performance of an Earth<br>system model: a conceptual analysis. Biogeosciences, 2013, 10, 5497-5515.                                          | 3.3        | 122       |
| 222 | Predicting soil carbon loss with warming. Nature, 2018, 554, E4-E5.                                                                                                                                                      | 27.8       | 122       |
| 223 | Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent. National Science<br>Review, 2018, 5, 728-739.                                                                                              | 9.5        | 121       |
| 224 | Mechanisms underlying global temperatureâ€related patterns in leaf longevity. Global Ecology and<br>Biogeography, 2013, 22, 982-993.                                                                                     | 5.8        | 121       |
| 225 | REGIONAL LEGACIES OF LOGGING: DEPARTURE FROM PRESETTLEMENT FOREST CONDITIONS IN NORTHERN MINNESOTA. , 2005, 15, 726-744.                                                                                                 |            | 119       |
| 226 | Living close to your neighbors: the importance of both competition and facilitation in plant communities. Ecology, 2014, 95, 2213-2223.                                                                                  | 3.2        | 119       |
| 227 | LEAF DEMOGRAPHY AND PHENOLOGY IN AMAZONIAN RAIN FOREST: A CENSUS OF 40 000 LEAVES OF 23 T<br>SPECIES. Ecological Monographs, 2004, 74, 3-23.                                                                             | REE<br>5.4 | 118       |
| 228 | Temperate tree expansion into adjacent boreal forest patches facilitated by warmer temperatures.<br>Ecography, 2014, 37, 152-161.                                                                                        | 4.5        | 118       |
| 229 | The capacity to cope with climate warming declines from temperate to tropical latitudes in two widely distributed <i>Eucalyptus</i> species. Global Change Biology, 2015, 21, 459-472.                                   | 9.5        | 118       |
| 230 | Reduced feeding activity of soil detritivores under warmer and drier conditions. Nature Climate Change, 2018, 8, 75-78.                                                                                                  | 18.8       | 117       |
| 231 | Interannual growth response of Norway spruce to climate along an altitudinal gradient in the Tatra<br>Mountains, Poland. Trees - Structure and Function, 2006, 20, 735-746.                                              | 1.9        | 115       |
| 232 | Shifting phenology and abundance under experimental warming alters trophic relationships and plant reproductive capacity. Ecology, 2011, 92, 1201-1207.                                                                  | 3.2        | 115       |
| 233 | Improved representation of plant functional types and physiology in the Joint UK Land Environment<br>Simulator (JULES v4.2) using plant trait information. Geoscientific Model Development, 2016, 9,<br>2415-2440.       | 3.6        | 115       |
| 234 | Relative importance of soil properties and microbial community for soil functionality: insights from a microbial swap experiment. Functional Ecology, 2016, 30, 1862-1873.                                               | 3.6        | 115       |

| #   | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | Elevated carbon dioxide ameliorates the effects of ozone on photosynthesis and growth: species<br>respond similarly regardless of photosynthetic pathway or plant functional group. New Phytologist,<br>1998, 138, 315-325.   | 7.3  | 114       |
| 236 | Synthesis and future research directions linking tree diversity to growth, survival, and damage in a global network of tree diversity experiments. Environmental and Experimental Botany, 2018, 152, 68-89.                   | 4.2  | 113       |
| 237 | Influence of Pre-Dawn Water Potential and Soil-To-Leaf Hydraulic Conductance on Maximum Daily Leaf<br>Diffusive Conductance in Two Oak Species. Functional Ecology, 1989, 3, 719.                                             | 3.6  | 112       |
| 238 | Leaf gas exchange responses of 13 prairie grassland species to elevated CO2 and increased nitrogen supply. New Phytologist, 2001, 150, 405-418.                                                                               | 7.3  | 112       |
| 239 | PATHWAYS IN OLD-FIELD SUCCESSION TO WHITE PINE: SEED RAIN, SHADE, AND CLIMATE EFFECTS.<br>Ecological Monographs, 2005, 75, 363-378.                                                                                           | 5.4  | 110       |
| 240 | The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide. ISME Journal, 2012, 6, 259-272.                                                                       | 9.8  | 110       |
| 241 | Global changes alter plant multiâ€element stoichiometric coupling. New Phytologist, 2019, 221, 807-817.                                                                                                                       | 7.3  | 110       |
| 242 | The photosynthesis - leaf nitrogen relationship at ambient and elevated atmospheric carbon dioxide: a<br>meta-analysis. Global Change Biology, 1999, 5, 331-346.                                                              | 9.5  | 109       |
| 243 | Functional distinctiveness of major plant lineages. Journal of Ecology, 2014, 102, 345-356.                                                                                                                                   | 4.0  | 108       |
| 244 | Acclimation of photosynthetic temperature optima of temperate and boreal tree species in response to experimental forest warming. Global Change Biology, 2015, 21, 1342-1357.                                                 | 9.5  | 108       |
| 245 | Genetic and environmental control of seasonal carbohydrate dynamics in trees of diverse Pinus sylvestris populations. Tree Physiology, 2000, 20, 837-847.                                                                     | 3.1  | 107       |
| 246 | Divergent effects of elevated CO2, N fertilization, and plant diversity on soil C and N dynamics in a grassland field experiment. Plant and Soil, 2005, 272, 41-52.                                                           | 3.7  | 107       |
| 247 | Global quantification of contrasting leaf life span strategies for deciduous and evergreen species in response to environmental conditions. Global Ecology and Biogeography, 2012, 21, 224-235.                               | 5.8  | 107       |
| 248 | Legume abundance along successional and rainfall gradients in Neotropical forests. Nature Ecology and Evolution, 2018, 2, 1104-1111.                                                                                          | 7.8  | 107       |
| 249 | Biogeographic variation in evergreen conifer needle longevity and impacts on boreal forest carbon cycle projections. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13703-13708. | 7.1  | 106       |
| 250 | Root–Shoot Relations. , 2002, , 205-220.                                                                                                                                                                                      |      | 106       |
| 251 | A methodology to derive global maps of leaf traits using remote sensing and climate data. Remote<br>Sensing of Environment, 2018, 218, 69-88.                                                                                 | 11.0 | 104       |
| 252 | Soil organic carbon stability in forests: Distinct effects of tree species identity and traits. Global Change Biology, 2019, 25, 1529-1546.                                                                                   | 9.5  | 104       |

| #   | Article                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 253 | Biodiversity and Ecosystem Properties. Science, 1997, 278, 1865c-1869.                                                                                                                                | 12.6 | 104       |
| 254 | Water relations and gas exchange of Acer saccharum seedlings in contrasting natural light and water regimes. Tree Physiology, 1992, 10, 1-20.                                                         | 3.1  | 103       |
| 255 | The Time Value of Leaf Area. American Naturalist, 2000, 155, 649-656.                                                                                                                                 | 2.1  | 103       |
| 256 | A brown-world cascade in the dung decomposer food web of an alpine meadow: effects of predator interactions and warming. Ecological Monographs, 2011, 81, 313-328.                                    | 5.4  | 103       |
| 257 | Traits linked with species invasiveness and community invasibility vary with time, stage and indicator of invasion in a longâ€ŧerm grassland experiment. Ecology Letters, 2019, 22, 593-604.          | 6.4  | 103       |
| 258 | Rapid temperature acclimation of leaf respiration rates in Quercus alba and Quercus rubra. Tree<br>Physiology, 2003, 23, 969-976.                                                                     | 3.1  | 102       |
| 259 | Species with greater seed mass are more tolerant of conspecific neighbours: a key driver of early survival and future abundances in a tropical forest. Ecology Letters, 2016, 19, 1071-1080.          | 6.4  | 102       |
| 260 | The effect of defoliation intensity and history on photosynthesis, growth and carbon reserves of two conifers with contrasting leaf lifespans and growth habits. New Phytologist, 1999, 144, 121-132. | 7.3  | 101       |
| 261 | Photosynthetic differences contribute to competitive advantage of evergreen angiosperm trees over evergreen conifers in productive habitats. New Phytologist, 2003, 160, 329-336.                     | 7.3  | 101       |
| 262 | Growth and biomass partitioning of populations of European Pinus sylvestris L. under simulated 500 and 600 N daylengths: evidence for photoperiodic ecotypes. New Phytologist, 1992, 120, 561-574.    | 7.3  | 100       |
| 263 | Effects of Earthworm Invasion on Plant Species Richness in Northern Hardwood Forests.<br>Conservation Biology, 2007, 21, 997-1008.                                                                    | 4.7  | 100       |
| 264 | Shocks to the system: community assembly of the oak savanna in a 40â€year fire frequency experiment.<br>Ecology, 2012, 93, S52.                                                                       | 3.2  | 100       |
| 265 | Implications of improved representations of plant respiration in a changing climate. Nature Communications, 2017, 8, 1602.                                                                            | 12.8 | 100       |
| 266 | Ectomycorrhizal fungal response to warming is linked to poor host performance at the<br>borealâ€ŧemperate ecotone. Global Change Biology, 2017, 23, 1598-1609.                                        | 9.5  | 100       |
| 267 | Evidence, causes, and consequences of declining nitrogen availability in terrestrial ecosystems.<br>Science, 2022, 376, eabh3767.                                                                     | 12.6 | 100       |
| 268 | Legume species identity and soil nitrogen supply determine symbiotic nitrogenâ€fixation responses to elevated atmospheric [CO 2 ]. New Phytologist, 2005, 167, 523-530.                               | 7.3  | 99        |
| 269 | Understorey diversity in southern boreal forests is regulated by productivity and its indirect impacts on resource availability and heterogeneity. Journal of Ecology, 2012, 100, 539-545.            | 4.0  | 99        |
| 270 | The three major axes of terrestrial ecosystem function. Nature, 2021, 598, 468-472.                                                                                                                   | 27.8 | 99        |

| #   | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 271 | Coupling of respiration, nitrogen, and sugars underlies convergent temperature acclimation in<br><i>Pinus banksiana</i> across wideâ€ranging sites and populations. Global Change Biology, 2008, 14,<br>782-797.                   | 9.5  | 98        |
| 272 | Multi-trait interactions, not phylogeny, fine-tune leaf size reduction with increasing altitude. Annals of Botany, 2011, 107, 455-465.                                                                                             | 2.9  | 98        |
| 273 | Scots pine fine roots adjust along a 2000â€km latitudinal climatic gradient. New Phytologist, 2016, 212,<br>389-399.                                                                                                               | 7.3  | 98        |
| 274 | Deficits of biodiversity and productivity linger a century after agricultural abandonment. Nature Ecology and Evolution, 2019, 3, 1533-1538.                                                                                       | 7.8  | 98        |
| 275 | An Approach to Spatially Distributed Modeling of Net Primary Production (NPP) at the Landscape Scale<br>and Its Application in Validation of EOS NPP Products. Remote Sensing of Environment, 1999, 70, 69-81.                     | 11.0 | 97        |
| 276 | Foliar respiration acclimation to temperature and temperature variable Q10 alter ecosystem carbon balance. Global Change Biology, 2005, 11, 435-449.                                                                               | 9.5  | 97        |
| 277 | Evidence that longer needle retention of spruce and pine populations at high elevations and high latitudes is largely a phenotypic response. Tree Physiology, 1996, 16, 643-647.                                                   | 3.1  | 96        |
| 278 | The economic value of grassland species for carbon storage. Science Advances, 2017, 3, e1601880.                                                                                                                                   | 10.3 | 96        |
| 279 | Globalâ€scale environmental control of plant photosynthetic capacity. Ecological Applications, 2015, 25, 2349-2365.                                                                                                                | 3.8  | 95        |
| 280 | Ectomycorrhizal fungal diversity and saprotrophic fungal diversity are linked to different tree<br>community attributes in a fieldâ€based tree experiment. Molecular Ecology, 2016, 25, 4032-4046.                                 | 3.9  | 95        |
| 281 | Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems. Nature Ecology and Evolution, 2017, 1, 1639-1642.                                                                                     | 7.8  | 95        |
| 282 | Future global productivity will be affected by plant trait response to climate. Scientific Reports, 2018,<br>8, 2870.                                                                                                              | 3.3  | 95        |
| 283 | Plant functional group responses to fire frequency and tree canopy cover gradients in oak savannas and woodlands. Journal of Vegetation Science, 2007, 18, 3-12.                                                                   | 2.2  | 94        |
| 284 | Effects of plant diversity, <scp>N</scp> fertilization, and elevated carbon dioxide on grassland soil<br><scp>N</scp> cycling in a longâ€ŧerm experiment. Global Change Biology, 2013, 19, 1249-1261.                              | 9.5  | 94        |
| 285 | Divergent drivers of leaf trait variation within species, among species, and among functional groups.<br>Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5480-5485.                    | 7.1  | 94        |
| 286 | Effects of low level O3exposure on leaf diffusive conductance and water-use efficiency in hybrid poplar. Plant, Cell and Environment, 1984, 7, 661-668.                                                                            | 5.7  | 93        |
| 287 | Elevated Carbon Dioxide Alters the Structure of Soil Microbial Communities. Applied and Environmental Microbiology, 2012, 78, 2991-2995.                                                                                           | 3.1  | 93        |
| 288 | Responses of leaf structure and photosynthetic properties to intra-canopy light gradients: a common garden test with four broadleaf deciduous angiosperm and seven evergreen conifer tree species.<br>Oecologia, 2012, 170, 11-24. | 2.0  | 93        |

| #   | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 289 | Do deer and shrubs override canopy gap size effects on growth and survival of yellow birch,<br>northern red oak, eastern white pine, and eastern hemlock seedlings?. Forest Ecology and<br>Management, 2012, 267, 134-143. | 3.2  | 93        |
| 290 | The results of biodiversity–ecosystem functioning experiments are realistic. Nature Ecology and Evolution, 2020, 4, 1485-1494.                                                                                             | 7.8  | 93        |
| 291 | Acclimation of leaf respiration to temperature is rapid and related to specific leaf area, soluble sugars and leaf nitrogen across three temperate deciduous tree species. Functional Ecology, 2005, 19, 640-647.          | 3.6  | 92        |
| 292 | Interactive Effects of Time, CO2, N, and Diversity on Total Belowground Carbon Allocation and Ecosystem Carbon Storage in a Grassland Community. Ecosystems, 2009, 12, 1037-1052.                                          | 3.4  | 92        |
| 293 | Resource limitation in a competitive context determines complex plant responses to experimental resource additions. Ecology, 2013, 94, 2505-2517.                                                                          | 3.2  | 92        |
| 294 | Simulated climate warming alters phenological synchrony between an outbreak insect herbivore and host trees. Oecologia, 2014, 175, 1041-1049.                                                                              | 2.0  | 92        |
| 295 | Nitrogen deposition and plant species interact to influence soil carbon stabilization. Ecology Letters, 2004, 7, 1192-1198.                                                                                                | 6.4  | 91        |
| 296 | Light, earthworms, and soil resources as predictors of diversity of 10 soil invertebrate groups across monocultures of 14 tree species. Soil Biology and Biochemistry, 2016, 92, 184-198.                                  | 8.8  | 91        |
| 297 | Climate legacies drive global soil carbon stocks in terrestrial ecosystems. Science Advances, 2017, 3, e1602008.                                                                                                           | 10.3 | 91        |
| 298 | Acclimation of respiratory temperature responses in northern and southern populations of <i>Pinus banksiana</i> . New Phytologist, 2009, 181, 218-229.                                                                     | 7.3  | 90        |
| 299 | Untangling positive and negative biotic interactions: views from above and below ground in a forest ecosystem. Ecology, 2010, 91, 3641-3655.                                                                               | 3.2  | 90        |
| 300 | Global root traits (GRooT) database. Global Ecology and Biogeography, 2021, 30, 25-37.                                                                                                                                     | 5.8  | 90        |
| 301 | An empirical assessment of tree branching networks and implications for plant allometric scaling models. Ecology Letters, 2013, 16, 1069-1078.                                                                             | 6.4  | 89        |
| 302 | Climate changeâ€associated trends in net biomass change are age dependent in western boreal forests<br>of Canada. Ecology Letters, 2016, 19, 1150-1158.                                                                    | 6.4  | 89        |
| 303 | Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nature<br>Ecology and Evolution, 2022, 6, 36-50.                                                                           | 7.8  | 89        |
| 304 | Trade-offs in low-light CO2 exchange: a component of variation in shade tolerance among cold temperate tree seedlings. Functional Ecology, 2000, 14, 155-165.                                                              | 3.6  | 88        |
| 305 | Using Participatory Scenarios to Stimulate Social Learning for Collaborative Sustainable<br>Development. Ecology and Society, 2012, 17, .                                                                                  | 2.3  | 88        |
| 306 | A global scale mechanistic model of photosynthetic capacity (LUNA V1.0). Geoscientific Model<br>Development, 2016, 9, 587-606.                                                                                             | 3.6  | 88        |

PETER B REICH

| #   | Article                                                                                                                                                                                                                                                                                                             | IF           | CITATIONS      |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|
| 307 | Convergent acclimation of leaf photosynthesis and respiration to prevailing ambient temperatures under current and warmer climates in <i>Eucalyptus tereticornis</i> . New Phytologist, 2016, 212, 354-367.                                                                                                         | 7.3          | 88             |
| 308 | Photosynthetic responses of 13 grassland species across 11 years of freeâ€air CO <sub>2</sub><br>enrichment is modest, consistent and independent of N supply. Global Change Biology, 2011, 17,<br>2893-2904.                                                                                                       | 9.5          | 87             |
| 309 | Relationships of leaf dark respiration with light environment and tissue nitrogen content in juveniles of 11 cold-temperate tree species. Oecologia, 2000, 123, 318-329.                                                                                                                                            | 2.0          | 86             |
| 310 | Advancing biodiversity–ecosystem functioning science using high-density tree-based experiments over functional diversity gradients. Oecologia, 2014, 174, 609-621.                                                                                                                                                  | 2.0          | 86             |
| 311 | Nematode functional guilds, not trophic groups, reflect shifts in soil food webs and processes in response to interacting global change factors. Pedobiologia, 2015, 58, 23-32.                                                                                                                                     | 1.2          | 86             |
| 312 | The number of tree species on Earth. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .                                                                                                                                                                                  | 7.1          | 86             |
| 313 | Response of Ulmus americana seedlings to varying nitrogen and water status. 2 Water and nitrogen use efficiency in photosynthesis. Tree Physiology, 1989, 5, 173-184.                                                                                                                                               | 3.1          | 85             |
| 314 | Elevated <scp><scp>CO<sub>2</sub></scp> <fractional 17,="" 2011,="" 3546-3563.<="" biology,="" by="" carbon="" change="" enhancing="" global="" grassland="" increasing="" inputs="" moisture.="" rather="" respiration="" soil="" stimulates="" stress="" td="" than=""><td>9.5</td><td>85</td></fractional></scp> | 9.5          | 85             |
| 315 | Climate and soils together regulate photosynthetic carbon isotope discrimination within<br>C <sub>3</sub> plants worldwide. Global Ecology and Biogeography, 2018, 27, 1056-1067.                                                                                                                                   | 5.8          | 85             |
| 316 | Biodiversity promotes ecosystem functioning despite environmental change. Ecology Letters, 2022, 25, 555-569.                                                                                                                                                                                                       | 6.4          | 85             |
| 317 | Growth of <i>Acer saccharum</i> seedlings in deeply shaded understories of northern Wisconsin:<br>effects of nitrogen and water availability. Canadian Journal of Forest Research, 1997, 27, 237-247.                                                                                                               | 1.7          | 84             |
| 318 | Restoring Savanna Using Fire: Impact on the Breeding Bird Community. Restoration Ecology, 2000, 8, 30-40.                                                                                                                                                                                                           | 2.9          | 84             |
| 319 | Conservation implications of browsing by Odocoileus virginianus in remnant upland Thuja occidentalis forests. Biological Conservation, 2000, 93, 359-369.                                                                                                                                                           | 4.1          | 84             |
| 320 | REGIONAL EXTENT OF AN ECOSYSTEM ENGINEER: EARTHWORM INVASION IN NORTHERN HARDWOOD FORESTS. Ecological Applications, 2007, 17, 1666-1677.                                                                                                                                                                            | 3.8          | 84             |
| 321 | Connecting the Green and Brown Worlds. Advances in Ecological Research, 2013, 49, 69-175.                                                                                                                                                                                                                           | 2.7          | 84             |
| 322 | Strong thermal acclimation of photosynthesis in tropical and temperate wetâ€forest tree species: the importance of altered Rubisco content. Global Change Biology, 2017, 23, 2783-2800.                                                                                                                             | 9.5          | 84             |
| 323 | Photosynthesis and Leaf Nitrogen in Five Amazonian Tree Species During Early Secondary Succession.<br>Ecology, 1996, 77, 581-594.                                                                                                                                                                                   | 3.2          | 83             |
| 324 | Shared ectomycorrhizal fungi between a herbaceous perennial ( Helianthemum bicknellii ) and oak () Tj ETQq0 (                                                                                                                                                                                                       | 0 0 rg.BT /C | overlock 10 Tf |

19

| #   | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 325 | Controls on declining carbon balance with leaf age among 10 woody species in Australian woodland:<br>do leaves have zero daily net carbon balances when they die?. New Phytologist, 2009, 183, 153-166.                | 7.3  | 82        |
| 326 | Does physiological acclimation to climate warming stabilize the ratio of canopy respiration to photosynthesis?. New Phytologist, 2016, 211, 850-863.                                                                   | 7.3  | 82        |
| 327 | Leafâ€level light compensation points in shadeâ€tolerant woody seedlings. New Phytologist, 2005, 166,<br>710-713.                                                                                                      | 7.3  | 81        |
| 328 | Effects of O3 and acidic rain on photosynthesis and growth in sugar maple and northern red oak seedlings. Environmental Pollution Series A, Ecological and Biological, 1986, 40, 1-15.                                 | 0.7  | 80        |
| 329 | Response of Ulmus americana seedlings to varying nitrogen and water status. 1 Photosynthesis and growth. Tree Physiology, 1989, 5, 159-172.                                                                            | 3.1  | 80        |
| 330 | Exotic earthworm effects on hardwood forest floor, nutrient availability and native plants: a mesocosm study. Oecologia, 2008, 155, 509-518.                                                                           | 2.0  | 80        |
| 331 | The effect of experimental warming and precipitation change on proteolytic enzyme activity: positive feedbacks to nitrogen availability are not universal. Global Change Biology, 2012, 18, 2617-2625.                 | 9.5  | 80        |
| 332 | Nematode community shifts in response to experimental warming and canopy conditions are<br>associated with plant community changes in the temperate-boreal forest ecotone. Oecologia, 2014, 175,<br>713-723.           | 2.0  | 80        |
| 333 | Phylogenetic community structure in Minnesota oak savanna is influenced by spatial extent and environmental variation. Ecography, 2010, 33, 565-577.                                                                   | 4.5  | 79        |
| 334 | Experimental and observational studies find contrasting responses of soil nutrients to climate change. ELife, 2017, 6, .                                                                                               | 6.0  | 79        |
| 335 | Trade-offs in seedling survival, growth, and physiology among hardwood species of contrasting<br>successional status along a light-availability gradient. Canadian Journal of Forest Research, 2001, 31,<br>1602-1616. | 1.7  | 78        |
| 336 | No globally consistent effect of ectomycorrhizal status on foliar traits. New Phytologist, 2012, 196,<br>845-852.                                                                                                      | 7.3  | 78        |
| 337 | Understanding ecological variation across species: areaâ€based vs massâ€based expression of leaf traits.<br>New Phytologist, 2013, 199, 322-323.                                                                       | 7.3  | 77        |
| 338 | Effects of litter traits, soil biota, and soil chemistry on soil carbon stocks at a common garden with<br>14 tree species. Biogeochemistry, 2015, 123, 313-327.                                                        | 3.5  | 77        |
| 339 | Leaf economics and plant hydraulics drive leaf : wood area ratios. New Phytologist, 2019, 224,<br>1544-1556.                                                                                                           | 7.3  | 77        |
| 340 | Biodiversity–productivity relationships are key to nature-based climate solutions. Nature Climate<br>Change, 2021, 11, 543-550.                                                                                        | 18.8 | 77        |
| 341 | Overstorey tree species regulate colonization by native and exotic plants: a source of positive relationships between understorey diversity and invasibility. Diversity and Distributions, 2008, 14, 666-675.          | 4.1  | 76        |
| 342 | Ecophysiology of exotic and native shrubs in Southern Wisconsin. Oecologia, 1989, 80, 368-373.                                                                                                                         | 2.0  | 75        |

| #   | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 343 | The response of soil CO2 flux to changes in atmospheric CO2 , nitrogen supply and plant diversity.<br>Global Change Biology, 2001, 7, 947-953.                                                                       | 9.5  | 75        |
| 344 | Warming alters energetic structure and function but not resilience of soil food webs. Nature Climate Change, 2017, 7, 895-900.                                                                                       | 18.8 | 75        |
| 345 | General destabilizing effects of eutrophication on grassland productivity at multiple spatial scales.<br>Nature Communications, 2020, 11, 5375.                                                                      | 12.8 | 75        |
| 346 | The impact of elevated CO <sub>2</sub> , increased nitrogen availability and biodiversity on plant tissue quality and decomposition. Global Change Biology, 2007, 13, 1960-1971.                                     | 9.5  | 74        |
| 347 | Global convergence in leaf respiration from estimates of thermal acclimation across time and space.<br>New Phytologist, 2015, 207, 1026-1037.                                                                        | 7.3  | 74        |
| 348 | Combinations of Abiotic Factors Differentially Alter Production of Plant Secondary Metabolites in<br>Five Woody Plant Species in the Boreal-Temperate Transition Zone. Frontiers in Plant Science, 2018, 9,<br>1257. | 3.6  | 74        |
| 349 | Biotic homogenization destabilizes ecosystem functioning by decreasing spatial asynchrony. Ecology, 2021, 102, e03332.                                                                                               | 3.2  | 74        |
| 350 | Does relatedness matter? Phylogenetic densityâ€dependent survival of seedlings in a tropical forest.<br>Ecology, 2014, 95, 940-951.                                                                                  | 3.2  | 73        |
| 351 | Differential Above- and Below-ground Biomass Accumulation of European <i>Pinus<br/>sylvestris</i> Populations in a 12-year-old Provenance Experiment. Scandinavian Journal of Forest<br>Research, 1999, 14, 7-17.    | 1.4  | 72        |
| 352 | The impact of material used for minirhizotron tubes for root research. New Phytologist, 2003, 160, 533-544.                                                                                                          | 7.3  | 72        |
| 353 | Seed rain, safe sites, competing vegetation, and soil resources spatially structure white pine regeneration and recruitment. Canadian Journal of Forest Research, 2003, 33, 1892-1904.                               | 1.7  | 72        |
| 354 | Sapling growth responses to warmer temperatures â€~cooled' by browse pressure. Global Change<br>Biology, 2012, 18, 3455-3463.                                                                                        | 9.5  | 72        |
| 355 | Light environment alters response to ozone stress in seedlings of Acer saccharum Marsh, and hybrid<br>Populus L New Phytologist, 1993, 124, 627-636.                                                                 | 7.3  | 70        |
| 356 | Discordance in spatial patterns of white pine (Pinus strobus ) size-classes in a patchy near-boreal forest. Journal of Ecology, 2001, 89, 280-291.                                                                   | 4.0  | 70        |
| 357 | Land use and habitat gradients determine bird community diversity and abundance in suburban, rural and reserve landscapes of Minnesota, USA. Biological Conservation, 2007, 135, 527-541.                            | 4.1  | 70        |
| 358 | Global biogeography of plant chemistry: filling in the blanks. New Phytologist, 2005, 168, 263-266.                                                                                                                  | 7.3  | 69        |
| 359 | Experimental climate warming alters aspen and birch phytochemistry and performance traits for an outbreak insect herbivore. Global Change Biology, 2015, 21, 2698-2710.                                              | 9.5  | 69        |
| 360 | Invasive species' leaf traits and dissimilarity from natives shape their impact on nitrogen cycling: a<br>metaâ€analysis. New Phytologist, 2017, 213, 128-139.                                                       | 7.3  | 69        |

| #   | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 361 | Influence of low concentrations of ozone on growth, biomass partitioning and leaf senescence in<br>young hybrid poplar plants. Environmental Pollution Series A, Ecological and Biological, 1985, 39,<br>39-51.                                   | 0.7  | 68        |
| 362 | Seed mass effects on germination and growth of diverse European Scots pine populations. Canadian<br>Journal of Forest Research, 1994, 24, 306-320.                                                                                                | 1.7  | 68        |
| 363 | Perspectives on development of definitions and values related to old-growth forests. Environmental Reviews, 2003, 11, S9-S22.                                                                                                                     | 4.5  | 68        |
| 364 | Environmental and developmental controls on specific leaf area are little modified by leaf allometry.<br>Functional Ecology, 2008, 22, 565-576.                                                                                                   | 3.6  | 68        |
| 365 | Species richness and traits predict overyielding in stem growth in an earlyâ€successional tree diversity experiment. Ecology, 2017, 98, 2601-2614.                                                                                                | 3.2  | 68        |
| 366 | Legume presence increases photosynthesis and N concentrations of co-occurring non-fixers but does not modulate their responsiveness to carbon dioxide enrichment. Oecologia, 2003, 137, 22-31.                                                    | 2.0  | 67        |
| 367 | Negative to positive shifts in diversity effects on soil nitrogen over time. Nature Sustainability, 2021, 4, 225-232.                                                                                                                             | 23.7 | 67        |
| 368 | Adaptation to changing environment in Scots pine populations across a latitudinal gradient. Silva<br>Fennica, 1998, 32, .                                                                                                                         | 1.3  | 67        |
| 369 | Soil Processes Affected by Sixteen Grassland Species Grown under Different Environmental Conditions. Soil Science Society of America Journal, 2006, 70, 770-777.                                                                                  | 2.2  | 65        |
| 370 | Linking direct and indirect pathways mediating earthworms, deer, and understory composition in<br>Great Lakes forests. Biological Invasions, 2013, 15, 1057-1066.                                                                                 | 2.4  | 65        |
| 371 | Design and performance of combined infrared canopy and belowground warming in the<br>B4Warm <scp>ED</scp> (Boreal Forest Warming at an Ecotone in Danger) experiment. Global Change<br>Biology, 2015, 21, 2334-2348.                              | 9.5  | 65        |
| 372 | Losses in microbial functional diversity reduce the rate of key soil processes. Soil Biology and Biochemistry, 2019, 135, 267-274.                                                                                                                | 8.8  | 65        |
| 373 | Phenological responses of temperate and boreal trees to warming depend on ambient spring temperatures, leaf habit, and geographic range. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10397-10405. | 7.1  | 65        |
| 374 | Stoichiometric response of nitrogen-fixing and non-fixing dicots to manipulations of CO2, nitrogen, and diversity. Oecologia, 2007, 151, 687-696.                                                                                                 | 2.0  | 64        |
| 375 | Improving ecosystem productivity modeling through spatially explicit estimation of optimal light use efficiency. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1755-1769.                                                         | 3.0  | 64        |
| 376 | Do temperate tree species diversity and identity influence soil microbial community function and composition?. Ecology and Evolution, 2017, 7, 7965-7974.                                                                                         | 1.9  | 64        |
| 377 | Soil microbial, nematode, and enzymatic responses to elevated CO2, N fertilization, warming, and reduced precipitation. Soil Biology and Biochemistry, 2019, 135, 184-193.                                                                        | 8.8  | 64        |
| 378 | Acclimation of leaf respiration consistent with optimal photosynthetic capacity. Global Change<br>Biology, 2020, 26, 2573-2583.                                                                                                                   | 9.5  | 64        |

| #   | Article                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 379 | Changes with Leaf Age in Stomatal Function and Water Status of Several Tropical Tree Species.<br>Biotropica, 1988, 20, 60.                                                    | 1.6 | 63        |
| 380 | Species, diversity, and density affect tree seedling mortality from <i>Armillaria</i> root rot. Canadian<br>Journal of Forest Research, 1997, 27, 1509-1512.                  | 1.7 | 63        |
| 381 | Needle nutrients in geographically diverse Pinus sylvestris L. populations. Annals of Forest Science, 2002, 59, 1-18.                                                         | 2.0 | 63        |
| 382 | Is oak establishment in old-fields and savanna openings context dependent?. Journal of Ecology, 2007, 95, 309-320.                                                            | 4.0 | 63        |
| 383 | Decomposer diversity and identity influence plant diversity effects on ecosystem functioning.<br>Ecology, 2012, 93, 2227-2240.                                                | 3.2 | 63        |
| 384 | Testing the Link between Functional Diversity and Ecosystem Functioning in a Minnesota Grassland Experiment. PLoS ONE, 2012, 7, e52821.                                       | 2.5 | 63        |
| 385 | Metagenomic reconstruction of nitrogen cycling pathways in a CO2-enriched grassland ecosystem.<br>Soil Biology and Biochemistry, 2017, 106, 99-108.                           | 8.8 | 63        |
| 386 | Causes and Consequences of Variation in Conifer Leaf Life-Span. , 1995, , 225-254.                                                                                            |     | 62        |
| 387 | Temperature and ontogeny mediate growth response to elevated CO 2 in seedlings of five boreal tree species. New Phytologist, 1998, 140, 197-210.                              | 7.3 | 62        |
| 388 | Canopy gap size influences niche partitioning of the ground-layer plant community in a northern temperate forest. Journal of Plant Ecology, 2013, 6, 101-112.                 | 2.3 | 62        |
| 389 | Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs. Nature Ecology and Evolution, 2021, 5, 1123-1134. | 7.8 | 62        |
| 390 | BUGS in the Analysis of Biodiversity Experiments: Species Richness and Composition Are of Similar<br>Importance for Grassland Productivity. PLoS ONE, 2011, 6, e17434.        | 2.5 | 62        |
| 391 | Above- and below-ground plant inputs both fuel soil food webs. Soil Biology and Biochemistry, 2012, 45, 156-160.                                                              | 8.8 | 61        |
| 392 | PLANT DIVERSITY, CO2, AND N INFLUENCE INORGANIC AND ORGANIC N LEACHING IN GRASSLANDS. Ecology, 2007, 88, 490-500.                                                             | 3.2 | 60        |
| 393 | Seeing the forest for the heterogeneous trees: standâ€scale resource distributions emerge from treeâ€scale structure. Ecological Applications, 2012, 22, 1578-1588.           | 3.8 | 60        |
| 394 | Interactive effects of global warming and †̃global worming' on the initial establishment of native and exotic herbaceous plant species. Oikos, 2012, 121, 1121-1133.          | 2.7 | 60        |
| 395 | Sideâ€swiped: ecological cascades emanating from earthworm invasions. Frontiers in Ecology and the Environment, 2019, 17, 502-510.                                            | 4.0 | 60        |
| 396 | Body size, geometry, longevity and metabolism: do plant leaves behave like animal bodies?. Trends in<br>Ecology and Evolution, 2001, 16, 674-680.                             | 8.7 | 59        |

| #   | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 397 | Daily environmental conditions determine the competition–facilitation balance for plant water status. Journal of Ecology, 2015, 103, 648-656.                                                                                                         | 4.0 | 59        |
| 398 | A global traitâ€based approach to estimate leaf nitrogen functional allocation from observations.<br>Ecological Applications, 2017, 27, 1421-1434.                                                                                                    | 3.8 | 59        |
| 399 | Ecophysiological Investigations of Understory Eastern Redcedar in Central Missouri. Ecology, 1983,<br>64, 1355-1366.                                                                                                                                  | 3.2 | 58        |
| 400 | Oak Tree Effects on Soil and Herbaceous Vegetation in Savannas and Pastures in Wisconsin. American<br>Midland Naturalist, 1993, 130, 31.                                                                                                              | 0.4 | 58        |
| 401 | Elevated CO 2 and plant species richness impact arbuscular mycorrhizal fungal spore communities.<br>New Phytologist, 2003, 157, 579-588.                                                                                                              | 7.3 | 58        |
| 402 | Positive feedbacks between decomposition and soil nitrogen availability along fertility gradients.<br>Plant and Soil, 2013, 367, 347-361.                                                                                                             | 3.7 | 58        |
| 403 | Biodiversity influences plant productivity through niche–efficiency. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5738-5743.                                                                           | 7.1 | 58        |
| 404 | Light environment alters response to ozone stress in seedlings of Acer saccharum Marsh, and hybrid<br>Populus L New Phytologist, 1993, 124, 637-646.                                                                                                  | 7.3 | 57        |
| 405 | Interaction of elevated CO2 and O3 on growth, photosynthesis and respiration of three perennial species grown in low and high nitrogen. Physiologia Plantarum, 1996, 97, 674-684.                                                                     | 5.2 | 57        |
| 406 | Primary and secondary host plants differ in leafâ€level photosynthetic response to herbivory: evidence<br>from Alnus and Betula grazed by the alder beetle, Agelastica alni. New Phytologist, 1998, 140, 239-249.                                     | 7.3 | 57        |
| 407 | Taxonomic identity, phylogeny, climate and soil fertility as drivers of leaf traits across Chinese<br>grassland biomes. Journal of Plant Research, 2010, 123, 551-561.                                                                                | 2.4 | 57        |
| 408 | Trophic cascades, invasive species and body-size hierarchies interactively modulate climate change<br>responses of ecotonal temperate–boreal forest. Philosophical Transactions of the Royal Society B:<br>Biological Sciences, 2012, 367, 2955-2961. | 4.0 | 57        |
| 409 | Elevated carbon dioxide accelerates the spatial turnover of soil microbial communities. Global<br>Change Biology, 2016, 22, 957-964.                                                                                                                  | 9.5 | 57        |
| 410 | Firstâ€year seedlings and climate change: speciesâ€specific responses of 15 North American tree species.<br>Oikos, 2014, 123, 1331-1340.                                                                                                              | 2.7 | 56        |
| 411 | Identifying environmental drivers of greenhouse gas emissions under warming and reduced rainfall<br>in boreal–temperate forests. Functional Ecology, 2017, 31, 2356-2368.                                                                             | 3.6 | 56        |
| 412 | Robustness of trait connections across environmental gradients and growth forms. Global Ecology and Biogeography, 2019, 28, 1806-1826.                                                                                                                | 5.8 | 56        |
| 413 | Vertical variation in canopy structure and CO2exchange of oak-maple forests: influence of ozone,<br>nitrogen, and other factors on simulated canopy carbon gain. Tree Physiology, 1990, 7, 329-345.                                                   | 3.1 | 55        |
| 414 | Allometric Equations for Estimation of Ash-free Dry Mass from Length Measurements for Selected<br>European Earthworm Species (Lumbricidae) in the Western Great Lakes Region. American Midland<br>Naturalist, 2004, 151, 179-185.                     | 0.4 | 55        |

| #   | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 415 | Shortâ€ŧerm carbon cycling responses of a mature eucalypt woodland to gradual stepwise enrichment<br>of atmospheric <scp>CO</scp> <sub>2</sub> concentration. Global Change Biology, 2016, 22, 380-390. | 9.5  | 55        |
| 416 | Convergence and correlations among leaf size and function in seed plants: a comparative test using independent contrasts. American Journal of Botany, 1999, 86, 1272-81.                                | 1.7  | 55        |
| 417 | Correlations among leaf traits provide a significant constraint on the estimate of global gross primary production. Geophysical Research Letters, 2012, 39, .                                           | 4.0  | 54        |
| 418 | Plant diversity maintains multiple soil functions in future environments. ELife, 2018, 7, .                                                                                                             | 6.0  | 54        |
| 419 | Neighborhood effects, disturbance, and succession in forests of the western Great Lakes Region1.<br>Ecoscience, 1995, 2, 148-158.                                                                       | 1.4  | 53        |
| 420 | Fine-scale environmental variation and structure of understorey plant communities in two old-growth pine forests. Journal of Ecology, 2003, 91, 283-293.                                                | 4.0  | 53        |
| 421 | The role of plant species in biomass production and response to elevated CO2 and N. Ecology Letters, 2003, 6, 623-625.                                                                                  | 6.4  | 53        |
| 422 | Opposite relationships between invasibility and native species richness at patch versus landscape scales. Oikos, 2005, 109, 81-88.                                                                      | 2.7  | 53        |
| 423 | An evolutionary perspective on leaf economics: phylogenetics of leaf mass per area in vascular plants.<br>Ecology and Evolution, 2014, 4, 2799-2811.                                                    | 1.9  | 53        |
| 424 | Neighbourhood effects in forests: implications for within-stand patch structure. Journal of Ecology, 1998, 86, 149-161.                                                                                 | 4.0  | 52        |
| 425 | Seedbed and moisture availability determine safe sites for early Thuja occidentalis (Cupressaceae)<br>regeneration. American Journal of Botany, 2000, 87, 1807-1814.                                    | 1.7  | 52        |
| 426 | Widespread foliage δ 15 N depletion under elevated CO2 : inferences for the nitrogen cycle. Global<br>Change Biology, 2003, 9, 1582-1590.                                                               | 9.5  | 52        |
| 427 | The Diversity and Co-occurrence Patterns of N2-Fixing Communities in a CO2-Enriched Grassland Ecology, 2016, 71, 604-615.                                                                               | 2.8  | 52        |
| 428 | Global plant trait relationships extend to the climatic extremes of the tundra biome. Nature Communications, 2020, 11, 1351.                                                                            | 12.8 | 52        |
| 429 | Title is missing!. Plant and Soil, 2003, 255, 475-486.                                                                                                                                                  | 3.7  | 51        |
| 430 | Globally consistent influences of seasonal precipitation limit grassland biomass response to elevated CO2. Nature Plants, 2019, 5, 167-173.                                                             | 9.3  | 51        |
| 431 | Effects of low concentrations of O3, leaf age and water stress on leaf diffusive conductance and water use efficiency in soybean. Physiologia Plantarum, 1985, 63, 58-64.                               | 5.2  | 50        |
| 432 | Response of Soybean to Low Concentrations of Ozone: I. Reductions in Leaf and Whole Plant Net<br>Photosynthesis and Leaf Chlorophyll Content. Journal of Environmental Quality, 1986, 15, 31-36.        | 2.0  | 50        |

PETER B REICH

| #   | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 433 | Vegetation change: a reunifying concept in plant ecology. Perspectives in Plant Ecology, Evolution and Systematics, 2005, 7, 69-76.                                                                                       | 2.7  | 50        |
| 434 | Tree rings detect earthworm invasions and their effects in northern Hardwood forests. Biological<br>Invasions, 2010, 12, 1053-1066.                                                                                       | 2.4  | 50        |
| 435 | Native Perennial Grassland Species for Bioenergy: Establishment and Biomass Productivity. Agronomy<br>Journal, 2011, 103, 509-519.                                                                                        | 1.8  | 50        |
| 436 | Effects of winter temperatures, spring degree-day accumulation, and insect population source on phenological synchrony between forest tent caterpillar and host trees. Forest Ecology and Management, 2016, 362, 241-250. | 3.2  | 50        |
| 437 | Canopy feedbacks and microtopography regulate conifer seedling distribution in two Minnesota conifer-deciduous forests. Ecoscience, 1997, 4, 353-364.                                                                     | 1.4  | 49        |
| 438 | Responses of hardwood regeneration to fire in mesic forest openings. I. Post-fire community dynamics. Canadian Journal of Forest Research, 1997, 27, 1822-1831.                                                           | 1.7  | 49        |
| 439 | Litter decomposition in earthworm-invaded northern hardwood forests: Role of invasion degree and litter chemistry. Ecoscience, 2008, 15, 536-544.                                                                         | 1.4  | 49        |
| 440 | Maintenance of leaf N controls the photosynthetic CO <sub>2</sub> response of grassland species<br>exposed to 9 years of freeâ€air CO <sub>2</sub> enrichment. Global Change Biology, 2010, 16, 2076-2088.                | 9.5  | 49        |
| 441 | Climate and interrelated tree regeneration drivers in mixed temperate–boreal forests. Landscape<br>Ecology, 2013, 28, 149-159.                                                                                            | 4.2  | 49        |
| 442 | Estimating themissing species bias in plant trait measurements. Journal of Vegetation Science, 2015, 26, 828-838.                                                                                                         | 2.2  | 49        |
| 443 | Traditional plant functional groups explain variation in economic but not sizeâ€related traits across the tundra biome. Global Ecology and Biogeography, 2019, 28, 78-95.                                                 | 5.8  | 49        |
| 444 | Biogeographic variation in temperature sensitivity of decomposition in forest soils. Global Change<br>Biology, 2020, 26, 1873-1885.                                                                                       | 9.5  | 49        |
| 445 | Expert perspectives on global biodiversity loss and its drivers and impacts on people. Frontiers in Ecology and the Environment, 2023, 21, 94-103.                                                                        | 4.0  | 49        |
| 446 | Relationship of aluminium and calcium to net CO2 exchange among diverse Scots pine provenances under pollution stress in Poland. Oecologia, 1994, 97, 82-92.                                                              | 2.0  | 48        |
| 447 | Using Scenario Visioning and Participatory System Dynamics Modeling to Investigate the Future:<br>Lessons from Minnesota 2050. Sustainability, 2010, 2, 2686-2706.                                                        | 3.2  | 48        |
| 448 | Fungal Communities Respond to Long-Term CO <sub>2</sub> Elevation by Community Reassembly.<br>Applied and Environmental Microbiology, 2015, 81, 2445-2454.                                                                | 3.1  | 48        |
| 449 | Effects of plant species diversity, atmospheric [CO2 ], and N addition on gross rates of inorganic N release from soil organic matter. Global Change Biology, 2006, 12, 1400-1408.                                        | 9.5  | 47        |
| 450 | The Carbon Dioxide Exchange. Science, 2010, 329, 774-775.                                                                                                                                                                 | 12.6 | 47        |

| #   | Article                                                                                                                                                                                           | lF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 451 | A speciesâ€level model for metabolic scaling in trees I. Exploring boundaries to scaling space within and across species. Functional Ecology, 2012, 26, 1054-1065.                                | 3.6  | 47        |
| 452 | Elevated CO2 influences microbial carbon and nitrogen cycling. BMC Microbiology, 2013, 13, 124.                                                                                                   | 3.3  | 47        |
| 453 | Complex facilitation and competition in a temperate grassland: loss of plant diversity and elevated CO2 have divergent and opposite effects on oak establishment. Oecologia, 2013, 171, 449-458.  | 2.0  | 47        |
| 454 | Influence of Disturbance on Temperate Forest Productivity. Ecosystems, 2013, 16, 95-110.                                                                                                          | 3.4  | 47        |
| 455 | Using revegetation to suppress invasive plants in grasslands and forests. Journal of Applied Ecology, 2018, 55, 2362-2373.                                                                        | 4.0  | 47        |
| 456 | Plant-driven niche differentiation of ammonia-oxidizing bacteria and archaea in global drylands. ISME<br>Journal, 2019, 13, 2727-2736.                                                            | 9.8  | 47        |
| 457 | The influence of soil age on ecosystem structure and function across biomes. Nature Communications, 2020, 11, 4721.                                                                               | 12.8 | 47        |
| 458 | Repeated fire shifts carbon and nitrogen cycling by changing plant inputs and soil decomposition across ecosystems. Ecological Monographs, 2020, 90, e01409.                                      | 5.4  | 47        |
| 459 | Intra―and interspecific performance in growth and reproduction increase with altitude: a case study with two <i>Saxifraga</i> species from northern Spain. Functional Ecology, 2009, 23, 111-118. | 3.6  | 46        |
| 460 | The wave towards a new steady state: effects of earthworm invasion on soil microbial functions.<br>Biological Invasions, 2011, 13, 2191-2196.                                                     | 2.4  | 46        |
| 461 | Are leaf functional traits â€~invariant' with plant size and what is â€~invariance' anyway?. Functional<br>Ecology, 2014, 28, 1330-1343.                                                          | 3.6  | 46        |
| 462 | Recent deforestation drove the spike in Amazonian fires. Environmental Research Letters, 2020, 15, 121003.                                                                                        | 5.2  | 46        |
| 463 | Effects of ozone and acid rain on white pine ( <i>Pinus strobus</i> ) seedlings grown in five soils. II.<br>Mycorrhizal infection. Canadian Journal of Botany, 1988, 66, 1510-1516.               | 1.1  | 45        |
| 464 | Controls over leaf and litter calcium concentrations among temperate trees. Biogeochemistry, 2007, 86, 175-187.                                                                                   | 3.5  | 45        |
| 465 | Do evergreen and deciduous trees have different effects on net N mineralization in soil?. Ecology, 2012, 93, 1463-1472.                                                                           | 3.2  | 45        |
| 466 | Synergistic effects of four climate change drivers on terrestrial carbon cycling. Nature Geoscience, 2020, 13, 787-793.                                                                           | 12.9 | 45        |
| 467 | Range size and growth temperature influence <i>Eucalyptus</i> species responses to an experimental heatwave. Global Change Biology, 2019, 25, 1665-1684.                                          | 9.5  | 44        |
| 468 | Loss of Stomatal Function in Ageing Hybrid Poplar Leaves. Annals of Botany, 1984, 53, 691-698.                                                                                                    | 2.9  | 43        |

| #   | Article                                                                                                                                                                             | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 469 | Leaf physiological versus morphological acclimation to high-light exposure at different stages of foliar development in oak. Tree Physiology, 2008, 28, 761-771.                    | 3.1  | 43        |
| 470 | Taking stock of forest carbon. Nature Climate Change, 2011, 1, 346-347.                                                                                                             | 18.8 | 43        |
| 471 | Leaf Litter Disappearance in Earthworm-Invaded Northern Hardwood Forests: Role of Tree Species and the Chemistry and Diversity of Litter. Ecosystems, 2012, 15, 913-926.            | 3.4  | 43        |
| 472 | Biodiversity, Nitrogen Deposition, and CO2 Affect Grassland Soil Carbon Cycling but not Storage.<br>Ecosystems, 2012, 15, 580-590.                                                  | 3.4  | 43        |
| 473 | Contrasting leaf trait scaling relationships in tropical and temperate wet forest species. Functional Ecology, 2013, 27, 522-534.                                                   | 3.6  | 43        |
| 474 | Harvest-Created Canopy Gaps Increase Species and Functional Trait Diversity of the Forest<br>Ground-Layer Community. Forest Science, 2014, 60, 335-344.                             | 1.0  | 43        |
| 475 | Tree communities rapidly alter soil microbial resistance and resilience to drought. Functional Ecology, 2015, 29, 570-578.                                                          | 3.6  | 43        |
| 476 | Measurement of leaf longevity of 14 species of grasses and forbs using a novel approach. New Phytologist, 1999, 142, 475-481.                                                       | 7.3  | 42        |
| 477 | Biogeographic bases for a shift in crop CÂ:ÂNÂ:ÂP stoichiometries during domestication. Ecology Letters,<br>2016, 19, 564-575.                                                      | 6.4  | 42        |
| 478 | Rising Temperature May Trigger Deep Soil Carbon Loss Across Forest Ecosystems. Advanced Science, 2020, 7, 2001242.                                                                  | 11.2 | 42        |
| 479 | Acid Rain and Ozone Influence Mycorrhizal Infection in Tree Seedlings. Journal of the Air Pollution Control Association, 1986, 36, 724-726.                                         | 0.5  | 41        |
| 480 | Response of Soybean to Low Concentrations of Ozone: II. Effects on Growth, Biomass Allocation, and Flowering. Journal of Environmental Quality, 1986, 15, 161-167.                  | 2.0  | 41        |
| 481 | Effects of ozone and acid rain on white pine (Pinus strobus) seedlings grown in five soils. III. Nutrient<br>relations. Canadian Journal of Botany, 1988, 66, 1517-1531.            | 1.1  | 41        |
| 482 | Coppicing affects growth, root:shoot relations and ecophysiology of potted Quercus rubra<br>seedlings. Physiologia Plantarum, 1993, 89, 751-760.                                    | 5.2  | 41        |
| 483 | Tree Patches Show Greater N Losses but Maintain Higher Soil N Availability than Grassland Patches in<br>a Frequently Burned Oak Savanna. Ecosystems, 2006, 9, 441-452.              | 3.4  | 41        |
| 484 | Transgenerational effects of global environmental change: long-term CO2 and nitrogen treatments influence offspring growth response to elevated CO2. Oecologia, 2008, 158, 141-150. | 2.0  | 41        |
| 485 | Modest enhancement of nitrogen conservation via retranslocation in response to gradients in N supply and leaf N status. Plant and Soil, 2009, 316, 193-204.                         | 3.7  | 41        |
| 486 | Effects of density and ontogeny on size and growth ranks of three competing tree species. Journal of Ecology, 2009, 97, 277-288.                                                    | 4.0  | 41        |

PETER B REICH

| #   | Article                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 487 | Lifetime return on investment increases with leaf lifespan among 10 Australian woodland species. New<br>Phytologist, 2012, 193, 409-419.                                                                                                                                        | 7.3 | 41        |
| 488 | Leaf size of woody dicots predicts ecosystem primary productivity. Ecology Letters, 2020, 23, 1003-1013.                                                                                                                                                                        | 6.4 | 41        |
| 489 | Decadal changes in fire frequencies shift tree communities and functional traits. Nature Ecology and Evolution, 2021, 5, 504-512.                                                                                                                                               | 7.8 | 41        |
| 490 | Response Mechanisms of Conifers to Air Pollutants. , 1995, , 255-308.                                                                                                                                                                                                           |     | 40        |
| 491 | Multiple scale composition and spatial distribution patterns of the north-eastern Minnesota presettlement forest. Journal of Ecology, 2001, 89, 538-554.                                                                                                                        | 4.0 | 40        |
| 492 | Light response in seedlings of a temperate (Quercus petraea) and a sub-Mediterranean species<br>(Quercus pyrenaica): contrasting ecological strategies as potential keys to regeneration performance<br>in mixed marginal populations. Plant Ecology, 2008, 195, 273-285.       | 1.6 | 40        |
| 493 | Incorporating temperatureâ€sensitive <i>Q</i> <sub>10</sub> and foliar respiration acclimation<br>algorithms modifies modeled ecosystem responses to global change. Journal of Geophysical Research<br>G: Biogeosciences, 2013, 118, 77-90.                                     | 3.0 | 40        |
| 494 | Aridity Decouples C:N:P Stoichiometry Across Multiple Trophic Levels in Terrestrial Ecosystems.<br>Ecosystems, 2018, 21, 459-468.                                                                                                                                               | 3.4 | 40        |
| 495 | Limited evidence for spatial resource partitioning across temperate grassland biodiversity experiments. Ecology, 2020, 101, e02905.                                                                                                                                             | 3.2 | 40        |
| 496 | Global fern and lycophyte richness explained: How regional and local factors shape plot richness.<br>Journal of Biogeography, 2020, 47, 59-71.                                                                                                                                  | 3.0 | 40        |
| 497 | Afforestation can lower microbial diversity and functionality in deep soil layers in a semiarid region.<br>Global Change Biology, 2022, 28, 6086-6101.                                                                                                                          | 9.5 | 40        |
| 498 | Leaf-level resource use for evergreen and deciduous conifers along a resource availability gradient.<br>Functional Ecology, 2000, 14, 281-292.                                                                                                                                  | 3.6 | 39        |
| 499 | Direct inhibition of leaf dark respiration by elevated CO2 is minor in 12 grassland species. New Phytologist, 2001, 150, 419-424.                                                                                                                                               | 7.3 | 39        |
| 500 | Soil modification by different tree species influences the extent of seedling ectomycorrhizal infection. Mycorrhiza, 2006, 16, 73-79.                                                                                                                                           | 2.8 | 39        |
| 501 | Tertiary remnants and Holocene colonizers: Genetic structure and phylogeography of Scots pine reveal higher genetic diversity in young boreal than in relict Mediterranean populations and a dual colonization of Fennoscandia. Diversity and Distributions, 2017, 23, 540-555. | 4.1 | 39        |
| 502 | Speciesâ€rich boreal forests grew more and suffered less mortality than speciesâ€poor forests under the environmental change of the past halfâ€century. Ecology Letters, 2019, 22, 999-1008.                                                                                    | 6.4 | 39        |
| 503 | Water Relations: Soil Fertility, and Plant Nutrient Composition of a Pygmy Oak Ecosystem. Ecology, 1980, 61, 400-416.                                                                                                                                                           | 3.2 | 38        |
| 504 | Dark respiration rate increases with plant size in saplings of three temperate tree species despite decreasing tissue nitrogen and nonstructural carbohydrates. Tree Physiology, 2006, 26, 915-923.                                                                             | 3.1 | 38        |

| #   | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 505 | A common thermal niche among geographically diverse populations of the widely distributed tree<br>species <i>Eucalyptus tereticornis</i> : No evidence for adaptation to climateâ€ofâ€origin. Global Change<br>Biology, 2017, 23, 5069-5082. | 9.5 | 38        |
| 506 | Biogeographic differences in shoot elongation pattern among European Scots pine populations.<br>Forest Ecology and Management, 2001, 148, 207-220.                                                                                           | 3.2 | 37        |
| 507 | Strong ecological but weak evolutionary effects of elevated CO 2 on a recombinant inbred population of Arabidopsis thaliana. New Phytologist, 2007, 175, 351-362.                                                                            | 7.3 | 37        |
| 508 | Ontogenetic shift in the scaling of dark respiration with wholeâ€plant mass in seven shrub species.<br>Functional Ecology, 2010, 24, 502-512.                                                                                                | 3.6 | 37        |
| 509 | Community phylogenetic diversity and abiotic site characteristics influence abundance of the invasive plant Rhamnus cathartica L Journal of Plant Ecology, 2014, 7, 202-209.                                                                 | 2.3 | 37        |
| 510 | The imprint of plants on ecosystem functioning: A data-driven approach. International Journal of Applied Earth Observation and Geoinformation, 2015, 43, 119-131.                                                                            | 2.8 | 37        |
| 511 | Allometry of fine roots in forest ecosystems. Ecology Letters, 2019, 22, 322-331.                                                                                                                                                            | 6.4 | 37        |
| 512 | Low phosphorus supply constrains plant responses to elevated CO <sub>2</sub> : A metaâ€analysis.<br>Global Change Biology, 2020, 26, 5856-5873.                                                                                              | 9.5 | 37        |
| 513 | Canopy type, forest floor, predation, and competition influence conifer seedling emergence and early<br>survival in two Minnesota conifer-deciduous forests. Canadian Journal of Forest Research, 1998, 28,<br>196-205.                      | 1.7 | 36        |
| 514 | Elevated [CO2] and increased N supply reduce leaf disease and related photosynthetic impacts on Solidago rigida. Oecologia, 2006, 149, 519-525.                                                                                              | 2.0 | 36        |
| 515 | Ectomycorrhizal identity determines respiration and concentrations of nitrogen and non-structural carbohydrates in root tips: a test using Pinus sylvestris and Quercus robur saplings. Tree Physiology, 2010, 30, 648-654.                  | 3.1 | 36        |
| 516 | Fame, glory and neglect in meta-analyses. Trends in Ecology and Evolution, 2011, 26, 493-494.                                                                                                                                                | 8.7 | 36        |
| 517 | Variation in leaf and twig CO2 flux as a function of plant size: a comparison of seedlings, saplings and trees. Tree Physiology, 2013, 33, 713-729.                                                                                          | 3.1 | 36        |
| 518 | Shifting Impacts of Climate Change. Advances in Ecological Research, 2016, 55, 437-473.                                                                                                                                                      | 2.7 | 36        |
| 519 | Intraspecific variation in soy across the leaf economics spectrum. Annals of Botany, 2019, 123, 107-120.                                                                                                                                     | 2.9 | 36        |
| 520 | Growingâ€season temperature and precipitation are independent drivers of global variation in xylem<br>hydraulic conductivity. Global Change Biology, 2020, 26, 1833-1841.                                                                    | 9.5 | 36        |
| 521 | LEAF STOMATAL DENSITY AND DIFFUSIVE CONDUCTANCE IN THREE AMPHISTOMATOUS HYBRID POPLAR CULTIVARS. New Phytologist, 1984, 98, 231-239.                                                                                                         | 7.3 | 35        |
| 522 | Ontogenetic patterns of leaf CO2 exchange, morphology and chemistry in Betula pendula trees. Trees -<br>Structure and Function, 2000, 14, 271-281.                                                                                           | 1.9 | 35        |

| #   | Article                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 523 | Potential climate change impacts on temperate forest ecosystem processes. Canadian Journal of<br>Forest Research, 2013, 43, 939-950.                                                                                                                               | 1.7  | 35        |
| 524 | The scaling of fine root nitrogen versus phosphorus in terrestrial plants: A global synthesis.<br>Functional Ecology, 2019, 33, 2081-2094.                                                                                                                         | 3.6  | 35        |
| 525 | Elevated CO2 and nitrogen supply alter leaf longevity of grassland species. New Phytologist, 2001, 150, 397-403.                                                                                                                                                   | 7.3  | 34        |
| 526 | Climate modifies response of non-native and native species richness to nutrient enrichment.<br>Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150273.                                                                        | 4.0  | 34        |
| 527 | Effect of Simulated Climate Warming on the Ectomycorrhizal Fungal Community of Boreal and<br>Temperate Host Species Growing Near Their Shared Ecotonal Range Limits. Microbial Ecology, 2018, 75,<br>348-363.                                                      | 2.8  | 34        |
| 528 | The partitioning of gross primary production for young <i>Eucalyptus tereticornis</i> trees under experimental warming and altered water availability. New Phytologist, 2019, 222, 1298-1312.                                                                      | 7.3  | 34        |
| 529 | Stimulation of soil respiration by elevated CO <sub>2</sub> is enhanced under nitrogen limitation in a decade-long grassland study. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33317-33324.                       | 7.1  | 34        |
| 530 | Responses of hardwood regeneration to fire in mesic forest openings. II. Leaf gas exchange, nitrogen concentration, and water status. Canadian Journal of Forest Research, 1997, 27, 1832-1840.                                                                    | 1.7  | 33        |
| 531 | Productivity of Evergreen and Deciduous Temperate Forests. , 2001, , 245-283.                                                                                                                                                                                      |      | 33        |
| 532 | Do vegetation boundaries display smooth or abrupt spatial transitions along environmental<br>gradients? Evidence from the prairie–forest biome boundary of historic <scp>M</scp> innesota,<br><scp>USA</scp> . Journal of Vegetation Science, 2013, 24, 1129-1140. | 2.2  | 33        |
| 533 | Invasive earthworms interact with abiotic conditions to influence the invasion of common buckthorn (Rhamnus cathartica). Oecologia, 2015, 178, 219-230.                                                                                                            | 2.0  | 33        |
| 534 | Adaptation to elevated CO2 in different biodiversity contexts. Nature Communications, 2016, 7, 12358.                                                                                                                                                              | 12.8 | 33        |
| 535 | Cold adaptation drives variability in needle structure and anatomy in <i><scp>P</scp>inus<br/>sylvestris</i> L. along a 1,900Âkm temperate–boreal transect. Functional Ecology, 2017, 31, 2212-2223.                                                               | 3.6  | 33        |
| 536 | Remote spectral detection of biodiversity effects on forest biomass. Nature Ecology and Evolution, 2021, 5, 46-54.                                                                                                                                                 | 7.8  | 33        |
| 537 | Coppicing alters ecophysiology of Quercus rubrasaplings in Wisconsin forest openings. Physiologia<br>Plantarum, 1993, 89, 741-750.                                                                                                                                 | 5.2  | 32        |
| 538 | Light environment alters response to ozone stress in seedlings of Acer saccharum Marsh, and hybrid<br>Populus L New Phytologist, 1993, 124, 647-651.                                                                                                               | 7.3  | 32        |
| 539 | Evidence that the negative relationship between seed mass and relative growth rate is not<br>physiological but linked to species identity: a within-family analysis of Scots pine. Tree Physiology,<br>2008, 28, 1077-1082.                                        | 3.1  | 32        |
| 540 | The effects of eastern red cedar (Juniperus virginiana) invasion and removal on a dry bluff prairie<br>ecosystem. Biological Invasions, 2010, 12, 241-252.                                                                                                         | 2.4  | 32        |

| #   | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 541 | Detecting wind disturbance severity and canopy heterogeneity in boreal forest by coupling<br>high-spatial resolution satellite imagery and field data. Remote Sensing of Environment, 2010, 114,<br>299-308.                                      | 11.0 | 32        |
| 542 | A speciesâ€level model for metabolic scaling of trees <scp>II</scp> . Testing in a ring―and diffuseâ€porous species. Functional Ecology, 2012, 26, 1066-1076.                                                                                     | 3.6  | 32        |
| 543 | Strong photosynthetic acclimation and enhanced waterâ€use efficiency in grassland functional groups<br>persist over 21Âyears of CO <sub>2</sub> enrichment, independent of nitrogen supply. Global Change<br>Biology, 2019, 25, 3031-3044.        | 9.5  | 32        |
| 544 | Vegetation controls vary across space and spatial scale in a historic grassland-forest biome boundary. Ecography, 2011, 34, 402-414.                                                                                                              | 4.5  | 31        |
| 545 | Indirect effects drive evolutionary responses to global change. New Phytologist, 2014, 201, 335-343.                                                                                                                                              | 7.3  | 31        |
| 546 | Responses of two understory herbs, <i>Maianthemum canadense</i> and <i>Eurybia macrophylla</i> , to experimental forest warming: Early emergence is the key to enhanced reproductive output.<br>American Journal of Botany, 2015, 102, 1610-1624. | 1.7  | 31        |
| 547 | Climate and competition affect growth and survival of transplanted sugar maple seedlings along a<br>1700â€km gradient. Ecological Monographs, 2017, 87, 130-157.                                                                                  | 5.4  | 31        |
| 548 | Diversityâ€dependent soil acidification under nitrogen enrichment constrains biomass productivity.<br>Global Change Biology, 2020, 26, 6594-6603.                                                                                                 | 9.5  | 31        |
| 549 | Soil enzymes as indicators of soil function: A step toward greater realism in microbial ecological modeling. Global Change Biology, 2022, 28, 1935-1950.                                                                                          | 9.5  | 31        |
| 550 | Responses of hardwood regeneration to fire in mesic forest openings. III. Whole-plant growth,<br>biomass distribution, and nitrogen and carbohydrate relations. Canadian Journal of Forest Research,<br>1997, 27, 1841-1850.                      | 1.7  | 30        |
| 551 | Wilderness Conservation in an Era of Global Warming and Invasive Species: A Case Study from<br>Minnesota's Boundary Waters Canoe Area Wilderness. Natural Areas Journal, 2009, 29, 385-393.                                                       | 0.5  | 30        |
| 552 | Fine-scale heterogeneity in overstory composition contributes to heterogeneity of wildfire severity in southern boreal forest. Journal of Forest Research, 2011, 16, 203-214.                                                                     | 1.4  | 30        |
| 553 | Nitrogen cycling, forest canopy reflectance, and emergent properties of ecosystems. Proceedings of the United States of America, 2013, 110, E2437.                                                                                                | 7.1  | 30        |
| 554 | Partitioning the effect of composition and diversity of tree communities on leaf litter decomposition and soil respiration. Oikos, 2017, 126, 959-971.                                                                                            | 2.7  | 30        |
| 555 | Reduction in growth of hybrid poplar following field exposure to low levels of O <sub>3</sub> and (or) SO <sub>2</sub> . Canadian Journal of Botany, 1984, 62, 2835-2841.                                                                         | 1.1  | 29        |
| 556 | Altered root growth and plant chemistry ofPinus sylvestris seedlings subjected to aluminum in nutrient solution. Trees - Structure and Function, 1996, 10, 135-144.                                                                               | 1.9  | 29        |
| 557 | Local ecotypic and species range-related adaptation influence photosynthetic temperature optima in deciduous broadleaved trees. Plant Ecology, 2012, 213, 113-125.                                                                                | 1.6  | 29        |
| 558 | Potential and limitations of inferring ecosystem photosynthetic capacity from leaf functional traits.<br>Ecology and Evolution, 2016, 6, 7352-7366.                                                                                               | 1.9  | 29        |

| #   | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 559 | Logging versus fire: how does disturbance type influence the abundance of Pinus strobus regeneration?. Silva Fennica, 2004, 38, .                                                                                                   | 1.3 | 29        |
| 560 | Low level O3 and/or SO2 exposure causes a linear decline in soybean yield. Environmental Pollution Series A, Ecological and Biological, 1984, 34, 345-355.                                                                          | 0.7 | 28        |
| 561 | SOME PHYSIOLOGICAL RESPONSES OF THEOBROMA CACAO VAR. CATONGO SEEDLINGS TO AIR HUMIDITY.<br>New Phytologist, 1987, 107, 591-602.                                                                                                     | 7.3 | 28        |
| 562 | DIRECT AND INDIRECT EFFECTS OF CO <sub>2</sub> , NITROGEN, AND COMMUNITY DIVERSITY ON PLANT–ENEMY INTERACTIONS. Ecology, 2008, 89, 226-236.                                                                                         | 3.2 | 28        |
| 563 | Ectomycorrhizal fungal communities of oak savanna are distinct from forest communities.<br>Mycologia, 2009, 101, 473-483.                                                                                                           | 1.9 | 28        |
| 564 | A traits-based test of the home-field advantage in mixed-species tree litter decomposition. Annals of<br>Botany, 2015, 116, 781-788.                                                                                                | 2.9 | 28        |
| 565 | LONG-TERM EFFECTS OF DEFOLIATION ON RED PINE SUITABILITY TO INSECTS FEEDING ON DIVERSE PLANT TISSUES. Ecology, 1998, 79, 2352-2364.                                                                                                 | 3.2 | 27        |
| 566 | Comparing the Importance of Seedbed and Canopy Type in the Restoration of Upland Thuja occidentalis<br>Forests of Northeastern Minnesota. Restoration Ecology, 2001, 9, 386-396.                                                    | 2.9 | 27        |
| 567 | Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests.<br>Biogeosciences, 2017, 14, 4663-4690.                                                                                                | 3.3 | 27        |
| 568 | Determinants of community compositional change are equally affected by global change. Ecology<br>Letters, 2021, 24, 1892-1904.                                                                                                      | 6.4 | 27        |
| 569 | Diversityâ€dependent plant–soil feedbacks underlie longâ€ŧerm plant diversity effects on primary productivity. Ecosphere, 2019, 10, e02704.                                                                                         | 2.2 | 26        |
| 570 | Surprising lack of sensitivity of biochemical limitation of photosynthesis of nine tree species to<br>openâ€air experimental warming and reduced rainfall in a southern boreal forest. Global Change<br>Biology, 2020, 26, 746-759. | 9.5 | 26        |
| 571 | Variation in aboveground net primary production of diverse European Pinus sylvestris populations.<br>Trees - Structure and Function, 2000, 14, 415-421.                                                                             | 1.9 | 25        |
| 572 | European larch and eastern white pine respond similarly during three years of partial defoliation.<br>Tree Physiology, 2000, 20, 283-287.                                                                                           | 3.1 | 25        |
| 573 | Grassland species effects on soil CO2 flux track the effects of elevated CO2 and nitrogen. New Phytologist, 2001, 150, 425-434.                                                                                                     | 7.3 | 25        |
| 574 | Title is missing!. Plant and Soil, 2003, 250, 39-47.                                                                                                                                                                                | 3.7 | 25        |
| 575 | The resource economics of chemical and structural defenses across nitrogen supply gradients.<br>Oecologia, 2003, 137, 547-556.                                                                                                      | 2.0 | 25        |
| 576 | Good-Enough RFLP Matcher (GERM) program. Mycorrhiza, 2003, 13, 171-172.                                                                                                                                                             | 2.8 | 25        |

| #   | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 577 | Physiological and phenological responses of oak seedlings to oak forest soil in the absence of trees.<br>Tree Physiology, 2007, 27, 133-140.                                                                                 | 3.1  | 25        |
| 578 | Limited potential for terrestrial carbon sequestration to offset fossilâ€fuel emissions in the upper midwestern US. Frontiers in Ecology and the Environment, 2010, 8, 409-413.                                              | 4.0  | 25        |
| 579 | Incorporation of plant traits in a land surface model helps explain the global biogeographical distribution of major forest functional types. Clobal Ecology and Biogeography, 2017, 26, 304-317.                            | 5.8  | 25        |
| 580 | Ambient changes exceed treatment effects on plant species abundance in global change experiments.<br>Global Change Biology, 2018, 24, 5668-5679.                                                                             | 9.5  | 25        |
| 581 | Experimental warming advances phenology of groundlayer plants at the borealâ€ŧemperate forest<br>ecotone. American Journal of Botany, 2018, 105, 851-861.                                                                    | 1.7  | 25        |
| 582 | Sensitivity of grassland carbon pools to plant diversity, elevated CO <sub>2</sub> , and soil nitrogen addition over 19 years. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . | 7.1  | 25        |
| 583 | Do tall trees scale physiological heights?. Trends in Ecology and Evolution, 2000, 15, 41-42.                                                                                                                                | 8.7  | 24        |
| 584 | Below-ground resources limit seedling growth in forest understories but do not alter biomass distribution. Annals of Forest Science, 2003, 60, 319-330.                                                                      | 2.0  | 24        |
| 585 | Reducing Greenhouse Gas Emissions for Climate Stabilization: Framing Regional Options.<br>Environmental Science & Technology, 2009, 43, 1696-1703.                                                                           | 10.0 | 24        |
| 586 | CO2, nitrogen, and diversity differentially affect seed production of prairie plants. Ecology, 2009, 90, 1810-1820.                                                                                                          | 3.2  | 24        |
| 587 | Disentangling species and functional group richness effects on soil N cycling in a grassland ecosystem. Global Change Biology, 2017, 23, 4717-4727.                                                                          | 9.5  | 24        |
| 588 | Shrub type dominates the vertical distribution of leaf C : N : P stoichiometry across an extensive<br>altitudinal gradient. Biogeosciences, 2018, 15, 2033-2053.                                                             | 3.3  | 24        |
| 589 | Enhanced light interception and light use efficiency explain overyielding in young tree communities.<br>Ecology Letters, 2021, 24, 996-1006.                                                                                 | 6.4  | 24        |
| 590 | Interaction of elevated CO2 and O3 on growth, photosynthesis and respiration of three perennial species grown in low and high nitrogen. Physiologia Plantarum, 1996, 97, 674-684.                                            | 5.2  | 24        |
| 591 | Pollution, Habitat Destruction, and Biodiversity in Poland. Conservation Biology, 1994, 8, 943-960.                                                                                                                          | 4.7  | 23        |
| 592 | Title is missing!. Water, Air, and Soil Pollution, 1999, 110, 195-212.                                                                                                                                                       | 2.4  | 23        |
| 593 | Predicting leaf area index from scaling principles: corroboration and consequences. Tree Physiology, 2003, 23, 1171-1179.                                                                                                    | 3.1  | 23        |
| 594 | Peeking beneath the hood of the leaf economics spectrum. New Phytologist, 2017, 214, 1395-1397.                                                                                                                              | 7.3  | 23        |

| #   | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 595 | Light mediates the relationship between community diversity and trait plasticity in functionally and phylogenetically diverse tree mixtures. Journal of Ecology, 2020, 108, 1617-1634.                                                      | 4.0  | 23        |
| 596 | Frequent burning causes large losses of carbon from deep soil layers in a temperate savanna. Journal of Ecology, 2020, 108, 1426-1441.                                                                                                      | 4.0  | 23        |
| 597 | Ecophysiology and Insect Herbivory. , 1995, , 125-180.                                                                                                                                                                                      |      | 23        |
| 598 | Fungal Diversity of Norway Spruce Litter: Effects of Site Conditions and Premature Leaf Fall Caused By<br>Bark Beetle Outbreak. Microbial Ecology, 2008, 56, 332-340.                                                                       | 2.8  | 22        |
| 599 | What controls the concentration of various aliphatic lipids in soil?. Soil Biology and Biochemistry, 2013, 63, 14-17.                                                                                                                       | 8.8  | 22        |
| 600 | Neighborhood diversity simultaneously increased and decreased susceptibility to contrasting herbivores in an early stage forest diversity experiment. Journal of Ecology, 2019, 107, 1492-1505.                                             | 4.0  | 22        |
| 601 | The differential sensitivity of red pine and quaking aspen to competition. Canadian Journal of Forest<br>Research, 1995, 25, 1731-1737.                                                                                                     | 1.7  | 21        |
| 602 | Comparing indices of understory light availability between hemlock and hardwood forest patches.<br>Canadian Journal of Forest Research, 2009, 39, 1949-1957.                                                                                | 1.7  | 21        |
| 603 | Legumes regulate grassland soil N cycling and its response to variation in species diversity and N supply but not CO <sub>2</sub> . Global Change Biology, 2019, 25, 2396-2409.                                                             | 9.5  | 21        |
| 604 | Similar factors underlie tree abundance in forests in native and alien ranges. Global Ecology and<br>Biogeography, 2020, 29, 281-294.                                                                                                       | 5.8  | 21        |
| 605 | Herbivore and pathogen damage on grassland and woodland plants: a test of the herbivore uncertainty principle. Ecology Letters, 2002, 5, 531-539.                                                                                           | 6.4  | 20        |
| 606 | Habitat preference, growth form, vegetative dispersal and population size of lichens along a wildfire severity gradient. Bryologist, 2006, 109, 527-540.                                                                                    | 0.6  | 20        |
| 607 | Elevated atmospheric CO2: a nurse plant substitute for oak seedlings establishing in old fields. Global<br>Change Biology, 2007, 13, 2308-2316.                                                                                             | 9.5  | 20        |
| 608 | Biomass growth response to spatial pattern of variable-retention harvesting in a northern Minnesota pine ecosystem. , 2014, 24, 2078-2088.                                                                                                  |      | 20        |
| 609 | Warming shifts â€~worming': effects of experimental warming on invasive earthworms in northern<br>North America. Scientific Reports, 2014, 4, 6890.                                                                                         | 3.3  | 20        |
| 610 | Microbial functional genes commonly respond to elevated carbon dioxide. Environment<br>International, 2020, 144, 106068.                                                                                                                    | 10.0 | 20        |
| 611 | Antagonistic effects of species on C respiration and net N mineralization in soils from mixed coniferous plantations. Forest Ecology and Management, 2009, 257, 1112-1118.                                                                  | 3.2  | 19        |
| 612 | A traitâ€based ecosystem model suggests that longâ€term responsiveness to rising atmospheric<br><scp>CO</scp> <sub>2</sub> concentration is greater in slowâ€growing than fastâ€growing plants.<br>Functional Ecology, 2013, 27, 1011-1022. | 3.6  | 19        |

| #   | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 613 | Testing Darwin's naturalization conundrum based on taxonomic, phylogenetic, and functional<br>dimensions of vascular plants. Ecological Monographs, 2020, 90, e01420.                                                   | 5.4 | 19        |
| 614 | Does root respiration in Australian rainforest tree seedlings acclimate to experimental warming?.<br>Tree Physiology, 2020, 40, 1192-1204.                                                                              | 3.1 | 19        |
| 615 | Seven Ways a Warming Climate Can Kill the Southern Boreal Forest. Forests, 2021, 12, 560.                                                                                                                               | 2.1 | 19        |
| 616 | Needle CO. Trees - Structure and Function, 1997, 12, 82.                                                                                                                                                                | 1.9 | 19        |
| 617 | No complementarity no gain—Net diversity effects on tree productivity occur once complementarity<br>emerges during early stand development. Ecology Letters, 2022, 25, 851-862.                                         | 6.4 | 19        |
| 618 | Altered root growth and plant chemistry of Pinus sylvestris seedlings subjected to aluminum in nutrient solution. Trees - Structure and Function, 1996, 10, 135-144.                                                    | 1.9 | 19        |
| 619 | New cohort growth and survival in variable retention harvests of a pine ecosystem in Minnesota,<br>USA. Forest Ecology and Management, 2013, 310, 327-335.                                                              | 3.2 | 18        |
| 620 | Tradeâ€offs in juvenile growth potential vs. shade tolerance among subtropical rain forest trees on soils of contrasting fertility. Functional Ecology, 2016, 30, 845-855.                                              | 3.6 | 18        |
| 621 | Implications of contrasted above―and belowâ€ground biomass responses in a diversity experiment with trees. Journal of Ecology, 2020, 108, 405-414.                                                                      | 4.0 | 18        |
| 622 | No evidence of homeostatic regulation of leaf temperature in <i>Eucalyptus parramattensis</i> trees:<br>integration of CO <sub>2</sub> flux and oxygen isotope methodologies. New Phytologist, 2020, 228,<br>1511-1523. | 7.3 | 18        |
| 623 | Population size and fire intensity determine postâ€fire abundance in grassland lichens. Applied<br>Vegetation Science, 2005, 8, 193-198.                                                                                | 1.9 | 17        |
| 624 | Resident plant diversity and introduced earthworms have contrasting effects on the success of invasive plants. Biological Invasions, 2014, 16, 2181-2193.                                                               | 2.4 | 17        |
| 625 | Becoming less tolerant with age: sugar maple, shade, and ontogeny. Oecologia, 2015, 179, 1011-1021.                                                                                                                     | 2.0 | 17        |
| 626 | Is it getting hot in here? Adjustment of hydraulic parameters in six boreal and temperate tree species after 5Âyears of warming. Global Change Biology, 2016, 22, 4124-4133.                                            | 9.5 | 17        |
| 627 | The changing role of fire in mediating the relationships among oaks, grasslands, mesic temperate forests, and boreal forests in the Lake States. Journal of Sustainable Forestry, 2017, 36, 421-432.                    | 1.4 | 17        |
| 628 | Three years of soil respiration in a mature eucalypt woodland exposed to atmospheric CO2 enrichment. Biogeochemistry, 2018, 139, 85-101.                                                                                | 3.5 | 17        |
| 629 | Interactive effects of elevated <scp>CO<sub>2</sub></scp> , warming, reduced rainfall, and nitrogen on leaf gas exchange in five perennial grassland species. Plant, Cell and Environment, 2020, 43, 1862-1878.         | 5.7 | 17        |
| 630 | Oscillations in stomatal conductance of hybrid poplar leaves in the light and dark. Physiologia<br>Plantarum, 1984, 61, 541-548.                                                                                        | 5.2 | 16        |

| #   | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 631 | Uncertainty Quantified Matrix Completion Using Bayesian Hierarchical Matrix Factorization. , 2014, , .                                                                                                                  |     | 16        |
| 632 | Effects of elevated CO2 on fine root biomass are reduced by aridity but enhanced by soil nitrogen: A global assessment. Scientific Reports, 2017, 7, 15355.                                                             | 3.3 | 16        |
| 633 | Long-Term Nitrogen Addition Does Not Increase Soil Carbon Storage or Cycling Across Eight<br>Temperate Forest and Grassland Sites on a Sandy Outwash Plain. Ecosystems, 2019, 22, 1592-1605.                            | 3.4 | 16        |
| 634 | Tree diversity effects on soil microbial biomass and respiration are context dependent across forest diversity experiments. Global Ecology and Biogeography, 2022, 31, 872-885.                                         | 5.8 | 16        |
| 635 | Frequency and timing of stem removal influence Corylus americana resprout vigor in oak savanna.<br>Forest Ecology and Management, 2011, 261, 136-142.                                                                   | 3.2 | 15        |
| 636 | Explaining ontogenetic shifts in root–shoot scaling with transient dynamics. Annals of Botany, 2014, 114, 513-524.                                                                                                      | 2.9 | 15        |
| 637 | Evolutionary patterns in the geographic range size of Atlantic Forest plants. Ecography, 2020, 43, 1510-1520.                                                                                                           | 4.5 | 15        |
| 638 | Differential Above- and Below-ground Biomass Accumulation of European Pinus sylvestris<br>Populations in a 12-year-old Provenance Experiment. Scandinavian Journal of Forest Research, 1999, 14,<br>7-17.               | 1.4 | 15        |
| 639 | Contrasting responses of woody and grassland ecosystems to increased CO2 as water supply varies.<br>Nature Ecology and Evolution, 2022, 6, 315-323.                                                                     | 7.8 | 15        |
| 640 | Geographic origin of Pinus sylvestris populations influences the effects of air pollution on flowering and growth. Water, Air, and Soil Pollution, 1992, 62, 201-212.                                                   | 2.4 | 14        |
| 641 | Needle CO2 exchange, structure and defense traits in relation to needle age in Pinus heldreichii<br>Christ – a relict of Tertiary flora. Trees - Structure and Function, 1997, 12, 82-89.                               | 1.9 | 14        |
| 642 | Lost in trait space: species-poor communities are inflexible in properties that drive ecosystem functioning. Advances in Ecological Research, 2019, , 91-131.                                                           | 2.7 | 14        |
| 643 | Warming and disturbance alter soil microbiome diversity and function in a northern forest ecotone.<br>FEMS Microbiology Ecology, 2020, 96, .                                                                            | 2.7 | 14        |
| 644 | Phenology matters: Extended spring and autumn canopy cover increases biotic resistance of forests<br>to invasion by common buckthorn (Rhamnus cathartica). Forest Ecology and Management, 2020, 464,<br>118067.         | 3.2 | 14        |
| 645 | Further reâ€analyses looking for effects of phylogenetic diversity on community biomass and stability.<br>Functional Ecology, 2015, 29, 1607-1610.                                                                      | 3.6 | 13        |
| 646 | Experimentally testing the species-habitat size relationship on soil bacteria: A proof of concept. Soil<br>Biology and Biochemistry, 2018, 123, 200-206.                                                                | 8.8 | 13        |
| 647 | An open-air system for exposing forest-canopy branches to ozone pollution. Plant, Cell and<br>Environment, 1994, 17, 211-218.                                                                                           | 5.7 | 12        |
| 648 | Fine root classification matters: nutrient levels in different functional categories, orders and<br>diameters of roots in boreal Pinus sylvestris across a latitudinal gradient. Plant and Soil, 2020, 447,<br>507-520. | 3.7 | 12        |

| #   | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 649 | Climate-Biome Envelope Shifts Create Enormous Challenges and Novel Opportunities for Conservation. Forests, 2020, 11, 1015.                                                                                                            | 2.1  | 12        |
| 650 | A graphical null model for scaling biodiversity–ecosystem functioning relationships. Journal of<br>Ecology, 2021, 109, 1549-1560.                                                                                                      | 4.0  | 12        |
| 651 | Projected impacts of climate and land use changes on the habitat of Atlantic Forest plants in Brazil.<br>Global Ecology and Biogeography, 2021, 30, 2016-2028.                                                                         | 5.8  | 12        |
| 652 | Fire and Vegetation Effects on Productivity and Nitrogen Cycling across a Forest-Grassland<br>Continuum. Ecology, 2001, 82, 1703.                                                                                                      | 3.2  | 11        |
| 653 | Does the exception prove the rule? (Reply). Nature, 2007, 445, E10-E11.                                                                                                                                                                | 27.8 | 11        |
| 654 | Some plants like it warmer: Increased growth of three selected invasive plant species in soils with a history of experimental warming. Pedobiologia, 2014, 57, 57-60.                                                                  | 1.2  | 11        |
| 655 | Biodiversity bottleneck: seedling establishment under changing climatic conditions at the boreal–temperate ecotone. Plant Ecology, 2018, 219, 691-704.                                                                                 | 1.6  | 11        |
| 656 | Disease and fire interact to influence transitions between savanna–forest ecosystems over a<br>multiâ€decadal experiment. Ecology Letters, 2021, 24, 1007-1017.                                                                        | 6.4  | 11        |
| 657 | Wheat respiratory O2 consumption falls with night warming alongside greater respiratory CO2 loss and reduced biomass. Journal of Experimental Botany, 2022, 73, 915-926.                                                               | 4.8  | 11        |
| 658 | Reduction in soybean yield after exposure to ozone and sulfur dioxide using a linear gradient exposure technique. Water, Air, and Soil Pollution, 1982, 17, 29-36.                                                                     | 2.4  | 11        |
| 659 | Whole-plant CO2 exchange of seedlings of two Pinus sylvestris L. provenances grown under<br>simulated photoperiodic conditions of 50� and 60� N. Trees - Structure and Function, 1992, 6, 225.                                         | 1.9  | 10        |
| 660 | Diversity and stability in plant communities (Reply). Nature, 2007, 446, E7-E8.                                                                                                                                                        | 27.8 | 10        |
| 661 | Springtail community structure is influenced by functional traits but not biogeographic origin of<br>leaf litter in soils of novel forest ecosystems. Proceedings of the Royal Society B: Biological Sciences,<br>2018, 285, 20180647. | 2.6  | 10        |
| 662 | Short- and long-term responses of photosynthetic capacity to temperature in four boreal tree species in a free-air warming and rainfall manipulation experiment. Tree Physiology, 2021, 41, 89-102.                                    | 3.1  | 10        |
| 663 | Remarkable Similarity in Timing of Absorptive Fine-Root Production Across 11 Diverse Temperate Tree Species in a Common Garden. Frontiers in Plant Science, 2020, 11, 623722.                                                          | 3.6  | 10        |
| 664 | Tree species diversity enhances plant-soil interactions in a temperate forest in northeast China. Forest<br>Ecology and Management, 2021, 491, 119160.                                                                                 | 3.2  | 10        |
| 665 | Earthworm invasion into previously earthworm-free temperate and boreal forests. , 2006, , 35-45.                                                                                                                                       |      | 10        |
| 666 | High plant species diversity indirectly mitigates CO2- and N-induced effects on grasshopper growth.<br>Acta Oecologica, 2008, 34, 194-201.                                                                                             | 1.1  | 9         |

| #   | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 667 | Elevated carbon dioxide is predicted to promote coexistence among competing species in a traitâ€based model. Ecology and Evolution, 2015, 5, 4717-4733.                                                                                 | 1.9  | 9         |
| 668 | Consistent leaf respiratory response to experimental warming of three North American deciduous trees: a comparison across seasons, years, habitats and sites. Tree Physiology, 2016, 37, 285-300.                                       | 3.1  | 9         |
| 669 | Reply to Adams et al.: Empirical versus process-based approaches to modeling temperature responses of leaf respiration. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5996-E5997.        | 7.1  | 9         |
| 670 | Species-specific flowering phenology responses to experimental warming and drought alter<br>herbaceous plant species overlap in a temperate–boreal forest community. Annals of Botany, 2021, 127,<br>203-211.                           | 2.9  | 9         |
| 671 | Vessel diameter and related hydraulic traits of 31Eucalyptusspecies arrayed along a gradient of water availability. Ecology, 2016, 97, 1626-1626.                                                                                       | 3.2  | 8         |
| 672 | Intraspecies variation in a widely distributed tree species regulates the responses of soil microbiome to different temperature regimes. Environmental Microbiology Reports, 2018, 10, 167-178.                                         | 2.4  | 8         |
| 673 | Do plants increase resource acquisition potential in the face of resource shortfalls, and if so, how?.<br>New Phytologist, 2018, 219, 1142-1144.                                                                                        | 7.3  | 8         |
| 674 | Temporal variability in production is not consistently affected by global change drivers across herbaceous-dominated ecosystems. Oecologia, 2020, 194, 735-744.                                                                         | 2.0  | 8         |
| 675 | Assessing the relevant time frame for temperature acclimation of leaf dark respiration: A test with 10 boreal and temperate species. Global Change Biology, 2021, 27, 2945-2958.                                                        | 9.5  | 8         |
| 676 | Grand challenges in biodiversity–ecosystem functioning research in the era of science–policy<br>platforms require explicit consideration of feedbacks. Proceedings of the Royal Society B: Biological<br>Sciences, 2021, 288, 20210783. | 2.6  | 8         |
| 677 | Living on the edge: Ecology of an incipient Betula-fungal community growing on brick walls. Trees -<br>Structure and Function, 2007, 21, 239-247.                                                                                       | 1.9  | 7         |
| 678 | BIOMASS AND TOXICITY RESPONSES OF POISON IVY (TOXICODENDRON RADICANS) TO ELEVATED ATMOSPHERIC CO2: COMMENT. Ecology, 2008, 89, 581-585.                                                                                                 | 3.2  | 7         |
| 679 | Temperature and leaf nitrogen affect performance of plant species at range overlap. Ecosphere, 2015,<br>6, art186.                                                                                                                      | 2.2  | 7         |
| 680 | Response to Comment on "Unexpected reversal of C <sub>3</sub> versus C <sub>4</sub> grass response to elevated CO <sub>2</sub> during a 20-year field experiment― Science, 2018, 361, .                                                 | 12.6 | 7         |
| 681 | Ontogenetic patterns of leaf CO2 exchange, morphology and chemistry in Betula pendula trees. Trees -<br>Structure and Function, 2000, 14, 0271-0281.                                                                                    | 1.9  | 7         |
| 682 | Reply to Fisher: Nitrogen–albedo relationship in forests remains robust and thought-provoking.<br>Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, .                                         | 7.1  | 6         |
| 683 | Microbial assimilation of new photosynthate is altered by plant species richness and nitrogen deposition. Biogeochemistry, 2009, 94, 233-242.                                                                                           | 3.5  | 6         |
| 684 | Size-related shifts in carbon gain and growth responses to light differ among rainforest evergreens of contrasting shade tolerance. Oecologia, 2018, 187, 609-623.                                                                      | 2.0  | 6         |

| #   | Article                                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 685 | A tale of two studies: Detection and attribution of the impacts of invasive plants in observational surveys. Journal of Applied Ecology, 2018, 55, 1780-1789.                                                                                                                        | 4.0  | 6         |
| 686 | Invasive plants in Minnesota are "joining the locals†A traitâ€based analysis. Journal of Vegetation<br>Science, 2018, 29, 746-755.                                                                                                                                                   | 2.2  | 6         |
| 687 | Increasing Functional Diversity in a Global Land Surface Model Illustrates Uncertainties Related to<br>Parameter Simplification. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .                                                                                     | 3.0  | 6         |
| 688 | Variation in response of five identical steady-state porometers1. Plant, Cell and Environment, 1988, 11, 785-786.                                                                                                                                                                    | 5.7  | 5         |
| 689 | Amur maple (Acer ginnala): an emerging invasive plant in North America. Biological Invasions, 2018, 20, 2997-3007.                                                                                                                                                                   | 2.4  | 5         |
| 690 | Increased light availability due to forestry mowing of invasive European buckthorn promotes its regeneration. Restoration Ecology, 2020, 28, 475-482.                                                                                                                                | 2.9  | 5         |
| 691 | Improving collaborations between empiricists and modelers to advance grassland community dynamics in ecosystem models. New Phytologist, 2020, 228, 1467-1471.                                                                                                                        | 7.3  | 5         |
| 692 | A fingerprint of climate change across pine forests of Sweden. Ecology Letters, 2020, 23, 1739-1746.                                                                                                                                                                                 | 6.4  | 5         |
| 693 | Revegetation to slow buckthorn reinvasion: strengths and limits of evaluating management techniques retrospectively. Restoration Ecology, 2021, 29, .                                                                                                                                | 2.9  | 5         |
| 694 | BII-Implementation: The causes and consequences of plant biodiversity across scales in a rapidly changing world. Research Ideas and Outcomes, 0, 7, .                                                                                                                                | 1.0  | 5         |
| 695 | Phenological niche overlap between invasive buckthorn (Rhamnus cathartica) and native woody species. Forest Ecology and Management, 2021, 498, 119568.                                                                                                                               | 3.2  | 5         |
| 696 | Wind and fire: Rapid shifts in tree community composition following multiple disturbances in the southern boreal forest. Ecosphere, 2022, 13, .                                                                                                                                      | 2.2  | 5         |
| 697 | Forest value: More than commercial—Response. Science, 2016, 354, 1541-1542.                                                                                                                                                                                                          | 12.6 | 4         |
| 698 | Response to Comment on "Mycorrhizal association as a primary control of the CO <sub>2</sub><br>fertilization effect― Science, 2017, 355, 358-358.                                                                                                                                    | 12.6 | 4         |
| 699 | Coppicing affects growth, root:shoot relations and ecophysiology of potted Quercus rubra seedlings. Physiologia Plantarum, 1993, 89, 751-760.                                                                                                                                        | 5.2  | 4         |
| 700 | Century-scale wood nitrogen isotope trajectories from an oak savanna with variable fire frequencies.<br>Biogeosciences, 2020, 17, 4509-4522.                                                                                                                                         | 3.3  | 4         |
| 701 | Nitrogen concentration and physical properties are key drivers of woody tissue respiration. Annals of<br>Botany, 2022, 129, 633-646.                                                                                                                                                 | 2.9  | 4         |
| 702 | Accelerating a Silvicultural Metamorphosis? <b>A Critique of Silviculture: Managing for<br/>Complexity</b> . Klaus J. Puettmann , Christian Messier , and K. David Coates . Island Press, 2008. 206 pp.,<br>illus. \$30.00 (ISBN 9781597261463 paper) BioScience, 2009, 59, 807-809. | 4.9  | 3         |

| #   | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 703 | Zanne et al. reply. Nature, 2015, 521, E6-E7.                                                                                                                                                             | 27.8 | 3         |
| 704 | Effects of soil warming history on the performances of congeneric temperate and boreal herbaceous plant species and their associations with soil biota. Journal of Plant Ecology, 2016, , rtw066.         | 2.3  | 3         |
| 705 | Response to Comment on "Unexpected reversal of C <sub>3</sub> versus C <sub>4</sub> grass<br>response to elevated CO <sub>2</sub> during a 20-year field experiment― Science, 2018, 361, .                | 12.6 | 3         |
| 706 | Non-symbiotic soil microbes are more strongly influenced by altered tree biodiversity than<br>arbuscular mycorrhizal fungi during initial forest establishment. FEMS Microbiology Ecology, 2019,<br>95, . | 2.7  | 3         |
| 707 | An alternative, portable method for extracting microarthropods from forest soil. Acta Oecologica, 2020, 109, 103655.                                                                                      | 1.1  | 3         |
| 708 | Fosamine ammonium impacts on the targeted invasive shrub Rhamnus cathartica and non-target herbs.<br>Invasive Plant Science and Management, 2020, 13, 210-215.                                            | 1.1  | 3         |
| 709 | Updated respiration routines alter spatio-temporal patterns of carbon cycling in a global land surface model. Environmental Research Letters, 2021, 16, 104015.                                           | 5.2  | 3         |
| 710 | Assessing Environmental Changes in Grasslands. Science, 2003, 299, 1844-1845.                                                                                                                             | 12.6 | 2         |
| 711 | Leaf to Landscape. Ecological Studies, 2004, , 207-227.                                                                                                                                                   | 1.2  | 2         |
| 712 | Seeing the Canopy for the Branches: Improved Within Canopy Scaling of Leaf Nitrogen. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002237.                                              | 3.8  | 2         |
| 713 | Exotics are more complementary over time in tree biodiversity–ecosystem functioning experiments.<br>Functional Ecology, 2021, 35, 2550.                                                                   | 3.6  | 2         |
| 714 | Plant Biodiversity and Responses to Elevated Carbon Dioxide. Global Change - the IGBP Series, 2007, ,<br>103-112.                                                                                         | 2.1  | 2         |
| 715 | Altered root growth and plant chemistry of. Trees - Structure and Function, 1996, 10, 135.                                                                                                                | 1.9  | 2         |
| 716 | Coppicing alters ecophysiology of Quercus rubra saplings in Wisconsin forest openings. Physiologia<br>Plantarum, 1993, 89, 741-750.                                                                       | 5.2  | 2         |
| 717 | Explanations for nitrogen decline—Response. Science, 2022, 376, 1170-1170.                                                                                                                                | 12.6 | 2         |
| 718 | Sources of variation in porometry data. Plant, Cell and Environment, 1990, 13, 879-879.                                                                                                                   | 5.7  | 1         |
| 719 | Response to comment on "Climate legacies drive global soil carbon stocks in terrestrial ecosystem―<br>Science Advances, 2018, 4, eaat1296.                                                                | 10.3 | 1         |
| 720 | Promise and pitfalls of modeling grassland soil moisture in a free-air CO2 enrichment experiment (BioCON) using the SHAW model. Pedosphere, 2021, 31, 783-795.                                            | 4.0  | 1         |

| #   | Article                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 721 | Influence of Logging, Fire, and Forest Type on Biodiversity and Productivity in Southern Boreal<br>Forests. Ecology, 2001, 82, 2731.                               | 3.2 | 1         |
| 722 | Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function. Global Change Biology, 2007, .  | 9.5 | 1         |
| 723 | Seedbed and moisture availability determine safe sites for early Thuja occidentalis (Cupressaceae)<br>regeneration. American Journal of Botany, 2000, 87, 1807-14. | 1.7 | 1         |
| 724 | Patterns of belowground overyielding and fineâ€root biomass in native and exotic angiosperms and gymnosperms. Oikos, 0, , .                                        | 2.7 | 1         |
| 725 | A reply to Jarchow and Liebman. Frontiers in Ecology and the Environment, 2011, 9, 262-263.                                                                        | 4.0 | 0         |
| 726 | Industrial Pollutants Tend to Increase Genetic Diversity: Evidence from Field-Grown European Scots<br>Pine Populations. , 1999, , 395-402.                         |     | 0         |