Frank M You

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9300018/publications.pdf

Version: 2024-02-01

67 papers

3,698 citations

185998
28
h-index

58 g-index

77 all docs

77
docs citations

77 times ranked 4178 citing authors

#	Article	IF	Citations
1	Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature, 2017, 551, 498-502.	13.7	563
2	<i>Aegilops tauschii</i> single nucleotide polymorphisms shed light on the origins of wheat Dâ€genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. New Phytologist, 2013, 198, 925-937.	3.5	243
3	High-throughput fingerprinting of bacterial artificial chromosomes using the snapshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics, 2003, 82, 378-389.	1.3	242
4	Disease Resistance Gene Analogs (RGAs) in Plants. International Journal of Molecular Sciences, 2015, 16, 19248-19290.	1.8	234
5	A 4-gigabase physical map unlocks the structure and evolution of the complex genome of $\langle i \rangle$ Aegilops tauschii, $\langle i \rangle$ the wheat D-genome progenitor. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7940-7945.	3.3	214
6	Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes. BMC Genomics, 2010, 11, 702.	1.2	189
7	RGAugury: a pipeline for genome-wide prediction of resistance gene analogs (RGAs) in plants. BMC Genomics, 2016, 17, 852.	1.2	162
8	Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence. BMC Genomics, 2011, 12, 59.	1.2	146
9	Chromosomeâ€scale pseudomolecules refined by optical, physical and genetic maps in flax. Plant Journal, 2018, 95, 371-384.	2.8	119
10	Synteny analysis in Rosids with a walnut physical map reveals slow genome evolution in long-lived woody perennials. BMC Genomics, 2015, 16, 707.	1.2	83
11	Genome wide SNP discovery in flax through next generation sequencing of reduced representation libraries. BMC Genomics, 2012, 13, 684.	1.2	82
12	Sequencing a Juglans regia × J. microcarpa hybrid yields high-quality genome assemblies of parental species. Horticulture Research, 2019, 6, 55.	2.9	67
13	Comparative analysis of codon usage patterns in chloroplast genomes of the Asteraceae family. Plant Molecular Biology Reporter, 2014, 32, 828-840.	1.0	61
14	Dominant inhibition of awn development by a putative zincâ€finger transcriptional repressor expressed at the <i>B1</i> locus in wheat. New Phytologist, 2020, 225, 340-355.	3.5	58
15	Genetic Variability of 27 Traits in a Core Collection of Flax (Linum usitatissimum L.). Frontiers in Plant Science, 2017, 8, 1636.	1.7	56
16	Genome-Wide Association Studies for Pasmo Resistance in Flax (Linum usitatissimum L.). Frontiers in Plant Science, 2018, 9, 1982.	1.7	56
17	Genetic variation of six desaturase genes in flax and their impact on fatty acid composition. Theoretical and Applied Genetics, 2013, 126, 2627-2641.	1.8	53
18	Highly predictive SNP markers for efficient selection of the wheat leaf rust resistance gene Lr16. BMC Plant Biology, 2017, 17, 45.	1.6	53

#	Article	IF	CITATIONS
19	Genome-Wide Association Study and Selection Signatures Detect Genomic Regions Associated with Seed Yield and Oil Quality in Flax. International Journal of Molecular Sciences, 2018, 19, 2303.	1.8	49
20	Genome-wide SNP discovery in walnut with an AGSNP pipeline updated for SNP discovery in allogamous organisms. BMC Genomics, 2012, 13, 354.	1.2	47
21	QTL for fatty acid composition and yield in linseed (Linum usitatissimum L.). Theoretical and Applied Genetics, 2015, 128, 965-984.	1.8	47
22	Evaluation of Genomic Prediction for Pasmo Resistance in Flax. International Journal of Molecular Sciences, 2019, 20, 359.	1.8	45
23	A BAC-based physical map of Brachypodium distachyon and its comparative analysis with rice and wheat. BMC Genomics, 2009, 10, 496.	1.2	42
24	Genome-Wide Association Analysis of Mucilage and Hull Content in Flax (Linum usitatissimum L.) Seeds. International Journal of Molecular Sciences, 2018, 19, 2870.	1.8	42
25	Genome-wide identification of ATP binding cassette (ABC) transporter and heavy metal associated (HMA) gene families in flax (Linum usitatissimum L.). BMC Genomics, 2020, 21, 722.	1.2	42
26	Pseudogenes and Their Genome-Wide Prediction in Plants. International Journal of Molecular Sciences, 2016, 17, 1991.	1.8	34
27	Genetic mapping of SrCad and SNP marker development for marker-assisted selection of Ug99 stem rust resistance in wheat. Theoretical and Applied Genetics, 2016, 129, 1373-1382.	1.8	33
28	Structural variation and rates of genome evolution in the grass family seen through comparison of sequences of genomes greatly differing in size. Plant Journal, 2018, 95, 487-503.	2.8	31
29	GSP: a web-based platform for designing genome-specific primers in polyploids. Bioinformatics, 2016, 32, 2382-2383.	1.8	30
30	Identification of New Leaf Rust Resistance Loci in Wheat and Wild Relatives by Array-Based SNP Genotyping and Association Genetics. Frontiers in Plant Science, 2020, 11, 583738.	1.7	29
31	Mapping and validation of quantitative trait loci associated with wheat yellow mosaic bymovirus resistance in bread wheat. Theoretical and Applied Genetics, 2012, 124, 177-188.	1.8	28
32	Characterizing the walnut genome through analyses of BAC end sequences. Plant Molecular Biology, 2012, 78, 95-107.	2.0	27
33	Rht23 (5Dq′) likely encodes a Q homeologue with pleiotropic effects on plant height and spike compactness. Theoretical and Applied Genetics, 2018, 131, 1825-1834.	1.8	27
34	Evaluation of variant calling tools for large plant genome re-sequencing. BMC Bioinformatics, 2020, 21, 360.	1.2	27
35	Accuracy of genomic selection in biparental populations of flax (Linum usitatissimum L.). Crop Journal, 2016, 4, 290-303.	2.3	26
36	Mapping Quantitative Trait Loci onto Chromosome-Scale Pseudomolecules in Flax. Methods and Protocols, 2020, 3, 28.	0.9	25

#	Article	IF	Citations
37	Genetics and mapping of seedling resistance to Ug99 stem rust in winter wheat cultivar Triumph 64 and differentiation of SrTmp, SrCad, and Sr42. Theoretical and Applied Genetics, 2016, 129, 2171-2177.	1.8	24
38	PIECE 2.0: an update for the plant gene structure comparison and evolution database. Nucleic Acids Research, 2017, 45, 1015-1020.	6.5	24
39	The Complex Genetic Architecture of Early Root and Shoot Traits in Flax Revealed by Genome-Wide Association Analyses. Frontiers in Plant Science, 2019, 10, 1483.	1.7	24
40	Loci harboring genes with important role in drought and related abiotic stress responses in flax revealed by multiple GWAS models. Theoretical and Applied Genetics, 2021, 134, 191-212.	1.8	23
41	Pedigrees and genetic base of flax cultivars registered in Canada. Canadian Journal of Plant Science, 2016, 96, 837-852.	0.3	22
42	The genetic structure of flax illustrates environmental and anthropogenic selections that gave rise to its eco-geographical adaptation. Molecular Phylogenetics and Evolution, 2019, 137, 22-32.	1,2	22
43	Genomic Prediction Accuracy of Seven Breeding Selection Traits Improved by QTL Identification in Flax. International Journal of Molecular Sciences, 2020, 21, 1577.	1.8	21
44	$\mbox{\ensuremath{\mbox{\sc i}}}\mbox{\sc Aegilops tauschii}\mbox{\sc /i}\mbox{\sc genome}$ genome assembly Aet v5.0 features greater sequence contiguity and improved annotation. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	19
45	UGT74S1 is the key player in controlling secoisolariciresinol diglucoside (SDG) formation in flax. BMC Plant Biology, 2017, 17, 35.	1.6	18
46	Estimation of genetic parameters and their sampling variances for quantitative traits in the type 2 modified augmented design. Crop Journal, 2016, 4, 107-118.	2.3	17
47	A saturated SNP linkage map for the orange wheat blossom midge resistance gene Sm1. Theoretical and Applied Genetics, 2016, 129, 1507-1517.	1.8	15
48	Genome-wide regulatory gene-derived SSRs reveal genetic differentiation and population structure in fiber flax genotypes. Journal of Applied Genetics, 2019, 60, 13-25.	1.0	15
49	Patterns of SSR variation in bread wheat (Triticum aestivum L.) seeds under ex situ genebank storage and accelerated ageing. Genetic Resources and Crop Evolution, 2017, 64, 277-290.	0.8	12
50	Solar Radiation-Associated Adaptive SNP Genetic Differentiation in Wild Emmer Wheat, Triticum dicoccoides. Frontiers in Plant Science, 2017, 8, 258.	1.7	12
51	A phenylpropanoid diglyceride associates with the leaf rust resistance Lr34res gene in wheat. Phytochemistry, 2020, 178, 112456.	1.4	12
52	Drought response of flax accessions and identification of quantitative trait nucleotides (QTNs) governing agronomic and root traits by genome-wide association analysis. Molecular Breeding, 2020, 40, 1.	1.0	12
53	Insights into the Genetic Architecture and Genomic Prediction of Powdery Mildew Resistance in Flax (Linum usitatissimum L.). International Journal of Molecular Sciences, 2022, 23, 4960.	1.8	12
54	A new implementation of high-throughput five-dimensional clone pooling strategy for BAC library screening. BMC Genomics, 2010, 11, 692.	1,2	10

#	Article	IF	CITATIONS
55	Computational Identification and Comparative Analysis of miRNAs in Wheat Group 7 Chromosomes. Plant Molecular Biology Reporter, 2014, 32, 487-500.	1.0	10
56	A fineâ€scale genetic linkage map reveals genomic regions associated with economic traits in walnut (<i>Juglans regia</i>). Plant Breeding, 2019, 138, 635-646.	1.0	10
57	Genome-wide introgression from a bread wheat × Lophopyrum elongatum amphiploid into wheat. Theoretical and Applied Genetics, 2020, 133, 1227-1241.	1.8	7
58	Validation and diagnostic marker development for a genetic region associated with wheat yellow mosaic virus resistance. Euphytica, 2016, 211, 91-101.	0.6	6
59	Genome Assembly of the Canadian two-row Malting Barley cultivar AAC Synergy. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	6
60	Development of Microsatellite Markers in Tung Tree (Vernicia fordii) Using Cassava Genomic Sequences. Plant Molecular Biology Reporter, 2015, 33, 893-904.	1.0	4
61	Genome-wide signatures in flax pinpoint to adaptive evolution along its ecological gradient. Frontiers in Bioscience, 2021, 26, 1559-1571.	0.8	4
62	Flax (Linum usitatissimum L.) Genomics and Breeding., 2019,, 277-317.		3
63	Linum Genetic Markers, Maps, and QTL Discovery. Plant Genetics and Genomics: Crops and Models, 2019, , 97-117.	0.3	3
64	Quantitative Trait Locus Mapping of Marsh Spot Disease Resistance in Cranberry Common Bean (Phaseolus vulgaris L.). International Journal of Molecular Sciences, 2022, 23, 7639.	1.8	3
65	Inheritance of marsh spot disease resistance in cranberry common bean (Phaseolus vulgaris L.). Crop Journal, 2022, 10, 456-467.	2.3	2
66	Designing Genomic Solutions to Enhance Abiotic Stress Resistance in Flax., 2022,, 251-283.		2
67	Fine-mapping of a putative glutathione S-transferase (GST) gene responsible for yellow seed colour in flax (Linum usitatissimum). BMC Research Notes, 2022, 15, 72.	0.6	2