Dimitra L Capone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9299754/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From Wine to Pepper: Rotundone, an Obscure Sesquiterpene, Is a Potent Spicy Aroma Compound. Journal of Agricultural and Food Chemistry, 2008, 56, 3738-3744.	2.4	220
2	Stable isotope dilution analysis of wine fermentation products by HS-SPME-GC-MS. Analytical and Bioanalytical Chemistry, 2005, 381, 937-947.	1.9	178
3	Evolution of 3-Mercaptohexanol, Hydrogen Sulfide, and Methyl Mercaptan during Bottle Storage of Sauvignon blanc Wines. Effect of Glutathione, Copper, Oxygen Exposure, and Closure-Derived Oxygen. Journal of Agricultural and Food Chemistry, 2011, 59, 2564-2572.	2.4	165
4	Engineering volatile thiol release inSaccharomyces cerevisiae for improved wine aroma. Yeast, 2007, 24, 561-574.	0.8	139
5	Terpenoids and their role in wine flavour: recent advances. Australian Journal of Grape and Wine Research, 2015, 21, 582-600.	1.0	119
6	The impact of closure type and storage conditions on the composition, colour and flavour properties of a Riesling and a wooded Chardonnay wine during five years' storage. Australian Journal of Grape and Wine Research, 2005, 11, 369-377.	1.0	110
7	Simple Quantitative Determination of Potent Thiols at Ultratrace Levels in Wine by Derivatization and High-Performance Liquid Chromatography–Tandem Mass Spectrometry (HPLC-MS/MS) Analysis. Analytical Chemistry, 2015, 87, 1226-1231.	3.2	101
8	Analysis of Precursors to Wine Odorant 3-Mercaptohexan-1-ol Using HPLC-MS/MS: Resolution and Quantitation of Diastereomers of 3- <i>S</i> -Cysteinylhexan-1-ol and 3- <i>S</i> -Glutathionylhexan-1-ol. Journal of Agricultural and Food Chemistry, 2010, 58, 1390-1395.	2.4	89
9	Introducing a New Breed of Wine Yeast: Interspecific Hybridisation between a Commercial Saccharomyces cerevisiae Wine Yeast and Saccharomyces mikatae. PLoS ONE, 2013, 8, e62053.	1.1	84
10	Chemical and sensory profiles of rosé wines from Australia. Food Chemistry, 2016, 196, 682-693.	4.2	79
11	Aroma Precursors in Grapes and Wine: Flavor Release during Wine Production and Consumption. Journal of Agricultural and Food Chemistry, 2018, 66, 2281-2286.	2.4	79
12	Isolation and Identification of 2-Methoxy-3,5-dimethylpyrazine, a Potent Musty Compound from Wine Corks. Journal of Agricultural and Food Chemistry, 2004, 52, 5425-5430.	2.4	70
13	Quantitative analysis of geraniol, nerol, linalool, and α-terpineol in wine. Analytical and Bioanalytical Chemistry, 2003, 375, 517-522.	1.9	69
14	Synthesis of Wine Thiol Conjugates and Labeled Analogues: Fermentation of the Glutathione Conjugate of 3-Mercaptohexan-1-ol Yields the Corresponding Cysteine Conjugate and Free Thiol. Journal of Agricultural and Food Chemistry, 2010, 58, 1383-1389.	2.4	68
15	Application of a Modified Method for 3-Mercaptohexan-1-ol Determination To Investigate the Relationship between Free Thiol and Related Conjugates in Grape Juice and Wine. Journal of Agricultural and Food Chemistry, 2011, 59, 4649-4658.	2.4	68
16	Quantitative Analysis by GC-MS/MS of 18 Aroma Compounds Related to Oxidative Off-Flavor in Wines. Journal of Agricultural and Food Chemistry, 2015, 63, 3394-3401.	2.4	67
17	Effects of Transporting and Processing Sauvignon blanc Grapes on 3-Mercaptohexan-1-ol Precursor Concentrations. Journal of Agricultural and Food Chemistry, 2011, 59, 4659-4667.	2.4	65
18	Absorption of chloroanisoles from wine by corks and by other materials. Australian Journal of Grape and Wine Research, 1999, 5, 91-98.	1.0	62

DIMITRA L CAPONE

#	Article	IF	CITATIONS
19	The influence of ascorbic acid on the composition, colour and flavour properties of a Riesling and a wooded Chardonnay wine during five years' storage. Australian Journal of Grape and Wine Research, 2005, 11, 355-368.	1.0	60
20	Engineering Saccharomyces cerevisiae To Release 3-Mercaptohexan-1-ol during Fermentation through Overexpression of an S. cerevisiae Gene, <i>STR3</i> , for Improvement of Wine Aroma. Applied and Environmental Microbiology, 2011, 77, 3626-3632.	1.4	60
21	Evolution and Occurrence of 1,8-Cineole (Eucalyptol) in Australian Wine. Journal of Agricultural and Food Chemistry, 2011, 59, 953-959.	2.4	59
22	Vineyard and Fermentation Studies To Elucidate the Origin of 1,8-Cineole in Australian Red Wine. Journal of Agricultural and Food Chemistry, 2012, 60, 2281-2287.	2.4	59
23	(E)-1-(2,3,6-Trimethylphenyl)buta-1,3-diene:Â A Potent Grape-Derived Odorant in Wine. Journal of Agricultural and Food Chemistry, 2003, 51, 7759-7763.	2.4	54
24	Volatile and Color Composition of Young and Model-Aged Shiraz Wines As Affected by Diammonium Phosphate Supplementation Before Alcoholic Fermentation. Journal of Agricultural and Food Chemistry, 2008, 56, 9175-9182.	2.4	50
25	Effects on 3-Mercaptohexan-1-ol Precursor Concentrations from Prolonged Storage of Sauvignon Blanc Grapes Prior to Crushing and Pressing. Journal of Agricultural and Food Chemistry, 2012, 60, 3515-3523.	2.4	49
26	Identification and Quantitation of 3- <i>S</i> -Cysteinylglycinehexan-1-ol (Cysgly-3-MH) in Sauvignon blanc Grape Juice by HPLC-MS/MS. Journal of Agricultural and Food Chemistry, 2011, 59, 11204-11210.	2.4	47
27	Impact of Lachancea thermotolerans on chemical composition and sensory profiles of Merlot wines. Food Chemistry, 2021, 349, 129015.	4.2	47
28	Production of indole by wine-associated microorganisms under oenological conditions. Food Microbiology, 2010, 27, 685-690.	2.1	44
29	Permeation of 2,4,6-trichloroanisole through cork closures in wine bottles. Australian Journal of Grape and Wine Research, 2002, 8, 196-199.	1.0	43
30	Odor Detection Thresholds and Enantiomeric Distributions of Several 4-Alkyl Substituted γ-Lactones in Australian Red Wine. Journal of Agricultural and Food Chemistry, 2009, 57, 2462-2467.	2.4	42
31	Synthesis of the Individual Diastereomers of the Cysteine Conjugate of 3-Mercaptohexanol (3-MH). Journal of Agricultural and Food Chemistry, 2008, 56, 3758-3763.	2.4	40
32	Absorption of 2,4,6-trichloroanisole by wine corks via the vapour phase in an enclosed environment. Australian Journal of Grape and Wine Research, 2001, 7, 40-46.	1.0	38
33	Authentication of the geographical origin of Australian Cabernet Sauvignon wines using spectrofluorometric and multi-element analyses with multivariate statistical modelling. Food Chemistry, 2021, 335, 127592.	4.2	38
34	Unravelling glutathione conjugate catabolism in Saccharomyces cerevisiae: the role of glutathione/dipeptide transporters and vacuolar function in the release of volatile sulfur compounds 3-mercaptohexan-1-ol and 4-mercapto-4-methylpentan-2-one. Applied Microbiology and Biotechnology. 2015. 99. 9709-9722.	1.7	37
35	Impact of Bottle Aging on Smoke-Tainted Wines from Different Grape Cultivars. Journal of Agricultural and Food Chemistry, 2017, 65, 4146-4152.	2.4	37
36	The role of potent thiols in Chardonnay wine aroma. Australian Journal of Grape and Wine Research, 2018, 24, 38-50.	1.0	37

DIMITRA L CAPONE

#	Article	IF	CITATIONS
37	Modulation of volatile thiol and ester aromas by modified wine yeast. Developments in Food Science, 2006, , 113-116.	0.0	36
38	Quantification of Several 4-Alkyl Substituted γ-Lactones in Australian Wines. Journal of Agricultural and Food Chemistry, 2009, 57, 348-352.	2.4	36
39	Hydroxycinnamic Acid Ethyl Esters as Precursors to Ethylphenols in Wine. Journal of Agricultural and Food Chemistry, 2012, 60, 2293-2298.	2.4	35
40	Quantitative Analysis, Occurrence, and Stability of (E)-1-(2,3,6-Trimethylphenyl)buta-1,3-diene in Wine. Journal of Agricultural and Food Chemistry, 2005, 53, 3584-3591.	2.4	34
41	Uptake and Glycosylation of Smoke-Derived Volatile Phenols by Cabernet Sauvignon Grapes and Their Subsequent Fate during Winemaking. Molecules, 2020, 25, 3720.	1.7	32
42	Fate of Damascenone in Wine:Â The Role of SO2. Journal of Agricultural and Food Chemistry, 2004, 52, 8127-8131.	2.4	31
43	Formation of Damascenone under both Commercial and Model Fermentation Conditions. Journal of Agricultural and Food Chemistry, 2011, 59, 1338-1343.	2.4	31
44	Riesling acetal is a precursor to 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) in wine. Australian Journal of Grape and Wine Research, 2009, 15, 93-96.	1.0	30
45	A Review of Wine Authentication Using Spectroscopic Approaches in Combination with Chemometrics. Molecules, 2021, 26, 4334.	1.7	29
46	Analysis of Potent Odour-Active Volatile Thiols in Foods and Beverages with a Focus on Wine. Molecules, 2019, 24, 2472.	1.7	28
47	Identification and analysis of 2-chloro-6-methylphenol, 2,6-dichlorophenol and indole: causes of taints and off-flavours in wines. Australian Journal of Grape and Wine Research, 2010, 16, 210-217.	1.0	27
48	Spectrofluorometric analysis combined with machine learning for geographical and varietal authentication, and prediction of phenolic compound concentrations in red wine. Food Chemistry, 2021, 361, 130149.	4.2	25
49	Defining wine typicity: sensory characterisation and consumer perspectives. Australian Journal of Grape and Wine Research, 2021, 27, 246-256.	1.0	25
50	Sensory typicity of regional Australian Cabernet Sauvignon wines according to expert evaluations and descriptive analysis. Food Research International, 2020, 138, 109760.	2.9	22
51	Chiral analysis of 3-sulfanylhexan-1-ol and 3-sulfanylhexyl acetate in wine by high-performance liquid chromatography–tandem mass spectrometry. Analytica Chimica Acta, 2018, 998, 83-92.	2.6	21
52	Precursors to Damascenone:Â Synthesis and Hydrolysis of Isomeric 3,9-Dihydroxymegastigma-4,6,7-trienes. Journal of Agricultural and Food Chemistry, 2005, 53, 4895-4900.	2.4	20
53	Rationalizing the Formation of Damascenone: Synthesis and Hydrolysis of Damascenone Precursors and Their Analogues, in both Aglycone and Glycoconjugate Forms. Journal of Agricultural and Food Chemistry, 2008, 56, 9183-9189.	2.4	20
54	Molecular Fingerprinting by PCR-Denaturing Gradient Gel Electrophoresis Reveals Differences in the Levels of Microbial Diversity for Musty-Earthy Tainted Corks. Applied and Environmental Microbiology, 2009, 75, 1922-1931.	1.4	20

DIMITRA L CAPONE

#	Article	IF	CITATIONS
55	The Formation of Wine Lactone from Grape-Derived Secondary Metabolites. Journal of Agricultural and Food Chemistry, 2011, 59, 660-664.	2.4	19
56	Investigation of intraregional variation, grape amino acids, and pre-fermentation freezing on varietal thiols and their precursors for Vitis vinifera Sauvignon blanc. Food Chemistry, 2019, 295, 637-645.	4.2	18
57	Inactivating Mutations in Irc7p Are Common in Wine Yeasts, Attenuating Carbon-Sulfur β-Lyase Activity and Volatile Sulfur Compound Production. Applied and Environmental Microbiology, 2019, 85, .	1.4	18
58	Influence of inclusion of grapevine leaves, rachis and peduncles during fermentation on the flavour and volatile composition of <i>Vitis vinifera</i> cv. Shiraz wine. Australian Journal of Grape and Wine Research, 2021, 27, 348-359.	1.0	17
59	Rosé wine volatile composition and the preferences of Chinese wine professionals. Food Chemistry, 2016, 202, 507-517.	4.2	16
60	Using Content Analysis to Characterise the Sensory Typicity and Quality Judgements of Australian Cabernet Sauvignon Wines. Foods, 2019, 8, 691.	1.9	16
61	Identification and Quantitative Analysis of 2-Methyl-4-propyl-1,3-oxathiane in Wine. Journal of Agricultural and Food Chemistry, 2018, 66, 10808-10815.	2.4	15
62	Sensory and Chemical Drivers of Wine Consumers' Preference for a New Shiraz Wine Product Containing Ganoderma lucidum Extract as a Novel Ingredient. Foods, 2020, 9, 224.	1.9	15
63	Chiral Polyfunctional Thiols and Their Conjugated Precursors upon Winemaking with Five <i>Vitis vinifera</i> Sauvignon blanc Clones. Journal of Agricultural and Food Chemistry, 2018, 66, 4674-4682.	2.4	14
64	Volatile Composition and Sensory Profiles of a Shiraz Wine Product Made with Pre- and Post-Fermentation Additions of Ganoderma lucidum Extract. Foods, 2019, 8, 538.	1.9	12
65	Analytical Investigations of Wine Odorant 3-Mercaptohexan-1-ol and Its Precursors. ACS Symposium Series, 2012, , 15-35.	0.5	10
66	Consumer perspectives of wine typicity and impact of region information on the sensory perception of Cabernet Sauvignon wines. Food Research International, 2022, 152, 110719.	2.9	10
67	Evolution and Correlation of <i>cis</i> -2-Methyl-4-propyl-1,3-oxathiane, Varietal Thiols, and Acetaldehyde during Fermentation of Sauvignon blanc Juice. Journal of Agricultural and Food Chemistry, 2020, 68, 8676-8687.	2.4	7
68	Rootstock, Vine Vigor, and Light Mediate Methoxypyrazine Concentrations in the Grape Bunch Rachis of <i>Vitis vinifera</i> L. cv. Cabernet Sauvignon. Journal of Agricultural and Food Chemistry, 2022, 70, 5417-5426.	2.4	7
69	Exploratory study of sugar and <scp>C₆</scp> compounds in single berries of grapevine (<scp><i>Vitis vinifera</i></scp> L.) cv. Cabernet Sauvignon throughout ripening. Australian Journal of Grape and Wine Research, 2021, 27, 194-205.	1.0	6
70	Chiral analysis of cis-2-methyl-4-propyl-1,3-oxathiane and identification of cis-2,4,4,6-tetramethyl-1,3-oxathiane in wine. Food Chemistry, 2021, 357, 129406.	4.2	5
71	Evidence that methoxypyrazine accumulation is elevated in Shiraz rachis grown on Ramsey rootstock, increasing â€~green' flavour in wine. Australian Journal of Grape and Wine Research, 2022, 28, 304-315.	1.0	5
72	Impact of Lachancea thermotolerans on Chemical Composition and Sensory Profiles of Viognier Wines. Journal of Fungi (Basel, Switzerland), 2022, 8, 474.	1.5	5

#	Article	IF	CITATIONS
73	Impact of accentuated cut edges (ACE) technique on volatile and sensory profiles of Shiraz wines. Food Chemistry, 2022, 372, 131222.	4.2	4
74	Novel use of activated carbon fabric to mitigate smoke taint in grapes and wine. Australian Journal of Grape and Wine Research, 2022, 28, 500-507.	1.0	1
75	Rationalizing the Formation of Damascenone: Synthesis and Hydrolysis of Damascenone Precursors and their Analogues, in both Aglycone and Glycoconjugate Forms. Journal of Agricultural and Food Chemistry, 2009, 57, 1654-1654.	2.4	0