
## Roger G Sturmey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9299460/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Metabolism of the viable mammalian embryo: quietness revisited. Molecular Human Reproduction, 2008, 14, 667-672.                                                                                   | 1.3 | 228       |
| 2  | Elevated Non-Esterified Fatty Acid Concentrations during Bovine Oocyte Maturation Compromise<br>Early Embryo Physiology. PLoS ONE, 2011, 6, e23183.                                                | 1.1 | 211       |
| 3  | Human embryos from overweight and obese women display phenotypic and metabolic abnormalities.<br>Human Reproduction, 2015, 30, 122-132.                                                            | 0.4 | 171       |
| 4  | Female reproductive tract fluids: composition, mechanism of formation and potential role in the developmental origins of health and disease. Reproduction, Fertility and Development, 2008, 20, 1. | 0.1 | 158       |
| 5  | The role of fatty acids in oocyte and early embryo development. Reproduction, Fertility and Development, 2012, 24, 59.                                                                             | 0.1 | 152       |
| 6  | Embryo viability and metabolism: obeying the quiet rules. Human Reproduction, 2007, 22, 3047-3050.                                                                                                 | 0.4 | 128       |
| 7  | Amino Acids in the Uterine Luminal Fluid Reflects the Temporal Changes in Transporter Expression in the Endometrium and Conceptus during Early Pregnancy in Cattle. PLoS ONE, 2014, 9, e100010.    | 1.1 | 101       |
| 8  | Good practice recommendations for the use of time-lapse technologyâ€. Human Reproduction Open,<br>2020, 2020, hoaa008.                                                                             | 2.3 | 97        |
| 9  | DNA damage and metabolic activity in the preimplantation embryo. Human Reproduction, 2008, 24, 81-91.                                                                                              | 0.4 | 93        |
| 10 | Assessing embryo viability by measurement of amino acid turnover. Reproductive BioMedicine Online, 2008, 17, 486-496.                                                                              | 1.1 | 83        |
| 11 | Biological optimization, the Goldilocks principle, and how much is <i>lagom</i> in the preimplantation embryo. Molecular Reproduction and Development, 2016, 83, 748-754.                          | 1.0 | 66        |
| 12 | Parallels between embryo and cancer cell metabolism. Biochemical Society Transactions, 2013, 41, 664-669.                                                                                          | 1.6 | 61        |
| 13 | A Simple Approach for COnsumption and RElease (CORE) Analysis of Metabolic Activity in Single<br>Mammalian Embryos. PLoS ONE, 2013, 8, e67834.                                                     | 1.1 | 55        |
| 14 | The enigmatic morula: mechanisms of development, cell fate determination, self-correction and implications for ART. Human Reproduction Update, 2019, 25, 422-438.                                  | 5.2 | 53        |
| 15 | Applying metabolomic analyses to the practice of embryology: physiology, development and assisted reproductive technology. Reproduction, Fertility and Development, 2015, 27, 602.                 | 0.1 | 40        |
| 16 | Variable imprinting of the MEST gene in human preimplantation embryos. European Journal of Human<br>Genetics, 2013, 21, 40-47.                                                                     | 1.4 | 39        |
| 17 | Application of extracellular flux analysis for determining mitochondrial function in mammalian oocytes and early embryos. Scientific Reports, 2019, 9, 16778.                                      | 1.6 | 36        |
| 18 | Metabolic heterogeneity during preimplantation development: the missing link?. Human Reproduction<br>Update, 2014, 20, 632-640.                                                                    | 5.2 | 35        |

**ROGER G STURMEY** 

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Human cell dedifferentiation in mesenchymal condensates through controlled autophagy. Scientific<br>Reports, 2015, 5, 13113.                                                                                                                               | 1.6 | 35        |
| 20 | Measurement of Glutathione as a Tool for Oxidative Stress Studies by High Performance Liquid Chromatography. Molecules, 2020, 25, 4196.                                                                                                                    | 1.7 | 32        |
| 21 | Intraovarian injection of platelet-rich plasma in assisted reproduction: too much too soon?. Human<br>Reproduction, 2021, 36, 1737-1750.                                                                                                                   | 0.4 | 23        |
| 22 | Sexually Dimorphic Gene Expression in Bovine Conceptuses at the Initiation of Implantation. Biology of Reproduction, 2016, 95, 92-92.                                                                                                                      | 1.2 | 20        |
| 23 | Amino Acids and the Early Mammalian Embryo: Origin, Fate, Function and Life-Long Legacy.<br>International Journal of Environmental Research and Public Health, 2021, 18, 9874.                                                                             | 1.2 | 20        |
| 24 | Effect of metabolic status on conceptus–maternal interactions on day 19 in dairy cattle: II. Effects on the endometrial transcriptomeâ€. Biology of Reproduction, 2017, 97, 413-425.                                                                       | 1.2 | 19        |
| 25 | Gene expression and metabolic response of bovine oviduct epithelial cells to the early embryo.<br>Reproduction, 2019, 158, 85-94.                                                                                                                          | 1.1 | 19        |
| 26 | Spatial and Pregnancy-Related Changes in the Protein, Amino Acid, and Carbohydrate Composition of<br>Bovine Oviduct Fluid. International Journal of Molecular Sciences, 2020, 21, 1681.                                                                    | 1.8 | 17        |
| 27 | The Quiet Embryo Hypothesis: 20 years on. Frontiers in Physiology, 2022, 13, .                                                                                                                                                                             | 1.3 | 17        |
| 28 | Modelling aspects of oviduct fluid formation in vitro. Reproduction, 2017, 153, 23-33.                                                                                                                                                                     | 1.1 | 15        |
| 29 | Effect of lactation on conceptus-maternal interactions at the initiation of implantation in cattle: I.<br>Effects on the conceptus transcriptome and amino acid composition of the uterine luminal fluidâ€.<br>Biology of Reproduction, 2017, 97, 798-809. | 1.2 | 15        |
| 30 | Expression and localization of creatine kinase in the preimplantation embryo. Molecular<br>Reproduction and Development, 2013, 80, 185-192.                                                                                                                | 1.0 | 14        |
| 31 | Genistein crosses the bioartificial oviduct and alters secretion composition. Reproductive Toxicology, 2017, 71, 63-70.                                                                                                                                    | 1.3 | 11        |
| 32 | The comparative effects of intravenous iron on oxidative stress and inflammation in patients with chronic kidney disease and iron deficiency: a randomized controlled pilot study. Kidney Research and Clinical Practice, 2021, 40, 89-98.                 | 0.9 | 11        |
| 33 | Going to extremes: the Goldilocks/Lagom principle and data distribution. BMJ Open, 2019, 9, e027767.                                                                                                                                                       | 0.8 | 9         |
| 34 | Expression and function of transient receptor potential channels in the female bovine reproductive tract. Theriogenology, 2016, 86, 551-561.                                                                                                               | 0.9 | 7         |
| 35 | Glucose concentration during equine in vitro maturation alters mitochondrial function.<br>Reproduction, 2020, 160, 227-237.                                                                                                                                | 1.1 | 5         |
| 36 | Metabolic profile of in vitro derived human embryos is not affected by the mode of fertilization.<br>Molecular Human Reproduction, 2020, 26, 277-287.                                                                                                      | 1.3 | 4         |

**ROGER G STURMEY** 

| #  | Article                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Metabolomic Screening of Embryos to Enhance Successful Selection and Transfer. , 2019, , 295-304.                                                                             |     | 3         |
| 38 | Amino Acid Turnover as a Biomarker of Embryo Viability. , 2012, , 431-438.                                                                                                    |     | 1         |
| 39 | Practical Considerations of Dissolved Oxygen Levels for Platelet Function under Hypoxia.<br>International Journal of Molecular Sciences, 2021, 22, 13223.                     | 1.8 | 1         |
| 40 | A developmental tale – metabolism takes centre stage. Reproduction, Fertility and Development, 2015, 27, iii.                                                                 | 0.1 | 0         |
| 41 | Amino Acid Turnover as a Biomarker of Embryo Viability. , 2019, , 549-556.                                                                                                    |     | 0         |
| 42 | Hypoxanthine phosphoribosyltransferase (HPRT)â€deficiency is associated with impaired fertility in the female rat. Molecular Reproduction and Development, 2020, 87, 930-933. | 1.0 | 0         |
| 43 | Embryo Metabolism and What Does the Embryo Need?. , 2021, , 30-41.                                                                                                            |     | 0         |
| 44 | Amino Acid Turnover as a Biomarker of Embryo Viability. , 2013, , 353-365.                                                                                                    |     | 0         |
| 45 | Reply: Is there a role for platelets in female reproduction. Human Reproduction, 2022, 37, 385-385.                                                                           | 0.4 | 0         |
| 46 | OUP accepted manuscript. Human Reproduction, 2022, , .                                                                                                                        | 0.4 | 0         |