List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9299391/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antimicrobial Photodynamic Therapy: Study of Bacterial Recovery Viability and Potential Development of Resistance after Treatment. Marine Drugs, 2010, 8, 91-105.	2.2	340
2	An insight on bacterial cellular targets of photodynamic inactivation. Future Medicinal Chemistry, 2014, 6, 141-164.	1.1	224
3	Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins. BMC Microbiology, 2009, 9, 70.	1.3	190
4	Potential applications of porphyrins in photodynamic inactivation beyond the medical scope. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 22, 34-57.	5.6	184
5	Photodynamic Inactivation of Mammalian Viruses and Bacteriophages. Viruses, 2012, 4, 1034-1074.	1.5	182
6	Strategies for Corrole Functionalization. Chemical Reviews, 2017, 117, 3192-3253.	23.0	182
7	Revisiting Current Photoactive Materials for Antimicrobial Photodynamic Therapy. Molecules, 2018, 23, 2424.	1.7	153
8	Phage Therapy and Photodynamic Therapy: Low Environmental Impact Approaches to Inactivate Microorganisms in Fish Farming Plants. Marine Drugs, 2009, 7, 268-313.	2.2	127
9	Wastewater chemical contaminants: remediation by advanced oxidation processes. Photochemical and Photobiological Sciences, 2018, 17, 1573-1598.	1.6	123
10	Functional Cationic Nanomagnetâ^'Porphyrin Hybrids for the Photoinactivation of Microorganisms. ACS Nano, 2010, 4, 7133-7140.	7.3	112
11	Photodynamic inactivation of multidrug-resistant bacteria in hospital wastewaters: influence of residual antibiotics. Photochemical and Photobiological Sciences, 2014, 13, 626-633.	1.6	112
12	Mechanisms of photodynamic inactivation of a Gram-negative recombinant bioluminescent bacterium by cationic porphyrins. Photochemical and Photobiological Sciences, 2011, 10, 1659-1669.	1.6	106
13	Photodynamic Inactivation of Bacterial and Yeast Biofilms With a Cationic Porphyrin. Photochemistry and Photobiology, 2014, 90, 1387-1396.	1.3	104
14	Photodynamic inactivation of bacteria: finding the effective targets. Future Medicinal Chemistry, 2015, 7, 1221-1224.	1.1	103
15	Influence of external bacterial structures on the efficiency of photodynamic inactivation by a cationic porphyrin. Photochemical and Photobiological Sciences, 2014, 13, 680-690.	1.6	99
16	Photoinactivation of bacteria in wastewater by porphyrins: Bacterial β-galactosidase activity and leucine-uptake as methods to monitor the process. Journal of Photochemistry and Photobiology B: Biology, 2007, 88, 112-118.	1.7	93
17	Porphyrin and phthalocyanine glycodendritic conjugates: synthesis, photophysical and photochemical properties. Chemical Communications, 2012, 48, 3608.	2.2	93
18	Evaluation of resistance development and viability recovery by a non-enveloped virus after repeated cycles of aPDT. Antiviral Research, 2011, 91, 278-282.	1.9	89

MARIA A FAUSTINO

#	Article	IF	CITATIONS
19	An insight on the role of photosensitizer nanocarriers for Photodynamic Therapy. Anais Da Academia Brasileira De Ciencias, 2018, 90, 1101-1130.	0.3	86
20	New hybrid adsorbent based on porphyrin functionalized silica for heavy metals removal: Synthesis, characterization, isotherms, kinetics and thermodynamics studies. Journal of Hazardous Materials, 2019, 370, 80-90.	6.5	85
21	Corroles as anion chemosensors: exploiting their fluorescence behaviour from solution to solid-supported devices. Journal of Materials Chemistry, 2012, 22, 13811.	6.7	83
22	Photodynamic inactivation of Penicillium chrysogenum conidia by cationic porphyrins. Photochemical and Photobiological Sciences, 2011, 10, 1735-1743.	1.6	82
23	Photodynamic inactivation of Escherichia coli with cationic meso-tetraarylporphyrins – The charge number and charge distribution effects. Catalysis Today, 2016, 266, 197-204.	2.2	82
24	Photodynamic inactivation of recombinant bioluminescent Escherichia coli by cationic porphyrins under artificial and solar irradiation. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 1447-1454.	1.4	81
25	Antimicrobial Photodynamic Therapy in the Control of COVID-19. Antibiotics, 2020, 9, 320.	1.5	81
26	Sewage bacteriophage photoinactivation by cationic porphyrins: a study of charge effect. Photochemical and Photobiological Sciences, 2008, 7, 415.	1.6	80
27	Porphyrin derivatives as photosensitizers for the inactivation of <i>Bacillus cereus</i> endospores. Journal of Applied Microbiology, 2009, 106, 1986-1995.	1.4	79
28	Effect of Photodynamic Therapy on the Virulence Factors of Staphylococcus aureus. Frontiers in Microbiology, 2016, 7, 267.	1.5	77
29	An Insight Into the Potentiation Effect of Potassium lodide on aPDT Efficacy. Frontiers in Microbiology, 2018, 9, 2665.	1.5	73
30	Sewage bacteriophage inactivation by cationic porphyrins: influence of light parameters. Photochemical and Photobiological Sciences, 2010, 9, 1126.	1.6	71
31	Photodynamic effects induced by meso-tris(pentafluorophenyl)corrole and its cyclodextrin conjugates on cytoskeletal components of HeLa cells. European Journal of Medicinal Chemistry, 2015, 92, 135-144.	2.6	69
32	Photodynamic Antimicrobial Chemotherapy in Aquaculture: Photoinactivation Studies of Vibrio fischeri. PLoS ONE, 2011, 6, e20970.	1.1	67
33	Photoinactivation of <i>Escherichia coli</i> (SURE2) without intracellular uptake of the photosensitizer. Journal of Applied Microbiology, 2013, 114, 36-43.	1.4	67
34	A new insight on nanomagnet–porphyrin hybrids for photodynamic inactivation of microorganisms. Dyes and Pigments, 2014, 110, 80-88.	2.0	65
35	Synthesis of Novel N-Linked Porphyrinâ^'Phthalocyanine Dyads. Organic Letters, 2007, 9, 1557-1560.	2.4	61
36	Phthalocyanine Thioâ€Pyridinium Derivatives as Antibacterial Photosensitizers ^{â€} . Photochemistry and Photobiology, 2012, 88, 537-547.	1.3	60

MARIA A FAUSTINO

#	Article	IF	CITATIONS
37	Antimicrobial Photodynamic Therapy against Endodontic Enterococcus faecalis and Candida albicans Mono and Mixed Biofilms in the Presence of Photosensitizers: A Comparative Study with Classical Endodontic Irrigants. Frontiers in Microbiology, 2017, 8, 498.	1.5	59
38	Comparative photodynamic inactivation of antibiotic resistant bacteria by first and second generation cationic photosensitizers. Photochemical and Photobiological Sciences, 2012, 11, 1905-1913.	1.6	55
39	Synthesis, Spectroscopy Studies, and Theoretical Calculations of New Fluorescent Probes Based on Pyrazole Containing Porphyrins for Zn(II), Cd(II), and Hg(II) Optical Detection. Inorganic Chemistry, 2014, 53, 6149-6158.	1.9	55
40	Antimicrobial photodynamic activity of porphyrin derivatives: potential application on medical and water disinfection. Journal of Porphyrins and Phthalocyanines, 2009, 13, 574-577.	0.4	53
41	Synthesis of neutral and cationic tripyridylporphyrin-d-galactose conjugates and the photoinactivation of HSV-1. Bioorganic and Medicinal Chemistry, 2007, 15, 4705-4713.	1.4	50
42	An effective and potentially safe blood disinfection protocol using tetrapyrrolic photosensitizers. Future Medicinal Chemistry, 2017, 9, 365-379.	1.1	50
43	Chapter 5. Porphyrins as Antimicrobial Photosensitizing Agents. Comprehensive Series in Photochemical and Photobiological Sciences, 2011, , 83-160.	0.3	48
44	Photodynamic oxidation of <i>Escherichia coli</i> membrane phospholipids: new insights based on lipidomics. Rapid Communications in Mass Spectrometry, 2013, 27, 2717-2728.	0.7	48
45	Involvement of type I and type II mechanisms on the photoinactivation of non-enveloped DNA and RNA bacteriophages. Journal of Photochemistry and Photobiology B: Biology, 2013, 120, 10-16.	1.7	45
46	Single and combined effects of photodynamic therapy and antibiotics to inactivate Staphylococcus aureus on skin. Photodiagnosis and Photodynamic Therapy, 2018, 21, 285-293.	1.3	45
47	Photodynamic inactivation of bioluminescent Escherichia coli by neutral and cationic pyrrolidine-fused chlorins and isobacteriochlorins. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 808-812.	1.0	44
48	New Materials Based on Cationic Porphyrins Conjugated to Chitosan or Titanium Dioxide: Synthesis, Characterization and Antimicrobial Efficacy. International Journal of Molecular Sciences, 2019, 20, 2522.	1.8	44
49	New porphyrin amino acid conjugates: Synthesis and photodynamic effect in human epithelial cells. Bioorganic and Medicinal Chemistry, 2010, 18, 6170-6178.	1.4	43
50	Synthesis of cationic β-vinyl substituted meso-tetraphenylporphyrins and their in vitro activity against herpes simplex virus type 1. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 3333-3337.	1.0	42
51	Nucleic acid changes during photodynamic inactivation of bacteria by cationic porphyrins. Bioorganic and Medicinal Chemistry, 2013, 21, 4311-4318.	1.4	42
52	New gallium(III) corrole complexes as colorimetric probes for toxic cyanide anion. Inorganica Chimica Acta, 2014, 417, 148-154.	1.2	42
53	Corrole and Corrole Functionalized Silica Nanoparticles as New Metal Ion Chemosensors: A Case of Silver Satellite Nanoparticles Formation. Inorganic Chemistry, 2013, 52, 8564-8572.	1.9	41
54	Control of Listeria innocua biofilms by biocompatible photodynamic antifouling chitosan based materials. Dyes and Pigments, 2017, 137, 265-276.	2.0	40

#	Article	IF	CITATIONS
55	Photoinactivation of Pseudomonas syringae pv. actinidiae in kiwifruit plants by cationic porphyrins. Planta, 2018, 248, 409-421.	1.6	40
56	Advances in aPDT based on the combination of a porphyrinic formulation with potassium iodide: Effectiveness on bacteria and fungi planktonic/biofilm forms and viruses. Journal of Porphyrins and Phthalocyanines, 2019, 23, 534-545.	0.4	40
57	Multicharged Phthalocyanines as Selective Ligands for G-Quadruplex DNA Structures. Molecules, 2019, 24, 733.	1.7	40
58	New coumarin–corrole and –porphyrin conjugate multifunctional probes for anionic or cationic interactions: synthesis, spectroscopy, and solid supported studies. Tetrahedron, 2014, 70, 3361-3370.	1.0	39
59	Pyrrolidine-fused chlorin photosensitizer immobilized on solid supports for the photoinactivation of Gram negative bacteria. Dyes and Pigments, 2014, 110, 123-133.	2.0	39
60	Protein profiles of Escherichia coli and Staphylococcus warneri are altered by photosensitization with cationic porphyrins. Photochemical and Photobiological Sciences, 2015, 14, 1169-1178.	1.6	39
61	Novel hybrids based on graphene quantum dots covalently linked to glycol corroles for multiphoton bioimaging. Carbon, 2020, 166, 164-174.	5.4	39
62	Kinetic study of <i>meso</i> â€ŧetraphenylporphyrin synthesis under microwave irradiation. Journal of Heterocyclic Chemistry, 2008, 45, 453-459.	1.4	38
63	Susceptibility of non-enveloped DNA- and RNA-type viruses to photodynamic inactivation. Photochemical and Photobiological Sciences, 2012, 11, 1520-1523.	1.6	38
64	Photodynamic Action against Wastewater Microorganisms and Chemical Pollutants: An Effective Approach with Low Environmental Impact. Water (Switzerland), 2017, 9, 630.	1.2	38
65	A New 3,5â€Bisporphyrinylpyridine Derivative as a Fluorescent Ratiometric Probe for Zinc Ions. Chemistry - A European Journal, 2014, 20, 6684-6692.	1.7	37
66	Applicability of photodynamic antimicrobial chemotherapy as an alternative to inactivate fish pathogenic bacteria in aquaculture systems. Photochemical and Photobiological Sciences, 2011, 10, 1691-1700.	1.6	36
67	Inverted methoxypyridinium phthalocyanines for PDI of pathogenic bacteria. Photochemical and Photobiological Sciences, 2015, 14, 1853-1863.	1.6	36
68	Photodynamic inactivation of <i>Listeria innocua</i> biofilms with food-grade photosensitizers: a curcumin-rich extract of <i>Curcuma longa vs</i> commercial curcumin. Journal of Applied Microbiology, 2018, 125, 282-294.	1.4	36
69	Part 2. meso-Tetraphenylporphyrin Dimer Derivatives as Potential Photosensitizers in Photodynamic Therapy¶. Photochemistry and Photobiology, 2000, 72, 217.	1.3	35
70	Chemical Transformations of Mono―and Bis(butaâ€1,3â€dienâ€1â€yl)porphyrins: A New Synthetic Approach to Mono―and Dibenzoporphyrins. European Journal of Organic Chemistry, 2008, 2008, 704-712.	1.2	35
71	Photodynamic oxidation of <i>Staphylococcus warneri</i> membrane phospholipids: new insights based on lipidomics. Rapid Communications in Mass Spectrometry, 2013, 27, 1607-1618.	0.7	34
72	An Insight into Advanced Approaches for Photosensitizer Optimization in Endodontics—A Critical Review. Journal of Functional Biomaterials, 2019, 10, 44.	1.8	34

#	Article	IF	CITATIONS
73	Synthesis and reactivity of 2-(porphyrin-2-yl)-1,3-dicarbonyl compounds. Tetrahedron, 2005, 61, 10454-10461.	1.0	33
74	Is the chlorophyll derivative Zn(II)e 6 Me a good photosensitizer to be used in root canal disinfection?. Photodiagnosis and Photodynamic Therapy, 2018, 22, 205-211.	1.3	33
75	Halophytic Grasses, a New Source of Nutraceuticals? A Review on Their Secondary Metabolites and Biological Activities. International Journal of Molecular Sciences, 2019, 20, 1067.	1.8	32
76	The Role of Porphyrinoid Photosensitizers for Skin Wound Healing. International Journal of Molecular Sciences, 2021, 22, 4121.	1.8	32
77	Mesoâ€Tetraphenylporphyrin Dimer Derivative as a Potential Photosensitizer in Photodynamic Therapy. Photochemistry and Photobiology, 1997, 66, 405-412.	1.3	31
78	How light affects 5,10,15-tris(pentafluorophenyl)corrole. Tetrahedron Letters, 2010, 51, 1537-1540.	0.7	31
79	An efficient formulation based on cationic porphyrins to photoinactivate <i>Staphylococcus aureus</i> and <i>Escherichia coli</i> . Future Medicinal Chemistry, 2018, 10, 1821-1833.	1.1	31
80	Synthesis of Glycoporphyrins. Topics in Heterocyclic Chemistry, 2007, , 179-248.	0.2	30
81	Corroles in 1,3-dipolar cycloaddition reactions. Journal of Porphyrins and Phthalocyanines, 2009, 13, 358-368.	0.4	30
82	Synthesis of New Chlorinâ€ <i>e</i> ₆ Trimethyl and Protoporphyrinâ€IX Dimethyl Ester Derivatives and Their Photophysical and Electrochemical Characterizations. Chemistry - A European Journal, 2014, 20, 13644-13655.	1.7	30
83	Novel quinone-fused corroles. Tetrahedron Letters, 2007, 48, 8904-8908.	0.7	29
84	An efficient hybrid adsorbent based on silica-supported amino penta-carboxylic acid for water purification. Journal of Materials Chemistry A, 2018, 6, 13096-13109.	5.2	29
85	Photoinactivation of Planktonic and Biofilm Forms of <i>Escherichia coli</i> through the Action of Cationic Zinc(II) Phthalocyanines. ChemPhotoChem, 2019, 3, 251-260.	1.5	28
86	Revisiting Heck–Mizoroki reactions in ionic liquids. RSC Advances, 2013, 3, 19219.	1.7	27
87	Cationic galactoporphyrin photosensitisers against UV-B resistant bacteria: oxidation of lipids and proteins by 1O2. Photochemical and Photobiological Sciences, 2013, 12, 262-271.	1.6	27
88	Synthesis of new porphyrin/4-quinolone conjugates and evaluation of their efficiency in the photoinactivation of Staphylococcus aureus. RSC Advances, 2015, 5, 71228-71239.	1.7	27
89	New Naphthochlorins from the Intramolecular Cyclization of β-Vinyl-meso-Tetraarylporphyrins. Tetrahedron Letters, 1995, 36, 5977-5978.	0.7	26
90	New dual colorimetric/fluorimetric probes for Hg2+ detection & amp; extraction based on mesoporous SBA-16 nanoparticles containing porphyrin or rhodamine chromophores. Dyes and Pigments, 2019, 161, 427-437.	2.0	26

#	Article	IF	CITATIONS
91	An insight into the synthesis of cationic porphyrin-imidazole derivatives and their photodynamic inactivation efficiency against Escherichia coli. Dyes and Pigments, 2020, 178, 108330.	2.0	26
92	A novel approach to the synthesis of mono- and dipyrroloporphyrins. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 2752-2753.	1.3	25
93	Bioluminescence and its application in the monitoring of antimicrobial photodynamic therapy. Applied Microbiology and Biotechnology, 2011, 92, 1115-1128.	1.7	25
94	Novel pyrazoline and pyrazole porphyrin derivatives: synthesis and photophysical properties. Tetrahedron, 2012, 68, 8181-8193.	1.0	25
95	Functionalized Porphyrins as Red Fluorescent Probes for Metal Cations: Spectroscopic, MALDIâ€TOF Spectrometry, and Dopedâ€Polymer Studies. ChemPlusChem, 2013, 78, 1230-1243.	1.3	25
96	Photodynamic inactivation of Escherichia coli with cationic ammonium Zn(ii) phthalocyanines. Photochemical and Photobiological Sciences, 2015, 14, 1872-1879.	1.6	25
97	β-Formyl- and β-Vinylporphyrins: Magic Building Blocks for Novel Porphyrin Derivatives. Molecules, 2017, 22, 1269.	1.7	25
98	NMR characterisation of five isomeric β,β′-diformyl-meso-tetraphenylporphyrins. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 1774-1777.	1.3	24
99	Pentafluorophenylcorrole–d-galactose conjugates. Tetrahedron Letters, 2012, 53, 6388-6393.	0.7	24
100	An insight into the photodynamic approach versus copper formulations in the control of Pseudomonas syringae pv. actinidiae in kiwi plants. Photochemical and Photobiological Sciences, 2018, 17, 180-191.	1.6	24
101	Evaluation of the interplay among the charge of porphyrinic photosensitizers, lipid oxidation and photoinactivation efficiency in Escherichia coli. Journal of Photochemistry and Photobiology B: Biology, 2014, 141, 145-153.	1.7	23
102	Novel β-functionalized mono-charged porphyrinic derivatives: Synthesis and photoinactivation of Escherichia coli. Dyes and Pigments, 2019, 160, 361-371.	2.0	23
103	Versatile thiopyridyl/pyridinone porphyrins combined with potassium iodide and thiopyridinium/methoxypyridinium porphyrins on E. coli photoinactivation. Dyes and Pigments, 2020, 181, 108476.	2.0	23
104	Synthesis and characterization of photoactive porphyrin and poly(2-hydroxyethyl methacrylate) based materials with bactericidal properties. Applied Materials Today, 2019, 16, 332-341.	2.3	22
105	Vilsmeier-Haack formylation of Cu(II) and Ni(II) porphyrin complexes under microwaves irradiation. Journal of Porphyrins and Phthalocyanines, 2011, 15, 652-658.	0.4	21
106	A new synthetic approach to benzoporphyrins and Kröhnke type porphyrin-2-ylpyridines. Chemical Communications, 2012, 48, 6142.	2.2	21
107	Photosensitized oxidation of phosphatidylethanolamines monitored by electrospray tandem mass spectrometry. Journal of Mass Spectrometry, 2013, 48, 1357-1365.	0.7	21
108	Preparation and ion recognition features of porphyrin–chalcone type compounds as efficient red-fluorescent materials. Journal of Materials Chemistry C, 2014, 2, 4772-4783.	2.7	21

#	Article	IF	CITATIONS
109	Interactions of cationic porphyrins with double-stranded oligodeoxynucleotides: a study by electrospray ionisation mass spectrometry. Journal of Mass Spectrometry, 2005, 40, 1439-1447.	0.7	20
110	Photoâ€inactivation of <i>Bacillus</i> endospores: interâ€specific variability of inactivation efficiency. Microbiology and Immunology, 2012, 56, 692-699.	0.7	20
111	Functionalization of Corroles. Topics in Heterocyclic Chemistry, 2013, , 79-141.	0.2	20
112	Photodynamic effect of glycochlorin conjugates in human cancer epithelial cells. RSC Advances, 2015, 5, 33496-33502.	1.7	20
113	Puccinellia maritima, Spartina maritime, and Spartina patens Halophytic Grasses: Characterization of Polyphenolic and Chlorophyll Profiles and Evaluation of Their Biological Activities. Molecules, 2019, 24, 3796.	1.7	20
114	The Remarkable Effect of Potassium Iodide in Eosin and Rose Bengal Photodynamic Action against Salmonella Typhimurium and Staphylococcus aureus. Antibiotics, 2019, 8, 211.	1.5	20
115	Recovery of Chlorophyll <i>a</i> Derivative from <i>Spirulina maxima</i> : Its Purification and Photosensitizing Potential. ACS Sustainable Chemistry and Engineering, 2021, 9, 1772-1780.	3.2	20
116	Synthesis and Functionalization of Corroles. An Insight on Their Nonlinear Optical Absorption Properties. Current Organic Synthesis, 2014, 11, 29-41.	0.7	20
117	Diels-Alder reactions of Ni(II) β-vinyl-meso-tetraarylporphyrins. Tetrahedron Letters, 1996, 37, 3569-3570.	0.7	19
118	Porphyrin derivatives: Synthesis and potential applications. Journal of Heterocyclic Chemistry, 2000, 37, 527-534.	1.4	19
119	Photodynamic Inactivation of Candida albicans in Blood Plasma and Whole Blood. Antibiotics, 2019, 8, 221.	1.5	19
120	Metallophthalocyanines as Catalysts in Aerobic Oxidation. Catalysts, 2021, 11, 122.	1.6	19
121	Pyrazole-pyridinium porphyrins and chlorins as powerful photosensitizers for photoinactivation of planktonic and biofilm forms of E. coli. Dyes and Pigments, 2021, 193, 109557.	2.0	19
122	Characterization of dinitroporphyrin zinc complexes by electrospray ionization tandem mass spectrometry. Unusual fragmentations of β-(1,3-dinitroalkyl) porphyrins. Journal of Mass Spectrometry, 2005, 40, 117-122.	0.7	18
123	Porphyrin - Phosphoramidate Conjugates: Synthesis, Photostability and Singlet Oxygen Generation. Australian Journal of Chemistry, 2011, 64, 939.	O.5	18
124	Cationic porphyrin derivatives for application in photodynamic therapy of cancer. Laser Physics, 2014, 24, 045603.	0.6	18
125	Synthesis, characterization and biological evaluation of cationic porphyrin–terpyridine derivatives. RSC Advances, 2016, 6, 110674-110685.	1.7	18
126	Comparative photodynamic inactivation of bioluminescent E. coli by pyridinium and inverted pyridinium chlorins. Dyes and Pigments, 2020, 173, 107410.	2.0	18

#	Article	IF	CITATIONS
127	Photoinactivation of <i>Escherichia coli</i> with Water-Soluble Ammonium-Substituted Phthalocyanines. ACS Applied Bio Materials, 2020, 3, 4044-4051.	2.3	18
128	Efficient photodynamic inactivation of Candida albicans by porphyrin and potassium iodide co-encapsulation in micelles. Photochemical and Photobiological Sciences, 2020, 19, 1063-1071.	1.6	18
129	Antimicrobial Photodynamic Approach in the Inactivation of Viruses in Wastewater: Influence of Alternative Adjuvants. Antibiotics, 2021, 10, 767.	1.5	18
130	Graphene Oxide and Graphene Quantum Dots as Delivery Systems of Cationic Porphyrins: Photo-Antiproliferative Activity Evaluation towards T24 Human Bladder Cancer Cells. Pharmaceutics, 2021, 13, 1512.	2.0	18
131	Evaluation of meso-substituted cationic corroles as potential antibacterial agents. Anais Da Academia Brasileira De Ciencias, 2018, 90, 1175-1185.	0.3	17
132	Unsymmetrical cationic porphyrin-cyclodextrin bioconjugates for photoinactivation of Escherichia coli. Photodiagnosis and Photodynamic Therapy, 2020, 31, 101788.	1.3	17
133	Photodynamic inactivation of methicillin-resistant Staphylococcus aureus on skin using a porphyrinic formulation. Photodiagnosis and Photodynamic Therapy, 2020, 30, 101754.	1.3	17
134	Enhanced Photodynamic Therapy Effects of Graphene Quantum Dots Conjugated with Aminoporphyrins. ACS Applied Nano Materials, 2021, 4, 13079-13089.	2.4	17
135	SDS-PACE and IR spectroscopy to evaluate modifications in the viral protein profile induced by a cationic porphyrinic photosensitizer. Journal of Virological Methods, 2014, 209, 103-109.	1.0	16
136	Diels-Alder reactions of beta-vinyl-meso-tetraphenylporphyrin with quinones. Arkivoc, 2005, 2005, 332-343.	0.3	16
137	Characterization of cationic glycoporphyrins by electrospray tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2006, 20, 3605-3611.	0.7	15
138	Characterization of isomeric cationic porphyrins with β-pyrrolic substituents by electrospray mass spectrometry: The singular behavior of a potential virus photoinactivator. Journal of the American Society for Mass Spectrometry, 2007, 18, 218-225.	1.2	15
139	Cationic β-vinyl substituted <i>meso</i> -tetraphenylporphyrins: synthesis and non-covalent interactions with a short poly(dGdC) duplex. Journal of Porphyrins and Phthalocyanines, 2012, 16, 101-113.	0.4	15
140	A New Protocol for the Synthesis of New Thioaryl-Porphyrins Derived from 5,10,15,20-Tetrakis(pentafluorophenyl)porphyrin: Photophysical Evaluation and DNA-Binding Interactive Studies. Molecules, 2018, 23, 2588.	1.7	15
141	N-Confused Porphyrin Immobilized on Solid Supports: Synthesis and Metal Ions Sensing Efficacy. Molecules, 2018, 23, 867.	1.7	15
142	Recovery of pigments from Ulva rigida. Separation and Purification Technology, 2021, 255, 117723.	3.9	15
143	A New Insight into the Catalytic Decomposition of Ethyl Diazoacetate in the Presence of <i>meso</i> â€Tetraarylporphyrin (=5,10,15,20â€Tetraarylâ€21 <i>H</i> ,23 <i>H</i> â€porphine) Complexes. Helvetica Chimica Acta, 2008, 91, 2270-2283.	1.0	14
144	Synthesis of new glycoporphyrin derivatives through carbohydrate-substituted α-diazoacetates. Journal of Porphyrins and Phthalocyanines, 2009, 13, 247-255.	0.4	14

MARIA A FAUSTINO

#	Article	IF	CITATIONS
145	Supramolecular Hybrid Material Based on Engineering Porphyrin Hosts for an Efficient Elimination of Lead(II) from Aquatic Medium. Molecules, 2019, 24, 669.	1.7	14
146	An efficient synthetic access to new uracil-alditols bearing a porphyrin unit and biological assessment in prostate cancer cells. Dyes and Pigments, 2020, 173, 107996.	2.0	14
147	Study by liquid secondary ion and electrospray mass spectrometry of synthesized and formed-in-source metallocorroles. Journal of Mass Spectrometry, 2007, 42, 225-232.	0.7	13
148	Second-Generation Manganese(III) Porphyrins Bearing 3,5-Dichloropyridyl Units: Innovative Homogeneous and Heterogeneous Catalysts for the Epoxidation of Alkenes. Catalysts, 2019, 9, 967.	1.6	12
149	Photodynamic therapy of prostate cancer using porphyrinic formulations. Journal of Photochemistry and Photobiology B: Biology, 2021, 223, 112301.	1.7	12
150	Photoinactivation of Phage Phi6 as a SARS-CoV-2 Model in Wastewater: Evidence of Efficacy and Safety. Microorganisms, 2022, 10, 659.	1.6	12
151	Electrospray tandem mass spectrometry of new porphyrin amino acid conjugates. Rapid Communications in Mass Spectrometry, 2005, 19, 2569-2580.	0.7	11
152	Synthesis and photodynamic effects of new porphyrin/4-oxoquinoline derivatives in the inactivation of S. aureus. Photochemical and Photobiological Sciences, 2019, 18, 1910-1922.	1.6	11
153	Azides and Porphyrinoids: Synthetic Approaches and Applications. Part 1—Azides, Porphyrins and Corroles. Molecules, 2020, 25, 1662.	1.7	11
154	An Insight into the Role of Non-Porphyrinoid Photosensitizers for Skin Wound Healing. International Journal of Molecular Sciences, 2021, 22, 234.	1.8	11
155	Current Photoactive Molecules for Targeted Therapy of Triple-Negative Breast Cancer. Molecules, 2021, 26, 7654.	1.7	11
156	The Near-Mid-IR HOMO–LUMO gap in amide linked porphyrin–rhodamine dyads. Chemical Communications, 2013, 49, 8809.	2.2	10
157	Dynamics of porphyrin adsorption on highly oriented pyrolytic graphite monitored by scanning tunnelling microscopy at the liquid/solid interface. Applied Surface Science, 2013, 273, 220-225.	3.1	10
158	Antimicrobial Photodynamic Therapy in the Control of Pseudomonas syringae pv. actinidiae Transmission by Kiwifruit Pollen. Microorganisms, 2020, 8, 1022.	1.6	10
159	Antimicrobial photodynamic treatment as an alternative approach for Alicyclobacillus acidoterrestris inactivation. International Journal of Food Microbiology, 2020, 333, 108803.	2.1	10
160	Cationic Pyrrolidine/Pyrroline-Substituted Porphyrins as Efficient Photosensitizers against E. coli. Molecules, 2021, 26, 464.	1.7	10
161	Comparison of the Photodynamic Action of Porphyrin, Chlorin, and Isobacteriochlorin Derivatives toward a Melanotic Cell Line. ACS Applied Bio Materials, 2021, 4, 4925-4935.	2.3	10
162	Electrospray Tandem Mass Spectrometry of β-Nitroalkenyl <i>Meso</i> -Tetraphenylporphyrins. European Journal of Mass Spectrometry, 2008, 14, 49-59.	0.5	9

#	Article	IF	CITATIONS
163	Untangling interactions of a zinc(ii) complex containing a coumarin—porphyrin unit with alkaloids in water solutions: a photophysical study. Photochemical and Photobiological Sciences, 2015, 14, 757-764.	1.6	9
164	Porphyrin-rhodamine conjugates as new materials with sensing ability. Dyes and Pigments, 2016, 135, 113-126.	2.0	9
165	Overall biochemical changes in bacteria photosensitized with cationic porphyrins monitored by infrared spectroscopy. Future Medicinal Chemistry, 2016, 8, 613-628.	1.1	9
166	Azides and Porphyrinoids: Synthetic Approaches and Applications. Part 2—Azides, Phthalocyanines, Subphthalocyanines and Porphyrazines. Molecules, 2020, 25, 1745.	1.7	9
167	Evaluation of the cellular protection by novel spiropyrazole compounds in dopaminergic cell death. European Journal of Medicinal Chemistry, 2021, 213, 113140.	2.6	9
168	Tetracationic porphyrin derivatives against human breast cancer. Journal of Photochemistry and Photobiology B: Biology, 2021, 222, 112258.	1.7	9
169	The Antimicrobial Photoinactivation Effect on Escherichia coli through the Action of Inverted Cationic Porphyrin–Cyclodextrin Conjugates. Microorganisms, 2022, 10, 718.	1.6	9
170	New nitroindazolylacetonitriles: efficient synthetic access <i>via</i> vicarious nucleophilic substitution and tautomeric switching mediated by anions. New Journal of Chemistry, 2019, 43, 14355-14367.	1.4	8
171	Synthesis and Biological Evaluation of New Functionalized Nitroindazolylacetonitrile Derivatives. ChemistrySelect, 2019, 4, 14335-14342.	0.7	8
172	Photodynamic inactivation of <i>Lasiodiplodia theobromae</i> : lighting the way towards an environmentally friendly phytosanitary treatment. Biology Letters, 2021, 17, 20200820.	1.0	8
173	The Interactions of H2TMPyP, Analogues and Its Metal Complexes with DNA G-Quadruplexes—An Overview. Biomolecules, 2021, 11, 1404.	1.8	8
174	Ruthenium and iridium complexes bearing porphyrin moieties: PDT efficacy against resistant melanoma cells. Dyes and Pigments, 2022, 205, 110501.	2.0	8
175	Liquid secondary ion mass spectrometry of porphyrin dimers: reduction reactions and structural characterisation. Rapid Communications in Mass Spectrometry, 2000, 14, 2025-2029.	0.7	7
176	Flavone–Nitrogen Heterocycle Conjugate Formation by 1,3â€Dipolar Cycloadditions. European Journal of Organic Chemistry, 2012, 2012, 132-143.	1.2	7
177	β-(p-Carboxyaminophenyl)porphyrin derivatives: new dyes for TiO2 dye-sensitized solar cells. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	7
178	An insight into the gas-phase fragmentations of potential molecular sensors with porphyrin-chalcone structures. International Journal of Mass Spectrometry, 2015, 392, 164-172.	0.7	7
179	An easy synthetic access to new pyrazole spiro derivatives from 3-amino-1-phenyl-2-pyrazolin-5-one. New Journal of Chemistry, 2015, 39, 6738-6741.	1.4	7
180	Indirect and direct damage to genomic DNA induced by 5,10,15-tris(1-methylpyridinium-4-yl)-20-(pentafluorophenyl)porphyrin upon photodynamic action. Journal of Porphyrins and Phthalocyanines, 2016, 20, 331-336.	0.4	7

#	Article	IF	CITATIONS
181	Lipophilic Metabolites of <i>Spartina maritima</i> and <i>Puccinellia maritima</i> Involved in Their Tolerance to Salty Environments. Chemistry and Biodiversity, 2020, 17, e2000316.	1.0	7
182	The Photosensitizing Efficacy of Micelles Containing a Porphyrinic Photosensitizer and KI against Resistant Melanoma Cells. Chemistry - A European Journal, 2021, 27, 1990-1994.	1.7	7
183	Photodynamic inactivation of pathogenic Gram-negative and Gram-positive bacteria mediated by Si(IV) phthalocyanines bearing axial ammonium units. Journal of Photochemistry and Photobiology B: Biology, 2022, 233, 112502.	1.7	7
184	New flavonoid–porphyrin conjugates via Buchwald–Hartwig amination: synthesis and photophysical studies. Tetrahedron Letters, 2013, 54, 5253-5256.	0.7	6
185	Photocatalytic degradation of methyl orange mediated by a silica coated nanomagnet porphyrin hybrid. Journal of Organometallic Chemistry, 2021, 938, 121751.	0.8	6
186	Reaction of β-Vinyl-meso-tetraphenylporphyrin with o-Quinone Methides. Synlett, 2011, 2011, 1841-1844.	1.0	5
187	A ruthenium(II)-trithiacyclononane curcuminate complex: Synthesis, characterization, DNA-interaction, and cytotoxic activity. Journal of Coordination Chemistry, 2017, 70, 2393-2408.	0.8	5
188	Photodynamic inactivation of the phytopathogenic bacterium <i>Xanthomonas citri</i> subsp. <i>citri</i> . Letters in Applied Microbiology, 2020, 71, 420-427.	1.0	5
189	An insight into the vicarious nucleophilic substitution reaction of 2-nitro-5,10,15,20-tetraphenylporphyrin with p-chlorophenoxyacetonitrile: Synthesis and gas-phase fragmentation studies. Arabian Journal of Chemistry, 2020, 13, 5849-5863.	2.3	5
190	Can Corrole Dimers Be Good Photosensitizers to Kill Bacteria?. Microorganisms, 2022, 10, 1167.	1.6	5
191	Alkylation and 1,3-Dipolar Cycloaddition of 6-Styryl-4,5-dihydro-2 <i>H</i> -pyridazin-3-one: Synthesis of Novel <i>N</i> -Substituted Pyridazinones and Triazolo[4,3-b]pyridazinones. Journal of Chemistry, 2013, 2013, 1-7.	0.9	4
192	Curcumin Innovative Delivery Forms: Paving the â€~Yellow Brick Road' of Antitumoral Phytotherapy. Applied Sciences (Switzerland), 2020, 10, 8990.	1.3	4
193	New nitroindazole-porphyrin conjugates: Synthesis, characterization and antibacterial properties. Bioorganic Chemistry, 2020, 101, 103994.	2.0	4
194	Novel Diels-Alder and Thermal [4+4] Cycloadditions of Corroles. Synlett, 2004, 2004, 1291-1293.	1.0	3
195	A facile and effective synthesis of 4-imino-3-(arylidene)- azetidine-2-thiones via phosphorus pentasulfide. Journal of Sulfur Chemistry, 2015, 36, 9-15.	1.0	3
196	The Research on Porphyrins and Analogues in Brazil: A Small Review Covering Catalytic and other Applications since the Beginning at Universidade de São Paulo in Ribeirão Preto until the Joint Venture between Brazilian Researchers and Colleagues from Universidade de Aveiro, Portugal. Journal of the Brazilian Chemical Society. O	0.6	3
197	Synthetic access to new porphyrinoids from 2-nitro-5,10,15,20-tetraphenylporphyrin and an arylacetonitrile. Monatshefte FA1/4r Chemie, 2019, 150, 67-75.	0.9	3
198	A Suitable Functionalization of Nitroindazoles with Triazolyl and Pyrazolyl Moieties via Cycloaddition Reactions. Molecules, 2020, 25, 126.	1.7	3

#	Article	IF	CITATIONS
199	Straightforward synthesis of thiazolo[5,4- <i>c</i>]isoquinolines from dithiooxamide and 2-halobenzaldehydes. New Journal of Chemistry, 2022, 46, 3602-3615.	1.4	3
200	The Role of Photoactive Materials Based on Tetrapyrrolic Macrocycles in Antimicrobial Photodynamic Therapy. Handbook of Porphyrin Science, 2022, , 201-277.	0.3	3
201	Photodynamic treatment of melanoma cells using aza-dipyrromethenes as photosensitizers. Photochemical and Photobiological Sciences, 2020, 19, 885-891.	1.6	2
202	Tetrapyrrolic Macrocycles: Synthesis, Functionalization and Applications 2018. Molecules, 2020, 25, 433.	1.7	2
203	1,3-Dipolar cycloaddition of nitrile imines to meso-tetraarylporphyrins. Arkivoc, 2010, 2010, 24-33.	0.3	2
204	Part 2. meso-Tetraphenylporphyrin Dimer Derivatives as Potential Photosensitizers in Photodynamic Therapy¶. Photochemistry and Photobiology, 2000, 72, 217-225.	1.3	1
205	Sewage bacteriophage photoinactivation by porphyrins immobilized in solid matrixes. , 2009, , .		1
206	Functionalized Porphyrins as Red Fluorescent Probes for Metal Cations: Spectroscopic, MALDIâ€TOF Spectrometry, and Dopedâ€Polymer Studies. ChemPlusChem, 2013, 78, 1210-1210.	1.3	1
207	Advances in aPDT based on the combination of a porphyrinic formulation with potassium iodide: Effectiveness on bacteria and fungi planktonic/biofilm forms and viruses. , 2021, , 290-301.		1
208	Dependent excited state absorption and dynamic of β-BF2 substituted metalloporphyrins: The metal ion effect. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 260, 119911.	2.0	1
209	Assessment of the performance of porphyrin derivatives as photosensitizers for the inactivation of bacterial endospores. , 2009, , .		1
210	Ultrastructure of the Effects of Pyrrolidine-fused Chlorins on the Replication of HSV-1. Microscopy and Microanalysis, 2008, 14, 137-138.	0.2	0
211	Inactivation of pathogenic bacteria in food matrices: high pressure processing, photodynamic inactivation and pressure-assisted photodynamic inactivation. IOP Conference Series: Earth and Environmental Science, 2017, 85, 012016.	0.2	0
212	1st Spring Virtual Meeting on Medicinal Chemistry. Chemistry Proceedings, 2021, 4, 1.	0.1	0
213	Protonation of meso-Tetraphenylporphyrin and Its β-Functionalized Derivatives by Photogenerators of Acidity in Toluene and Polymer Film. Macroheterocycles, 2019, 12, 356-363.	0.9	0
214	Bioluminescent Models to Evaluate the Efficiency of Light-Based Antibacterial Approaches. Methods in Molecular Biology, 2022, 2451, 631-669.	0.4	0
215	New Bis-Cyclometalated Iridium(III) Complexes with β-Substituted Porphyrin-Arylbipyridine as the Ancillary Ligand: Electrochemical and Photophysical Insights. International Journal of Molecular Sciences, 2022, 23, 7606.	1.8	0