Wolfgang Wurst

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9299096/wolfgang-wurst-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

28,001 83 389 153 h-index g-index citations papers 6.53 412 10.1 32,790 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
389	Extensive identification of genes involved in congenital and structural heart disorders and cardiomyopathy 2022 , 1, 157-173		2
388	Parkinson's disease motor symptoms rescue by CRISPRa-reprogramming astrocytes into GABAergic neurons <i>EMBO Molecular Medicine</i> , 2022 , e14797	12	О
387	Chapter 5 - "Parkinson's disease - A role of non-enzymatic posttranslational modifications in disease onset and progression?". <i>Molecular Aspects of Medicine</i> , 2022 , 101096	16.7	1
386	Susceptibility to diet-induced obesity at thermoneutral conditions is independent of UCP1 <i>American Journal of Physiology - Endocrinology and Metabolism</i> , 2021 ,	6	1
385	Characterising a homozygous two-exon deletion in UQCRH: comparing human and mouse phenotypes. <i>EMBO Molecular Medicine</i> , 2021 , 13, e14397	12	O
384	Disrupting Roquin-1 interaction with Regnase-1 induces autoimmunity and enhances antitumor responses. <i>Nature Immunology</i> , 2021 , 22, 1563-1576	19.1	2
383	TRAF6 prevents fatal inflammation by homeostatic suppression of MALT1 protease. <i>Science Immunology</i> , 2021 , 6, eabh2095	28	4
382	Comprehensive miRNome-Wide Profiling in a Neuronal Cell Model of Synucleinopathy Implies Involvement of Cell Cycle Genes. <i>Frontiers in Cell and Developmental Biology</i> , 2021 , 9, 561086	5.7	4
381	Mammalian VPS45 orchestrates trafficking through the endosomal system. <i>Blood</i> , 2021 , 137, 1932-1944	12.2	4
380	A resource of targeted mutant mouse lines for 5,061 genes. <i>Nature Genetics</i> , 2021 , 53, 416-419	36.3	22
379	A comprehensive phenotypic characterization of a whole-body Wdr45 knock-out mouse. <i>Mammalian Genome</i> , 2021 , 32, 332-349	3.2	1
378	Mutations in HID1 Cause Syndromic Infantile Encephalopathy and Hypopituitarism. <i>Annals of Neurology</i> , 2021 , 90, 143-158	9.4	1
377	Non-invasive and high-throughput interrogation of exon-specific isoform expression. <i>Nature Cell Biology</i> , 2021 , 23, 652-663	23.4	1
376	CRISPR-Mediated Induction of Neuron-Enriched Mitochondrial Proteins Boosts Direct Glia-to-Neuron Conversion. <i>Cell Stem Cell</i> , 2021 , 28, 524-534.e7	18	8
375	Diabetes type 2 risk gene Dusp8 is associated with altered sucrose reward behavior in mice and humans. <i>Brain and Behavior</i> , 2021 , 11, e01928	3.4	1
374	Dose-dependent long-term effects of a single radiation event on behaviour and glial cells. <i>International Journal of Radiation Biology</i> , 2021 , 97, 156-169	2.9	7
373	Genome editing for Duchenne muscular dystrophy: a glimpse of the future?. <i>Gene Therapy</i> , 2021 , 28, 542-548	4	7

(2020-2021)

372	Simple and reliable detection of CRISPR-induced on-target effects by qgPCR and SNP genotyping. <i>Nature Protocols</i> , 2021 , 16, 1714-1739	18.8	6
371	Mutant non-coding RNA resource in mouse embryonic stem cells. <i>DMM Disease Models and Mechanisms</i> , 2021 , 14,	4.1	2
370	Endoglycan (PODXL2) is proteolytically processed by ADAM10 (a disintegrin and metalloprotease 10) and controls neurite branching in primary neurons. <i>FASEB Journal</i> , 2021 , 35, e21813	0.9	1
369	Determination of morphine and norlaudanosoline in murine brain regions by dispersive liquid-liquid micro-extraction and liquid chromatograpy-electrochemical detection. <i>Neurochemistry International</i> , 2021 , 150, 105174	4.4	
368	DGK and DZHK position paper on genome editing: basic science applications and future perspective. <i>Basic Research in Cardiology</i> , 2021 , 116, 2	11.8	2
367	Congenic expression of poly-GA but not poly-PR in mice triggers selective neuron loss and interferon responses found in C9orf72 ALS. <i>Acta Neuropathologica</i> , 2020 , 140, 121-142	14.3	14
366	The FTLD Risk Factor TMEM106B Regulates the Transport of Lysosomes at the Axon Initial Segment of Motoneurons. <i>Cell Reports</i> , 2020 , 30, 3506-3519.e6	10.6	19
365	A comprehensive and comparative phenotypic analysis of the collaborative founder strains identifies new and known phenotypes. <i>Mammalian Genome</i> , 2020 , 31, 30-48	3.2	8
364	Global site-specific neddylation profiling reveals that NEDDylated cofilin regulates actin dynamics. <i>Nature Structural and Molecular Biology</i> , 2020 , 27, 210-220	17.6	33
363	Alpha-synuclein fragments trigger distinct aggregation pathways. Cell Death and Disease, 2020, 11, 84	9.8	10
362	The rRNA mA methyltransferase METTL5 is involved in pluripotency and developmental programs. <i>Genes and Development</i> , 2020 , 34, 715-729	12.6	45
361	Type 2 diabetes risk gene Dusp8 regulates hypothalamic Jnk signaling and insulin sensitivity. <i>Journal of Clinical Investigation</i> , 2020 , 130, 6093-6108	15.9	9
360	Mouse mutant phenotyping at scale reveals novel genes controlling bone mineral density. <i>PLoS Genetics</i> , 2020 , 16, e1009190	6	8
359	Etatenin signaling modulates the tempo of Idendritic growth of adult-born hippocampal neurons. <i>EMBO Journal</i> , 2020 , 39, e104472	13	3
358	A truncating Aspm allele leads to a complex cognitive phenotype and region-specific reductions in parvalbuminergic neurons. <i>Translational Psychiatry</i> , 2020 , 10, 66	8.6	5
357	Human and mouse essentiality screens as a resource for disease gene discovery. <i>Nature Communications</i> , 2020 , 11, 655	17.4	25
356	Sox2 controls Schwann cell self-organization through fibronectin fibrillogenesis. <i>Scientific Reports</i> , 2020 , 10, 1984	4.9	7
355	Mouse brain proteomics establishes MDGA1 and CACHD1 as in vivo substrates of the Alzheimer protease BACE1. <i>FASEB Journal</i> , 2020 , 34, 2465-2482	0.9	10

354	In-depth phenotyping reveals common and novel disease symptoms in a hemizygous knock-in mouse model (Mut-ko/ki) of mut-type methylmalonic aciduria. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 2020 , 1866, 165622	6.9	4
353	Dose-Dependent and Subset-Specific Regulation of Midbrain Dopaminergic Neuron Differentiation by LEF1-Mediated WNT1/b-Catenin Signaling. <i>Frontiers in Cell and Developmental Biology</i> , 2020 , 8, 5877	7 ⁵ 8 ⁷	4
352	The Alzheimer's disease-associated protective Plc2-P522R variant promotes immune functions. <i>Molecular Neurodegeneration</i> , 2020 , 15, 52	19	19
351	A patient-based model of RNA mis-splicing uncovers treatment targets in Parkinson's disease. <i>Science Translational Medicine</i> , 2020 , 12,	17.5	10
350	Cell-type-specific profiling of brain mitochondria reveals functional and molecular diversity. <i>Nature Neuroscience</i> , 2019 , 22, 1731-1742	25.5	93
349	Immune homeostasis and regulation of the interferon pathway require myeloid-derived Regnase-3. Journal of Experimental Medicine, 2019 , 216, 1700-1723	16.6	15
348	Low catalytic activity is insufficient to induce disease pathology in triosephosphate isomerase deficiency. <i>Journal of Inherited Metabolic Disease</i> , 2019 , 42, 839-849	5.4	5
347	A protein quality control pathway regulated by linear ubiquitination. <i>EMBO Journal</i> , 2019 , 38,	13	22
346	The Parkinson's disease-linked Leucine-rich repeat kinase 2 (LRRK2) is required for insulin-stimulated translocation of GLUT4. <i>Scientific Reports</i> , 2019 , 9, 4515	4.9	12
345	Multiple molecular pathways stimulating macroautophagy protect from alpha-synuclein-induced toxicity in human neurons. <i>Neuropharmacology</i> , 2019 , 149, 13-26	5.5	9
344	Dusp8 affects hippocampal size and behavior in mice and humans. Scientific Reports, 2019, 9, 19483	4.9	2
343	A mouse model for intellectual disability caused by mutations in the X-linked 2'-O-methyltransferase Ftsj1 gene. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 2019 , 1865, 2083-2093	6.9	12
342	Crybb2 Mutations Consistently Affect Schizophrenia Endophenotypes in Mice. <i>Molecular Neurobiology</i> , 2019 , 56, 4215-4230	6.2	5
341	miR-191 modulates B-cell development and targets transcription factors E2A, Foxp1, and Egr1. European Journal of Immunology, 2019 , 49, 121-132	6.1	8
340	Zebrafish and medaka offer insights into the neurobehavioral correlates of vertebrate magnetoreception. <i>Nature Communications</i> , 2018 , 9, 802	17.4	16
339	Identification of genetic elements in metabolism by high-throughput mouse phenotyping. <i>Nature Communications</i> , 2018 , 9, 288	17.4	48
338	Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. <i>Cell</i> , 2018 , 172, 409-422.e21	56.2	446
337	Lifetime study in mice after acute low-dose ionizing radiation: a multifactorial study with special focus on cataract risk. <i>Radiation and Environmental Biophysics</i> , 2018 , 57, 99-113	2	23

(2017-2018)

336	Genetically Controlled Lysosomal Entrapment of Superparamagnetic Ferritin for Multimodal and Multiscale Imaging and Actuation with Low Tissue Attenuation. <i>Advanced Functional Materials</i> , 2018 , 28, 1706793	15.6	13
335	Analysis of locomotor behavior in the German Mouse Clinic. <i>Journal of Neuroscience Methods</i> , 2018 , 300, 77-91	3	8
334	Fgf9 Mutation Alters Information Processing and Social Memory in Mice. <i>Molecular Neurobiology</i> , 2018 , 55, 4580-4595	6.2	7
333	The Role of Fibroblast Growth Factor-Binding Protein 1 in Skin Carcinogenesis and Inflammation. Journal of Investigative Dermatology, 2018 , 138, 179-188	4.3	15
332	Understanding gene functions and disease mechanisms: Phenotyping pipelines in the German Mouse Clinic. <i>Behavioural Brain Research</i> , 2018 , 352, 187-196	3.4	12
331	Epigenome-wide DNA methylation profiling in Progressive Supranuclear Palsy reveals major changes at DLX1. <i>Nature Communications</i> , 2018 , 9, 2929	17.4	13
330	Exosomal secretion of Esynuclein as protective mechanism after upstream blockage of macroautophagy. <i>Cell Death and Disease</i> , 2018 , 9, 757	9.8	72
329	A Customizable Protocol for String Assembly gRNA Cloning (STAgR). <i>Journal of Visualized Experiments</i> , 2018 ,	1.6	1
328	The Aryl Hydrocarbon Receptor Pathway Defines the Time Frame for Restorative Neurogenesis. <i>Cell Reports</i> , 2018 , 25, 3241-3251.e5	10.6	16
327	Identification of genes required for eye development by high-throughput screening of mouse knockouts. <i>Communications Biology</i> , 2018 , 1, 236	6.7	20
326	FoxO Function Is Essential for Maintenance of Autophagic Flux and Neuronal Morphogenesis in Adult Neurogenesis. <i>Neuron</i> , 2018 , 99, 1188-1203.e6	13.9	70
325	The Trem2 R47H Alzheimer's risk variant impairs splicing and reduces Trem2 mRNA and protein in mice but not in humans. <i>Molecular Neurodegeneration</i> , 2018 , 13, 49	19	52
324	TDP-43 induces p53-mediated cell death of cortical progenitors and immature neurons. <i>Scientific Reports</i> , 2018 , 8, 8097	4.9	22
323	Chronic CRH depletion from GABAergic, long-range projection neurons in the extended amygdala reduces dopamine release and increases anxiety. <i>Nature Neuroscience</i> , 2018 , 21, 803-807	25.5	53
322	Laboratory mouse housing conditions can be improved using common environmental enrichment without compromising data. <i>PLoS Biology</i> , 2018 , 16, e2005019	9.7	28
321	Role of Mitochondrial Metabolism in the Control of Early Lineage Progression and Aging Phenotypes in Adult Hippocampal Neurogenesis. <i>Neuron</i> , 2017 , 93, 560-573.e6	13.9	137
320	Gene editing in mouse zygotes using the CRISPR/Cas9 system. <i>Methods</i> , 2017 , 121-122, 55-67	4.6	30
319	Spinal poly-GA inclusions in a C9orf72 mouse model trigger motor deficits and inflammation without neuron loss. <i>Acta Neuropathologica</i> , 2017 , 134, 241-254	14.3	70

318	TREM2 deficiency impairs chemotaxis and microglial responses to neuronal injury. <i>EMBO Reports</i> , 2017 , 18, 1186-1198	6.5	156
317	Serum Response Factor (SRF) Ablation Interferes with Acute Stress-Associated Immediate and Long-Term Coping Mechanisms. <i>Molecular Neurobiology</i> , 2017 , 54, 8242-8262	6.2	7
316	Alterations in neuronal control of body weight and anxiety behavior by glutathione peroxidase 4 deficiency. <i>Neuroscience</i> , 2017 , 357, 241-254	3.9	25
315	Elevated glutaric acid levels in Dhtkd1-/Gcdh- double knockout mice challenge our current understanding of lysine metabolism. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 2017 , 1863, 2220-2228	6.9	23
314	The FTD-like syndrome causing TREM2 T66M mutation impairs microglia function, brain perfusion, and glucose metabolism. <i>EMBO Journal</i> , 2017 , 36, 1837-1853	13	110
313	Control of gene editing by manipulation of DNA repair mechanisms. <i>Mammalian Genome</i> , 2017 , 28, 262	-3724	42
312	Interplay between H1 and HMGN epigenetically regulates OLIG1&2 expression and oligodendrocyte differentiation. <i>Nucleic Acids Research</i> , 2017 , 45, 3031-3045	20.1	22
311	The Chromatin-Associated Phf12 Protein Maintains Nucleolar Integrity and Prevents Premature Cellular Senescence. <i>Molecular and Cellular Biology</i> , 2017 , 37,	4.8	4
310	Heterozygosity for the Mood Disorder-Associated Variant Gln460Arg Alters P2X7 Receptor Function and Sleep Quality. <i>Journal of Neuroscience</i> , 2017 , 37, 11688-11700	6.6	26
309	NeuBtracker-imaging neurobehavioral dynamics in freely behaving fish. <i>Nature Methods</i> , 2017 , 14, 1079	9-110.82	21
308	A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction. <i>Nature Communications</i> , 2017 , 8, 886	17.4	81
307	Every-other-day feeding extends lifespan but fails to delay many symptoms of aging in mice. <i>Nature Communications</i> , 2017 , 8, 155	17.4	60
306	Disease model discovery from 3,328 gene knockouts by The International Mouse Phenotyping Consortium. <i>Nature Genetics</i> , 2017 , 49, 1231-1238	36.3	145
305	: effects on motor phenotypes and the sensorimotor system in mice. <i>DMM Disease Models and Mechanisms</i> , 2017 , 10, 981-991	4.1	17
304	ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. <i>Nature Chemical Biology</i> , 2017 , 13, 91-98	11.7	908
303	Genetically dissecting P2rx7 expression within the central nervous system using conditional humanized mice. <i>Purinergic Signalling</i> , 2017 , 13, 153-170	3.8	55
302	ENCORE: an efficient software for CRISPR screens identifies new players in extrinsic apoptosis. <i>BMC Genomics</i> , 2017 , 18, 905	4.5	15
301	Cytosolic Hsp90land its mitochondrial isoform Trap1 are differentially required in a breast cancer model. <i>Oncotarget</i> , 2017 , 8, 17428-17442	3.3	11

(2015-2016)

300	Fgf15 regulates thalamic development by controlling the expression of proneural genes. <i>Brain Structure and Function</i> , 2016 , 221, 3095-109	4	10
299	High-throughput discovery of novel developmental phenotypes. <i>Nature</i> , 2016 , 537, 508-514	50.4	608
298	Caspase-mediated apoptosis induction in zebrafish cerebellar Purkinje neurons. <i>Development (Cambridge)</i> , 2016 , 143, 4279-4287	6.6	10
297	Diet-induced and mono-genetic obesity alter volatile organic compound signature in mice. <i>Journal of Breath Research</i> , 2016 , 10, 016009	3.1	6
296	Differences in the spatiotemporal expression and epistatic gene regulation of the mesodiencephalic dopaminergic precursor marker PITX3 during chicken and mouse development. <i>Development (Cambridge)</i> , 2016 , 143, 691-702	6.6	4
295	Genome Editing in Mice Using TALE Nucleases. <i>Methods in Molecular Biology</i> , 2016 , 1338, 229-43	1.4	2
294	Animal Models Are Valid to Uncover Disease Mechanisms. <i>PLoS Genetics</i> , 2016 , 12, e1006013	6	3
293	Sphingomyelin Synthase 1 Is Essential for Male Fertility in Mice. <i>PLoS ONE</i> , 2016 , 11, e0164298	3.7	13
292	The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations. <i>G3: Genes, Genomes, Genetics</i> , 2016 , 6, 4035-4046	3.2	7
291	The REST remodeling complex protects genomic integrity during embryonic neurogenesis. <i>ELife</i> , 2016 , 5, e09584	8.9	42
2 90	CRISPR-Cas9 enables conditional mutagenesis of challenging loci. Scientific Reports, 2016 , 6, 32326	4.9	8
289	CRFR1 in AgRP Neurons Modulates Sympathetic Nervous System Activity to Adapt to Cold Stress and Fasting. <i>Cell Metabolism</i> , 2016 , 23, 1185-1199	24.6	40
288	Viable Ednra mice feature human mandibulofacial dysostosis with alopecia (MFDA) syndrome due to the homologue mutation. <i>Mammalian Genome</i> , 2016 , 27, 587-598	3.2	3
287	Diversity matters - heterogeneity of dopaminergic neurons in the ventral mesencephalon and its relation to Parkinson's Disease. <i>Journal of Neurochemistry</i> , 2016 , 139 Suppl 1, 8-26	6	36
286	A WNT1-regulated developmental gene cascade prevents dopaminergic neurodegeneration in adult En1(+/-) mice. <i>Neurobiology of Disease</i> , 2015 , 82, 32-45	7.5	23
285	Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics. <i>Nature Genetics</i> , 2015 , 47, 969-978	36.3	106
284	Expression of a Catalytically Inactive Mutant Form of Glutathione Peroxidase 4 (Gpx4) Confers a Dominant-negative Effect in Male Fertility. <i>Journal of Biological Chemistry</i> , 2015 , 290, 14668-78	5.4	44
283	Limitations of In Vivo Reprogramming to Dopaminergic Neurons via a Tricistronic Strategy. <i>Human Gene Therapy Methods</i> , 2015 , 26, 107-22	4.9	2

282	Development of an intein-mediated split-Cas9 system for gene therapy. <i>Nucleic Acids Research</i> , 2015 , 43, 6450-8	20.1	194
281	Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. <i>Nature Biotechnology</i> , 2015 , 33, 543-8	44.5	771
280	Orphan receptor IL-17RD regulates Toll-like receptor signalling via SEFIR/TIR interactions. <i>Nature Communications</i> , 2015 , 6, 6669	17.4	28
279	Dickkopf 3 Promotes the Differentiation of a Rostrolateral Midbrain Dopaminergic Neuronal Subset In Vivo and from Pluripotent Stem Cells In Vitro in the Mouse. <i>Journal of Neuroscience</i> , 2015 , 35, 13385-401	6.6	21
278	Creation of targeted genomic deletions using TALEN or CRISPR/Cas nuclease pairs in one-cell mouse embryos. <i>FEBS Open Bio</i> , 2015 , 5, 26-35	2.7	36
277	The development of diet-induced obesity and associated metabolic impairments in Dj-1 deficient mice. <i>Journal of Nutritional Biochemistry</i> , 2015 , 26, 75-81	6.3	9
276	Metformin supports the antidiabetic effect of a sodium glucose cotransporter 2 inhibitor by suppressing endogenous glucose production in diabetic mice. <i>Diabetes</i> , 2015 , 64, 284-90	0.9	29
275	MiR-34a deficiency accelerates medulloblastoma formation in vivo. <i>International Journal of Cancer</i> , 2015 , 136, 2293-303	7.5	32
274	Assessing Cognition in Mice. Current Protocols in Mouse Biology, 2015, 5, 331-358	1.1	37
273	Hairy/Enhancer-of-Split MEGANE and Proneural MASH1 Factors Cooperate Synergistically in Midbrain GABAergic Neurogenesis. <i>PLoS ONE</i> , 2015 , 10, e0127681	3.7	4
272	Conditional Reduction of Adult Born Doublecortin-Positive Neurons Reversibly Impairs Selective Behaviors. <i>Frontiers in Behavioral Neuroscience</i> , 2015 , 9, 302	3.5	21
271	Corticotropin-Releasing Hormone Receptor Type 1 (CRHR1) Clustering with MAGUKs Is Mediated via Its C-Terminal PDZ Binding Motif. <i>PLoS ONE</i> , 2015 , 10, e0136768	3.7	13
270	MIM-Induced Membrane Bending Promotes Dendritic Spine Initiation. <i>Developmental Cell</i> , 2015 , 33, 644	l -159 .2	52
269	Genetic Differences in the Immediate Transcriptome Response to Stress Predict Risk-Related Brain Function and Psychiatric Disorders. <i>Neuron</i> , 2015 , 86, 1189-202	13.9	79
268	Mga is essential for the survival of pluripotent cells during peri-implantation development. <i>Development (Cambridge)</i> , 2015 , 142, 31-40	6.6	21
267	Ascl1 and Helt act combinatorially to specify thalamic neuronal identity by repressing Dlxs activation. <i>Developmental Biology</i> , 2015 , 398, 280-91	3.1	18
266	MTO1 mediates tissue specificity of OXPHOS defects via tRNA modification and translation optimization, which can be bypassed by dietary intervention. <i>Human Molecular Genetics</i> , 2015 , 24, 2247-	· §6 6	39
265	Tests for Anxiety-Related Behavior in Mice. <i>Current Protocols in Mouse Biology</i> , 2015 , 5, 291-309	1.1	25

(2014-2014)

Simple derivation of transgene-free iPS cells by a dual recombinase approach. <i>Molecular Biotechnology</i> , 2014 , 56, 697-713	3	2
Otx2 cell-autonomously determines dorsal mesencephalon versus cerebellum fate independently of isthmic organizing activity. <i>Development (Cambridge)</i> , 2014 , 141, 377-88	6.6	17
Wnt1-regulated genetic networks in midbrain dopaminergic neuron development. <i>Journal of Molecular Cell Biology</i> , 2014 , 6, 34-41	6.3	36
Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders. <i>EMBO Journal</i> , 2014 , 33, 2020-39	13	331
High-fat diet induced isoform changes of the Parkinson's disease protein DJ-1. <i>Journal of Proteome Research</i> , 2014 , 13, 2339-51	5.6	39
High-throughput phenotypic assessment of cardiac physiology in four commonly used inbred mouse strains. <i>Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology</i> , 2014 , 184, 763-75	2.2	16
Generation of targeted mouse mutants by embryo microinjection of TALENs. <i>Methods</i> , 2014 , 69, 94-101	4.6	14
Mouse IDGenes: a reference database for genetic interactions in the developing mouse brain. <i>Database: the Journal of Biological Databases and Curation</i> , 2014 , 2014,	5	2
Abnormal brain iron metabolism in Irp2 deficient mice is associated with mild neurological and behavioral impairments. <i>PLoS ONE</i> , 2014 , 9, e98072	3.7	37
FGF/FGFR2 signaling regulates the generation and correct positioning of Bergmann glia cells in the developing mouse cerebellum. <i>PLoS ONE</i> , 2014 , 9, e101124	3.7	18
Pleiotropic functions for transcription factor zscan10. <i>PLoS ONE</i> , 2014 , 9, e104568	3.7	12
MTO1-deficient mouse model mirrors the human phenotype showing complex I defect and cardiomyopathy. <i>PLoS ONE</i> , 2014 , 9, e114918	3.7	15
A robust and reliable non-invasive test for stress responsivity in mice. <i>Frontiers in Behavioral Neuroscience</i> , 2014 , 8, 125	3.5	49
MicroRNA-9 controls dendritic development by targeting REST. <i>ELife</i> , 2014 , 3,	8.9	61
Uncoupling Malt1 threshold function from paracaspase activity results in destructive autoimmune inflammation. <i>Cell Reports</i> , 2014 , 9, 1292-305	10.6	102
Fast synchronization of ultradian oscillators controlled by delta-notch signaling with cis-inhibition. <i>PLoS Computational Biology</i> , 2014 , 10, e1003843	5	4
Restless legs syndrome-associated intronic common variant in Meis1 alters enhancer function in the developing telencephalon. <i>Genome Research</i> , 2014 , 24, 592-603	9.7	79
Products of the Parkinson's disease-related glyoxalase DJ-1, D-lactate and glycolate, support mitochondrial membrane potential and neuronal survival. <i>Biology Open</i> , 2014 , 3, 777-84	2.2	35
	Otx2 cell-autonomously determines dorsal mesencephalon versus cerebellum fate independently of isthmic organizing activity. Development (Cambridge), 2014, 141, 377-88 Wht1-regulated genetic networks in midbrain dopaminergic neuron development. Journal of Molecular Cell Biology, 2014, 6, 34-41 Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders. EMBO Journal, 2014, 33, 2020-39 High-fat diet induced isoform changes of the Parkinson's disease protein DJ-1. Journal of Proteome Research, 2014, 13, 2339-51 High-throughput phenotypic assessment of cardiac physiology in four commonly used inbred mouse strains. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2014, 184, 763-75 Generation of targeted mouse mutants by embryo microinjection of TALENs. Methods, 2014, 69, 94-101 Mouse IDGenes: a reference database for genetic interactions in the developing mouse brain. Database: the Journal of Biological Databases and Curation, 2014, 2014, Abnormal brain iron metabolism in Irp2 deficient mice is associated with mild neurological and behavioral impairments. PLoS ONE, 2014, 9, e98072 FGF/FGFR2 signaling regulates the generation and correct positioning of Bergmann glia cells in the developing mouse cerebellum. PLoS ONE, 2014, 9, e101124 Pleiotropic functions for transcription factor zscan10. PLoS ONE, 2014, 9, e104568 MTO1-deficient mouse model mirrors the human phenotype showing complex I defect and cardiomyopathy. PLoS ONE, 2014, 9, e114918 A robust and reliable non-invasive test for stress responsivity in mice. Frontiers in Behavioral Neuroscience, 2014, 8, 125 MicroRNA-9 controls dendritic development by targeting REST. ELife, 2014, 3, Uncoupling Malt1 threshold function from paracaspase activity results in destructive autoimmune inflammation. Cell Reports, 2014, 9, e103843 Restless legs syndrome-associated intronic common variant in Meis1 alters enhancer function in the developing telencephalon. Genome Research, 2014, 24, 592-603	Districtional graph and the products of the Parkinson's disease protein DJ-1. Journal of Molecular Cell Biology, 2014, 6, 34-41 Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders. EMBO Journal, 2014, 33, 2020-39 High-fat diet induced isoform changes of the Parkinson's disease protein DJ-1. Journal of Proteome Research, 2014, 13, 2339-51 High-throughput phenotypic assessment of cardiac physiology in four commonly used inbred mouse strains. Journal of Comparative Physiology B. Biochemical, Systemic, and Environmental Physiology, 2014, 184, 763-75 Generation of targeted mouse mutants by embryo microinjection of TALENs. Methods, 2014, 69, 94-101 4,6 Mouse IDGenes: a reference database for genetic interactions in the developing mouse brain. Database: the Journal of Biological Dotabases and Curation, 2014, 2014, Abnormal brain iron metabolism in Irp2 deficient mice is associated with mild neurological and behavioral impairments. PLoS ONE, 2014, 9, e98072 FGF/FGFR2 signaling regulates the generation and correct positioning of Bergmann glia cells in the developing mouse cerebellum. PLoS ONE, 2014, 9, e101124 Pleiotropic functions for transcription factor zscan10. PLoS ONE, 2014, 9, e104568 37 MTO1-deficient mouse model mirrors the human phenotype showing complex I defect and cardiomyopathy. PLoS ONE, 2014, 9, e114918 A robust and reliable non-invasive test for stress responsivity in mice. Frontiers in Behavioral Neuroscience, 2014, 8, 125 MicroRNA-9 controls dendritic development by targeting REST. ELife, 2014, 3, Beguing Malt1 threshold function from paracaspase activity results in destructive autoimmune inflammation. Cell Reports, 2014, 9, e103843 Restless legs syndrome-associated intronic common variant in Meis1 alters enhancer function in the developing telencephalon. Genome Research, 2014, 24, 592-603 Products of the Parkinson's disease-related glyoxalase DJ-1, D-lactate and glycolate, support

246	HIC2 is a novel dosage-dependent regulator of cardiac development located within the distal 22q11 deletion syndrome region. <i>Circulation Research</i> , 2014 , 115, 23-31	15.7	22
245	Mitochondrial dysfunction and decrease in body weight of a transgenic knock-in mouse model for TDP-43. <i>Journal of Biological Chemistry</i> , 2014 , 289, 10769-10784	5.4	72
244	Sharpening of expression domains induced by transcription and microRNA regulation within a spatio-temporal model of mid-hindbrain boundary formation. <i>BMC Systems Biology</i> , 2013 , 7, 48	3.5	12
243	In vitro analysis of bone phenotypes in Col1a1 and Jagged1 mutant mice using a standardized osteoblast cell culture system. <i>Journal of Bone and Mineral Metabolism</i> , 2013 , 31, 293-303	2.9	1
242	Crybb2 coding for B 2-crystallin affects sensorimotor gating and hippocampal function. <i>Mammalian Genome</i> , 2013 , 24, 333-48	3.2	18
241	Generation of targeted mouse mutants by embryo microinjection of TALEN mRNA. <i>Nature Protocols</i> , 2013 , 8, 2355-79	18.8	50
240	A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains. <i>Genome Biology</i> , 2013 , 14, R82	18.3	288
239	A systems medicine research approach for studying alcohol addiction. <i>Addiction Biology</i> , 2013 , 18, 883-9	96 4.6	72
238	Otx2 selectively controls the neurogenesis of specific neuronal subtypes of the ventral tegmental area and compensates En1-dependent neuronal loss and MPTP vulnerability. <i>Developmental Biology</i> , 2013 , 373, 176-83	3.1	33
237	LRRK2 guides the actin cytoskeleton at growth cones together with ARHGEF7 and Tropomyosin 4. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 2013 , 1832, 2352-67	6.9	42
236	Direct production of mouse disease models by embryo microinjection of TALENs and oligodeoxynucleotides. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 3782-7	11.5	122
235	The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO. <i>Molecular Cell</i> , 2013 , 49, 908-21	17.6	152
234	Target validation in mice by constitutive and conditional RNAi. <i>Methods in Molecular Biology</i> , 2013 , 986, 307-23	1.4	4
233	Roquin paralogs 1 and 2 redundantly repress the Icos and Ox40 costimulator mRNAs and control follicular helper T cell differentiation. <i>Immunity</i> , 2013 , 38, 655-68	32.3	147
232	Nectin-3 links CRHR1 signaling to stress-induced memory deficits and spine loss. <i>Nature Neuroscience</i> , 2013 , 16, 706-13	25.5	101
231	Reversible and tissue-specific activation of MAP kinase signaling by tamoxifen in Braf(V637)ER(T2) mice. <i>Genesis</i> , 2013 , 51, 448-55	1.9	5
230	High mobility group N proteins modulate the fidelity of the cellular transcriptional profile in a tissue- and variant-specific manner. <i>Journal of Biological Chemistry</i> , 2013 , 288, 16690-16703	5.4	26
229	Highly efficient targeted mutagenesis in mice using TALENs. <i>Genetics</i> , 2013 , 195, 703-13	4	54

(2012-2013)

228	Direct cloning of isogenic murine DNA in yeast and relevance of isogenicity for targeting in embryonic stem cells. <i>PLoS ONE</i> , 2013 , 8, e74207	3.7	2
227	An RNAi-based approach to down-regulate a gene family in vivo. <i>PLoS ONE</i> , 2013 , 8, e80312	3.7	1
226	Rapamycin extends murine lifespan but has limited effects on aging. <i>Journal of Clinical Investigation</i> , 2013 , 123, 3272-91	15.9	267
225	Efficient generation of rat induced pluripotent stem cells using a non-viral inducible vector. <i>PLoS ONE</i> , 2013 , 8, e55170	3.7	22
224	Expression analysis of Lrrk1, Lrrk2 and Lrrk2 splice variants in mice. <i>PLoS ONE</i> , 2013 , 8, e63778	3.7	55
223	Efficient isolation of pure and functional mitochondria from mouse tissues using automated tissue disruption and enrichment with anti-TOM22 magnetic beads. <i>PLoS ONE</i> , 2013 , 8, e82392	3.7	59
222	Does enamelin have pleiotropic effects on organs other than the teeth? Lessons from a phenotyping screen of two enamelin-mutant mouse lines. <i>European Journal of Oral Sciences</i> , 2012 , 120, 269-77	2.3	5
221	Early-life stress-induced anxiety-related behavior in adult mice partially requires forebrain corticotropin-releasing hormone receptor 1. <i>European Journal of Neuroscience</i> , 2012 , 36, 2360-7	3.5	73
220	Innovations in phenotyping of mouse models in the German Mouse Clinic. <i>Mammalian Genome</i> , 2012 , 23, 611-22	3.2	35
219	Centralized mouse repositories. <i>Mammalian Genome</i> , 2012 , 23, 559-71	3.2	24
218	The mammalian gene function resource: the International Knockout Mouse Consortium. <i>Mammalian Genome</i> , 2012 , 23, 580-6	3.2	230
217	N-desalkylquetiapine activates ERK1/2 to induce GDNF release in C6 glioma cells: a putative cellular mechanism for quetiapine as antidepressant. <i>Neuropharmacology</i> , 2012 , 62, 209-16	5.5	39
216	Mouse Genetics and Metabolic Mouse Phenotyping 2012 , 85-106		1
215	Urocortin 2 modulates aspects of social behaviour in mice. <i>Behavioural Brain Research</i> , 2012 , 233, 331-6	3.4	24
214	Response to Brosch et al. <i>Cell Metabolism</i> , 2012 , 15, 267-269	24.6	4
213	Visualizing corticotropin-releasing hormone receptor type 1 expression and neuronal connectivities in the mouse using a novel multifunctional allele. <i>Journal of Comparative Neurology</i> , 2012 , 520, 3150-80	3.4	40
212	Voluntary wheel running in mice increases the rate of neurogenesis without affecting anxiety-related behaviour in single tests. <i>BMC Neuroscience</i> , 2012 , 13, 61	3.2	37
211	Computational identification and experimental validation of microRNAs binding to the Alzheimer-related gene ADAM10. <i>BMC Medical Genetics</i> , 2012 , 13, 35	2.1	61

210	Corticotropin-releasing hormone regulates common target genes with divergent functions in corticotrope and neuronal cells. <i>Molecular and Cellular Endocrinology</i> , 2012 , 362, 29-38	4.4	3
209	Orphan receptor IL-17RD tunes IL-17A signalling and is required for neutrophilia. <i>Nature Communications</i> , 2012 , 3, 1119	17.4	56
208	Brain-specific inactivation of the Crhr1 gene inhibits post-dependent and stress-induced alcohol intake, but does not affect relapse-like drinking. <i>Neuropsychopharmacology</i> , 2012 , 37, 1047-56	8.7	57
207	Consolidation of remote fear memories involves Corticotropin-Releasing Hormone (CRH) receptor type 1-mediated enhancement of AMPA receptor GluR1 signaling in the dentate gyrus. Neuropsychopharmacology, 2012, 37, 787-96	8.7	41
206	Assessing behavioural effects of chronic HPA axis activation using conditional CRH-overexpressing mice. <i>Cellular and Molecular Neurobiology</i> , 2012 , 32, 815-28	4.6	31
205	Pink1-deficiency in mice impairs gait, olfaction and serotonergic innervation of the olfactory bulb. <i>Experimental Neurology</i> , 2012 , 235, 214-27	5.7	48
204	Neurobeachin, a regulator of synaptic protein targeting, is associated with body fat mass and feeding behavior in mice and body-mass index in humans. <i>PLoS Genetics</i> , 2012 , 8, e1002568	6	28
203	Srgap3?/? mice present a neurodevelopmental disorder with schizophrenia-related intermediate phenotypes. <i>FASEB Journal</i> , 2012 , 26, 4418-28	0.9	43
202	A unilateral negative feedback loop between miR-200 microRNAs and Sox2/E2F3 controls neural progenitor cell-cycle exit and differentiation. <i>Journal of Neuroscience</i> , 2012 , 32, 13292-308	6.6	83
201	Cardiopulmonary dysfunction in the Osteogenesis imperfecta mouse model Aga2 and human patients are caused by bone-independent mechanisms. <i>Human Molecular Genetics</i> , 2012 , 21, 3535-45	5.6	36
200	Modeling disease mutations by gene targeting in one-cell mouse embryos. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 9354-9	11.5	54
199	MAPK signaling determines anxiety in the juvenile mouse brain but depression-like behavior in adults. <i>PLoS ONE</i> , 2012 , 7, e35035	3.7	32
198	Large-scale phenotyping of an accurate genetic mouse model of JNCL identifies novel early pathology outside the central nervous system. <i>PLoS ONE</i> , 2012 , 7, e38310	3.7	49
197	Genetisch verfiderte Tiere 2012 , 149-167		
196	Gene Editing in One-Cell Embryos by Zinc-Finger and TAL Nucleases. <i>Current Protocols in Mouse Biology</i> , 2012 , 2, 347-64	1.1	2
195	Animal models for arthritis: innovative tools for prevention and treatment. <i>Annals of the Rheumatic Diseases</i> , 2011 , 70, 1357-62	2.4	78
194	Expression of the splicing factor gene SFRS10 is reduced in human obesity and contributes to enhanced lipogenesis. <i>Cell Metabolism</i> , 2011 , 14, 208-18	24.6	98
193	Semaphorin 4C and 4G are ligands of Plexin-B2 required in cerebellar development. <i>Molecular and Cellular Neurosciences</i> , 2011 , 46, 419-31	4.8	56

(2011-2011)

192	Fgf15-mediated control of neurogenic and proneural gene expression regulates dorsal midbrain neurogenesis. <i>Developmental Biology</i> , 2011 , 350, 496-510	3.1	27
191	Conditional RNAi in mice. <i>Methods</i> , 2011 , 53, 142-50	4.6	20
190	Mouse phenotyping. <i>Methods</i> , 2011 , 53, 120-35	4.6	103
189	Constitutive and conditional RNAi transgenesis in mice. <i>Methods</i> , 2011 , 53, 430-6	4.6	9
188	Bioinformatics identification of modules of transcription factor binding sites in Alzheimer's disease-related genes by in silico promoter analysis and microarrays. <i>International Journal of Alzheimerl</i> Disease, 2011 , 2011, 154325	3.7	17
187	Musashi 2 is a regulator of the HSC compartment identified by a retroviral insertion screen and knockout mice. <i>Blood</i> , 2011 , 118, 554-64	2.2	52
186	Resources for proteomics in mouse embryonic stem cells. <i>Nature Methods</i> , 2011 , 8, 103-4	21.6	11
185	Forebrain CRHR1 deficiency attenuates chronic stress-induced cognitive deficits and dendritic remodeling. <i>Neurobiology of Disease</i> , 2011 , 42, 300-10	7.5	121
184	Voltage-sensitive dye imaging demonstrates an enhancing effect of corticotropin-releasing hormone on neuronal activity propagation through the hippocampal formation. <i>Journal of Psychiatric Research</i> , 2011 , 45, 256-61	5.2	24
183	Genetic Models of Parkinson⊠ Disease. <i>Neuromethods</i> , 2011 , 243-265	0.4	
183	Genetic Models of Parkinson Disease. <i>Neuromethods</i> , 2011 , 243-265 Generating conditional knockout mice. <i>Methods in Molecular Biology</i> , 2011 , 693, 205-31	0.4	53
			53
182	Generating conditional knockout mice. <i>Methods in Molecular Biology</i> , 2011 , 693, 205-31 Glutamatergic and dopaminergic neurons mediate anxiogenic and anxiolytic effects of CRHR1.	1.4	
182	Generating conditional knockout mice. <i>Methods in Molecular Biology</i> , 2011 , 693, 205-31 Glutamatergic and dopaminergic neurons mediate anxiogenic and anxiolytic effects of CRHR1. <i>Science</i> , 2011 , 333, 1903-7	33.3	
182 181 180	Generating conditional knockout mice. <i>Methods in Molecular Biology</i> , 2011 , 693, 205-31 Glutamatergic and dopaminergic neurons mediate anxiogenic and anxiolytic effects of CRHR1. <i>Science</i> , 2011 , 333, 1903-7 Gezielte Manipulation des Genoms mit Zinkfingernukleasen. <i>BioSpektrum</i> , 2011 , 17, 537-540 A novel N-ethyl-N-nitrosourea-induced mutation in phospholipase C2 causes inflammatory arthritis, metabolic defects, and male infertility in vitro in a murine model. <i>Arthritis and Rheumatism</i>	1.4 33·3 0.1	227
182 181 180	Generating conditional knockout mice. <i>Methods in Molecular Biology</i> , 2011 , 693, 205-31 Glutamatergic and dopaminergic neurons mediate anxiogenic and anxiolytic effects of CRHR1. <i>Science</i> , 2011 , 333, 1903-7 Gezielte Manipulation des Genoms mit Zinkfingernukleasen. <i>BioSpektrum</i> , 2011 , 17, 537-540 A novel N-ethyl-N-nitrosourea-induced mutation in phospholipase CZ causes inflammatory arthritis, metabolic defects, and male infertility in vitro in a murine model. <i>Arthritis and Rheumatism</i> , 2011 , 63, 1301-11	1.4 33·3 0.1	227
182 181 180 179	Generating conditional knockout mice. <i>Methods in Molecular Biology</i> , 2011 , 693, 205-31 Glutamatergic and dopaminergic neurons mediate anxiogenic and anxiolytic effects of CRHR1. <i>Science</i> , 2011 , 333, 1903-7 Gezielte Manipulation des Genoms mit Zinkfingernukleasen. <i>BioSpektrum</i> , 2011 , 17, 537-540 A novel N-ethyl-N-nitrosourea-induced mutation in phospholipase CD causes inflammatory arthritis, metabolic defects, and male infertility in vitro in a murine model. <i>Arthritis and Rheumatism</i> , 2011 , 63, 1301-11 Design and Generation of Gene-Targeting Vectors. <i>Current Protocols in Mouse Biology</i> , 2011 , 1, 199-211 Pitx3 is a critical mediator of GDNF-induced BDNF expression in nigrostriatal dopaminergic	1.4 33·3 0.1	227 33 5

174	Requirement of the RNA-editing enzyme ADAR2 for normal physiology in mice. <i>Journal of Biological Chemistry</i> , 2011 , 286, 18614-22	5.4	64
173	Telomere shortening reduces Alzheimer's disease amyloid pathology in mice. <i>Brain</i> , 2011 , 134, 2044-56	11.2	60
172	Forebrain CRFImodulates early-life stress-programmed cognitive deficits. <i>Journal of Neuroscience</i> , 2011 , 31, 13625-34	6.6	123
171	CIN85 regulates dopamine receptor endocytosis and governs behaviour in mice. <i>EMBO Journal</i> , 2010 , 29, 2421-32	13	30
170	Otx2 controls neuron subtype identity in ventral tegmental area and antagonizes vulnerability to MPTP. <i>Nature Neuroscience</i> , 2010 , 13, 1481-8	25.5	93
169	An integrated genome research network for studying the genetics of alcohol addiction. <i>Addiction Biology</i> , 2010 , 15, 369-79	4.6	49
168	Central deficiency of corticotropin-releasing hormone receptor type 1 (CRH-R1) abolishes effects of CRH on NREM but not on REM sleep in mice. <i>Sleep</i> , 2010 , 33, 427-36	1.1	37
167	Urocortin 3 modulates social discrimination abilities via corticotropin-releasing hormone receptor type 2. <i>Journal of Neuroscience</i> , 2010 , 30, 9103-16	6.6	69
166	The specific role of histone deacetylase 2 in adult neurogenesis. <i>Neuron Glia Biology</i> , 2010 , 6, 93-107		82
165	Individual stress vulnerability is predicted by short-term memory and AMPA receptor subunit ratio in the hippocampus. <i>Journal of Neuroscience</i> , 2010 , 30, 16949-58	6.6	74
164	Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 15022-6	11.5	229
163	Efficient conditional and promoter-specific in vivo expression of cDNAs of choice by taking advantage of recombinase-mediated cassette exchange using FlEx gene traps. <i>Nucleic Acids Research</i> , 2010 , 38, e106	20.1	23
162	Pro-survival role for Parkinson's associated gene DJ-1 revealed in trophically impaired dopaminergic neurons. <i>PLoS Biology</i> , 2010 , 8, e1000349	9.7	46
161	A powerful transgenic tool for fate mapping and functional analysis of newly generated neurons. <i>BMC Neuroscience</i> , 2010 , 11, 158	3.2	36
160	Phenotypic annotation of the mouse X chromosome. <i>Genome Research</i> , 2010 , 20, 1154-64	9.7	70
159	Gene knockdown in the mouse through RNAi. <i>Methods in Enzymology</i> , 2010 , 477, 387-414	1.7	7
158	Pitchfork regulates primary cilia disassembly and left-right asymmetry. <i>Developmental Cell</i> , 2010 , 19, 66-77	10.2	97
157	Delayed dopaminergic neuron differentiation in Lrp6 mutant mice. <i>Developmental Dynamics</i> , 2010 , 239, 211-21	2.9	29

(2009-2010)

156	Fzd3 and Fzd6 deficiency results in a severe midbrain morphogenesis defect. <i>Developmental Dynamics</i> , 2010 , 239, 246-60	2.9	36
155	Ectopic dopaminergic progenitor cells from En1(+/Otx2lacZ) transgenic mice survive and functionally reinnervate the striatum following transplantation in a rat model of Parkinson's disease. <i>Cell Transplantation</i> , 2010 , 19, 1085-101	4	5
154	Microphthalmia, parkinsonism, and enhanced nociception in Pitx3 (416insG) mice. <i>Mammalian Genome</i> , 2010 , 21, 13-27	3.2	31
153	Gene expression profiling in the stress control brain region hypothalamic paraventricular nucleus reveals a novel gene network including amyloid beta precursor protein. <i>BMC Genomics</i> , 2010 , 11, 546	4.5	14
152	Deducing corticotropin-releasing hormone receptor type 1 signaling networks from gene expression data by usage of genetic algorithms and graphical Gaussian models. <i>BMC Systems Biology</i> , 2010 , 4, 159	3.5	5
151	Dll1 haploinsufficiency in adult mice leads to a complex phenotype affecting metabolic and immunological processes. <i>PLoS ONE</i> , 2009 , 4, e6054	3.7	12
150	Gene expression profiling following maternal deprivation: involvement of the brain Renin-Angiotensin system. <i>Frontiers in Molecular Neuroscience</i> , 2009 , 2, 1	6.1	37
149	Gata2 is a tissue-specific post-mitotic selector gene for midbrain GABAergic neurons. <i>Development</i> (Cambridge), 2009, 136, 253-62	6.6	70
148	Nkx6-1 controls the identity and fate of red nucleus and oculomotor neurons in the mouse midbrain. <i>Development (Cambridge)</i> , 2009 , 136, 2545-55	6.6	50
147	Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation. <i>Journal of Biological Chemistry</i> , 2009 , 284, 22938-51	5.4	306
146	Neuronal 3',3,5-triiodothyronine (T3) uptake and behavioral phenotype of mice deficient in Mct8, the neuronal T3 transporter mutated in Allan-Herndon-Dudley syndrome. <i>Journal of Neuroscience</i> , 2009 , 29, 9439-49	6.6	143
145	cGMP-dependent protein kinase I, the circadian clock, sleep and learning. <i>Communicative and Integrative Biology</i> , 2009 , 2, 298-301	1.7	18
144	Spatial analysis of expression patterns predicts genetic interactions at the mid-hindbrain boundary. <i>PLoS Computational Biology</i> , 2009 , 5, e1000569	5	33
143	CRF1 and CRF2 receptors are required for potentiated startle to contextual but not discrete cues. <i>Neuropsychopharmacology</i> , 2009 , 34, 1494-503	8.7	42
142	Activation of ERK/MAPK in the lateral amygdala of the mouse is required for acquisition of a fear-potentiated startle response. <i>Neuropsychopharmacology</i> , 2009 , 34, 356-66	8.7	20
141	Regulation of astrocyte inflammatory responses by the Parkinson's disease-associated gene DJ-1. <i>FASEB Journal</i> , 2009 , 23, 2478-89	0.9	146
140	Differential gene expression in ADAM10 and mutant ADAM10 transgenic mice. <i>BMC Genomics</i> , 2009 , 10, 66	4.5	30
139	Neurological phenotype and reduced lifespan in heterozygous Tim23 knockout mice, the first mouse model of defective mitochondrial import. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2009 , 1787, 371-6	4.6	26

138	Periphilin is strongly expressed in the murine nervous system and is indispensable for murine development. <i>Genesis</i> , 2009 , 47, 697-707	1.9	9
137	Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. <i>EMBO Molecular Medicine</i> , 2009 , 1, 99-111	12	298
136	Local knockdown of ERK2 in the adult mouse brain via adeno-associated virus-mediated RNA interference. <i>Molecular Biotechnology</i> , 2009 , 41, 263-9	3	5
135	Towards better mouse models: enhanced genotypes, systemic phenotyping and envirotype modelling. <i>Nature Reviews Genetics</i> , 2009 , 10, 371-80	30.1	83
134	Immunology, signal transduction, and behavior in hypothalamic-pituitary-adrenal axis-related genetic mouse models. <i>Annals of the New York Academy of Sciences</i> , 2009 , 1153, 120-30	6.5	8
133	A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. <i>Cell</i> , 2009 , 137, 961-71	56.2	427
132	Extracellular Engrailed participates in the topographic guidance of retinal axons in vivo. <i>Neuron</i> , 2009 , 64, 355-366	13.9	88
131	Generation of shRNA transgenic mice. <i>Methods in Molecular Biology</i> , 2009 , 530, 101-29	1.4	26
130	Shh dependent and independent maintenance of basal midbrain. <i>Mechanisms of Development</i> , 2009 , 126, 301-13	1.7	41
129	The functional annotation of mammalian genomes: the challenge of phenotyping. <i>Annual Review of Genetics</i> , 2009 , 43, 305-33	14.5	54
128	Zebrafish reward mutants reveal novel transcripts mediating the behavioral effects of amphetamine. <i>Genome Biology</i> , 2009 , 10, R81	18.3	62
127	Overview on mouse mutagenesis. <i>Methods in Molecular Biology</i> , 2009 , 530, 1-12	1.4	16
126	Mitochondrial glutathione peroxidase 4 disruption causes male infertility. FASEB Journal, 2009, 23, 323	3 A 3	212
125	Systemic first-line phenotyping. <i>Methods in Molecular Biology</i> , 2009 , 530, 463-509	1.4	67
124	CRHR1-dependent effects on protein expression and posttranslational modification in AtT-20 cells. <i>Molecular and Cellular Endocrinology</i> , 2008 , 292, 1-10	4.4	6
123	Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. <i>Cell Metabolism</i> , 2008 , 8, 237-48	24.6	690
122	Sall1, sall2, and sall4 are required for neural tube closure in mice. <i>American Journal of Pathology</i> , 2008 , 173, 1455-63	5.8	47
121	Reliability, robustness, and reproducibility in mouse behavioral phenotyping: a cross-laboratory study. <i>Physiological Genomics</i> , 2008 , 34, 243-55	3.6	183

120	Serotonin hyperinnervation abolishes seizure susceptibility in Otx2 conditional mutant mice. Journal of Neuroscience, 2008 , 28, 9271-6	6.6	22
119	Enhanced gene trapping in mouse embryonic stem cells. <i>Nucleic Acids Research</i> , 2008 , 36, e133	20.1	20
118	Anterior-posterior graded response to Otx2 controls proliferation and differentiation of dopaminergic progenitors in the ventral mesencephalon. <i>Development (Cambridge)</i> , 2008 , 135, 3459-70	6.6	81
117	"Sighted C3H" micea tool for analysing the influence of vision on mouse behaviour?. <i>Frontiers in Bioscience - Landmark</i> , 2008 , 13, 5810-23	2.8	33
116	Novel allele of crybb2 in the mouse and its expression in the brain. <i>Investigative Ophthalmology and Visual Science</i> , 2008 , 49, 1533-41		29
115	Wnt5a regulates ventral midbrain morphogenesis and the development of A9-A10 dopaminergic cells in vivo. <i>PLoS ONE</i> , 2008 , 3, e3517	3.7	73
114	Pleiotropic effects in Eya3 knockout mice. <i>BMC Developmental Biology</i> , 2008 , 8, 118	3.1	32
113	Simultaneous Cre-mediated conditional knockdown of two genes in mice. <i>Genesis</i> , 2008 , 46, 144-51	1.9	29
112	Sall4 isoforms act during proximal-distal and anterior-posterior axis formation in the mouse embryo. <i>Genesis</i> , 2008 , 46, 463-77	1.9	20
111	Novel caspase-suicide proteins for tamoxifen-inducible apoptosis. <i>Genesis</i> , 2008 , 46, 530-6	1.9	17
110	Genetisch ver⊞der Tiere 2008 , 105-124		
109	EUCOMMthe European conditional mouse mutagenesis program. <i>Briefings in Functional Genomics</i> & <i>Proteomics</i> , 2007 , 6, 180-5		98
108	Differential mRNA distribution of components of the ERK/MAPK signalling cascade in the adult mouse brain. <i>Journal of Comparative Neurology</i> , 2007 , 500, 542-56	3.4	38
107	Cell-based simulation of dynamic expression patterns in the presomitic mesoderm. <i>Journal of Theoretical Biology</i> , 2007 , 248, 120-9	2.3	29
106	Splinkerette PCR for more efficient characterization of gene trap events. <i>Nature Genetics</i> , 2007 , 39, 933	3-3 16.3	46
105	Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. <i>Nature Medicine</i> , 2007 , 13, 324-31	50.5	381
104	Expression profiling identifies the CRH/CRH-R1 system as a modulator of neurovascular gene activity. <i>Journal of Cerebral Blood Flow and Metabolism</i> , 2007 , 27, 1476-95	7.3	22
103	Ontogeny of steroid receptor coactivators in the hippocampus and their role in regulating postnatal HPA axis function. <i>Brain Research</i> , 2007 , 1174, 1-6	3.7	12

102	Impact of IVC housing on emotionality and fear learning in male C3HeB/FeJ and C57BL/6J mice. <i>Mammalian Genome</i> , 2007 , 18, 173-86	3.2	43
101	Structural determinants of the C-terminal helix-kink-helix motif essential for protein stability and survival promoting activity of DJ-1. <i>Journal of Biological Chemistry</i> , 2007 , 282, 13680-91	5.4	60
100	LIM-homeodomain proteins Lhx1 and Lhx5, and their cofactor Ldb1, control Purkinje cell differentiation in the developing cerebellum. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 13182-6	11.5	109
99	Conditional brain-specific knockdown of MAPK using Cre/loxP regulated RNA interference. <i>Nucleic Acids Research</i> , 2007 , 35, e90	20.1	83
98	Reduced body size and decreased intestinal tumor rates in HDAC2-mutant mice. <i>Cancer Research</i> , 2007 , 67, 9047-54	10.1	113
97	Fibroblast growth factor receptors cooperate to regulate neural progenitor properties in the developing midbrain and hindbrain. <i>Journal of Neuroscience</i> , 2007 , 27, 8581-92	6.6	76
96	A Wnt signal regulates stem cell fate and differentiation in vivo. <i>Neurodegenerative Diseases</i> , 2007 , 4, 333-8	2.3	44
95	Fgfr2 and Fgfr3 are not required for patterning and maintenance of the midbrain and anterior hindbrain. <i>Developmental Biology</i> , 2007 , 303, 231-43	3.1	25
94	A mouse for all reasons. <i>Cell</i> , 2007 , 128, 9-13	56.2	366
93	EphA-Ephrin-A-mediated beta cell communication regulates insulin secretion from pancreatic islets. <i>Cell</i> , 2007 , 129, 359-70	56.2	253
92	A new partner for the international knockout mouse consortium. Cell, 2007, 129, 235	56.2	81
91	The mouse Trm1-like gene is expressed in neural tissues and plays a role in motor coordination and exploratory behaviour. <i>Gene</i> , 2007 , 389, 174-85	3.8	17
90	Corticotropin-releasing factor (CRF) receptor type 1-dependent modulation of synaptic plasticity. <i>Neuroscience Letters</i> , 2007 , 416, 82-6	3.3	31
89	Conditional CRF receptor 1 knockout mice show altered neuronal activation pattern to mild anxiogenic challenge. <i>Psychopharmacology</i> , 2006 , 188, 374-85	4.7	29
88	Inducible gene deletion in astroglia and radial gliaa valuable tool for functional and lineage analysis. <i>Glia</i> , 2006 , 54, 21-34	9	284
87	The International Gene Trap Consortium Website: a portal to all publicly available gene trap cell lines in mouse. <i>Nucleic Acids Research</i> , 2006 , 34, D642-8	20.1	111
86	High-throughput trapping of secretory pathway genes in mouse embryonic stem cells. <i>Nucleic Acids Research</i> , 2006 , 34, e25	20.1	15
85	Generation and characterization of dickkopf3 mutant mice. <i>Molecular and Cellular Biology</i> , 2006 , 26, 23	1 7. 86	77

(2005-2006)

84	Lysosomal storage disease upon disruption of the neuronal chloride transport protein ClC-6. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 13854-9	11.5	136
83	The Hsp90 cochaperone p23 is essential for perinatal survival. <i>Molecular and Cellular Biology</i> , 2006 , 26, 8976-83	4.8	81
82	Evolutionarily conserved role of nucleostemin: controlling proliferation of stem/progenitor cells during early vertebrate development. <i>Molecular and Cellular Biology</i> , 2006 , 26, 9291-301	4.8	93
81	A Wnt1-regulated genetic network controls the identity and fate of midbrain-dopaminergic progenitors in vivo. <i>Development (Cambridge)</i> , 2006 , 133, 89-98	6.6	196
80	Molecular characterization, structure and developmental expression of Megane bHLH factor. <i>Gene</i> , 2006 , 377, 65-76	3.8	16
79	Altered dopaminergic innervation and amphetamine response in adult Otx2 conditional mutant mice. <i>Molecular and Cellular Neurosciences</i> , 2006 , 31, 293-302	4.8	23
78	FGF regulated gene-expression and neuronal differentiation in the developing midbrain-hindbrain region. <i>Developmental Biology</i> , 2006 , 297, 141-57	3.1	39
77	Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. <i>Neuron</i> , 2006 , 52, 437-	-443.9	635
76	Megane/Heslike is required for normal GABAergic differentiation in the mouse superior colliculus. <i>Development (Cambridge)</i> , 2006 , 133, 3847-57	6.6	40
75	Iron homeostasis in the brain: complete iron regulatory protein 2 deficiency without symptomatic neurodegeneration in the mouse. <i>Nature Genetics</i> , 2006 , 38, 967-9; discussion 969-70	36.3	50
74	Genetic networks controlling the development of midbrain dopaminergic neurons. <i>Journal of Physiology</i> , 2006 , 575, 403-10	3.9	111
73	Dissecting the genetic effect of the CRH system on anxiety and stress-related behaviour. <i>Comptes Rendus - Biologies</i> , 2005 , 328, 199-212	1.4	39
72	Fgfr1-dependent boundary cells between developing mid- and hindbrain. <i>Developmental Biology</i> , 2005 , 278, 428-39	3.1	59
71	Introducing the German Mouse Clinic: open access platform for standardized phenotyping. <i>Nature Methods</i> , 2005 , 2, 403-4	21.6	148
70	Mouse geneticists need European strategy too. <i>Nature</i> , 2005 , 433, 13	50.4	10
69	Cannabinoid CB1 receptor is dispensable for memory extinction in an appetitively-motivated learning task. <i>European Journal of Pharmacology</i> , 2005 , 510, 69-74	5.3	83
68	Progressive loss of the spongiotrophoblast layer of Birc6/Bruce mutants results in embryonic lethality. <i>Genesis</i> , 2005 , 42, 91-103	1.9	25
67	Expression of Fgf receptors 1, 2, and 3 in the developing mid- and hindbrain of the mouse. <i>Developmental Dynamics</i> , 2005 , 233, 1023-30	2.9	37

66	Genomewide production of multipurpose alleles for the functional analysis of the mouse genome. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 7221-6	11.5	151
65	Corticotropin-releasing hormone activates ERK1/2 MAPK in specific brain areas. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 6183-8	11.5	83
64	Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac development. <i>Molecular and Cellular Biology</i> , 2005 , 25, 1980-8	4.8	283
63	Modulation of dendritic differentiation by corticotropin-releasing factor in the developing hippocampus. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 15782-7	11.5	141
62	Otx2 regulates the extent, identity and fate of neuronal progenitor domains in the ventral midbrain. <i>Development (Cambridge)</i> , 2004 , 131, 2037-48	6.6	166
61	Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function. <i>Molecular and Cellular Biology</i> , 2004 , 24, 9414-23	4.8	388
60	A public gene trap resource for mouse functional genomics. <i>Nature Genetics</i> , 2004 , 36, 543-4	36.3	189
59	The knockout mouse project. <i>Nature Genetics</i> , 2004 , 36, 921-4	36.3	490
58	The European dimension for the mouse genome mutagenesis program. <i>Nature Genetics</i> , 2004 , 36, 925-	736.3	176
57	Specification of midbrain territory. <i>Cell and Tissue Research</i> , 2004 , 318, 5-14	4.2	31
56	Reduced intragraft mRNA expression of matrix metalloproteinases Mmp3, Mmp12, Mmp13 and Adam8, and diminished transplant arteriosclerosis in Ccr5-deficient mice. <i>European Journal of Immunology</i> , 2004 , 34, 2568-78	6.1	38
55	Essential roles of BMPR-IA signaling in differentiation and growth of hair follicles and in skin tumorigenesis. <i>Genesis</i> , 2004 , 39, 10-25	1.9	65
54	Multiple roles of ephrins during the formation of thalamocortical projections: maps and more. <i>Journal of Neurobiology</i> , 2004 , 59, 82-94		62
53	Getting closer to affective disorders: the role of CRH receptor systems. <i>Trends in Molecular Medicine</i> , 2004 , 10, 409-15	11.5	69
52	Effects of Wnt1 signaling on proliferation in the developing mid-/hindbrain region. <i>Molecular and Cellular Neurosciences</i> , 2004 , 26, 101-11	4.8	116
51	Forced expression of platelet-derived growth factor B in the mouse cerebellar primordium changes cell migration during midline fusion and causes cerebellar ectopia. <i>Molecular and Cellular Neurosciences</i> , 2004 , 26, 308-21	4.8	9
50	Optimized vector for conditional gene targeting in mouse embryonic stem cells. <i>BioTechniques</i> , 2003 , 34, 1136-8, 1140	2.5	21
49	Location and size of dopaminergic and serotonergic cell populations are controlled by the position of the midbrain-hindbrain organizer. <i>Journal of Neuroscience</i> , 2003 , 23, 4199-207	6.6	116

(2001-2003)

48	FGFR1 is independently required in both developing mid- and hindbrain for sustained response to isthmic signals. <i>EMBO Journal</i> , 2003 , 22, 1811-23	13	150
47	Reduced cerebral injury in CRH-R1 deficient mice after focal ischemia: a potential link to microglia and atrocytes that express CRH-R1. <i>Journal of Cerebral Blood Flow and Metabolism</i> , 2003 , 23, 1151-9	7.3	43
46	Otx dose-dependent integrated control of antero-posterior and dorso-ventral patterning of midbrain. <i>Nature Neuroscience</i> , 2003 , 6, 453-60	25.5	114
45	Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress. <i>Nature Neuroscience</i> , 2003 , 6, 1100-7	25.5	381
44	A large-scale, gene-driven mutagenesis approach for the functional analysis of the mouse genome. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 9918-22	11.5	128
43	The isthmic neuroepithelium is essential for cerebellar midline fusion. <i>Development (Cambridge)</i> , 2003 , 130, 5319-30	6.6	68
42	Hypogonadotropic hypogonadism and peripheral neuropathy in Ebf2-null mice. <i>Development (Cambridge)</i> , 2003 , 130, 401-10	6.6	81
41	The isthmic organizer signal FGF8 is required for cell survival in the prospective midbrain and cerebellum. <i>Development (Cambridge)</i> , 2003 , 130, 2633-44	6.6	258
40	mPet-1, a mouse ETS-domain transcription factor, is expressed in central serotonergic neurons. <i>Development Genes and Evolution</i> , 2002 , 212, 43-6	1.8	52
39	Functional genomics by gene-trapping in embryonic stem cells. <i>Methods in Molecular Biology</i> , 2002 , 185, 347-79	1.4	7
38	Nephrin TRAP mice lack slit diaphragms and show fibrotic glomeruli and cystic tubular lesions. <i>Journal of the American Society of Nephrology: JASN</i> , 2002 , 13, 1586-94	12.7	100
37	Enhanced and delayed stress-induced alcohol drinking in mice lacking functional CRH1 receptors. <i>Science</i> , 2002 , 296, 931-3	33.3	195
36	Permutation-validated principal components analysis of microarray data. <i>Genome Biology</i> , 2002 , 3, RES	E AR GH	10 φ† 9
35	Miswiring of limbic thalamocortical projections in the absence of ephrin-A5. <i>Journal of Neuroscience</i> , 2002 , 22, 9352-7	6.6	50
34	Neural plate patterning: upstream and downstream of the isthmic organizer. <i>Nature Reviews Neuroscience</i> , 2001 , 2, 99-108	13.5	449
33	Regulation of the hypothalamic-pituitary-adrenocortical system in mice deficient for CRH receptors 1 and 2. <i>Endocrinology</i> , 2001 , 142, 4946-55	4.8	104
32	Expression of CRHR1 and CRHR2 in mouse pituitary and adrenal gland: implications for HPA system regulation. <i>Endocrinology</i> , 2001 , 142, 4150-3	4.8	57
31	Expression of a novel mouse gene 'mbFZb' in distinct regions of the developing nervous system and the adult brain. <i>Mechanisms of Development</i> , 2001 , 100, 123-5	1.7	11

30	Fate of midbrain dopaminergic neurons controlled by the engrailed genes. <i>Journal of Neuroscience</i> , 2001 , 21, 3126-34	6.6	267
29	Sequence interpretation. Functional annotation of mouse genome sequences. <i>Science</i> , 2001 , 291, 1251	-5 ;3.3	101
28	Disruption of feeding behavior in CRH receptor 1-deficient mice is dependent on glucocorticoids. <i>NeuroReport</i> , 2000 , 11, 1963-6	1.7	30
27	Establishment of a gene-trap sequence tag library to generate mutant mice from embryonic stem cells. <i>Nature Genetics</i> , 2000 , 24, 13-4	36.3	124
26	An induction gene trap for identifying a homeoprotein-regulated locus. <i>Nature Biotechnology</i> , 2000 , 18, 746-9	44.5	31
25	Selective activation of the hypothalamic vasopressinergic system in mice deficient for the corticotropin-releasing hormone receptor 1 is dependent on glucocorticoids. <i>Endocrinology</i> , 2000 , 141, 4262-9	4.8	78
24	Expression domains of murine ephrin-A5 in the pituitary and hypothalamus. <i>Mechanisms of Development</i> , 2000 , 93, 165-8	1.7	19
23	Two lineage boundaries coordinate vertebrate apical ectodermal ridge formation. <i>Genes and Development</i> , 2000 , 14, 1377-1389	12.6	171
22	Regulation of epidermal bullous pemphigoid antigen 1 (BPAG1) synthesis by homeoprotein transcription factors. <i>Journal of Investigative Dermatology</i> , 1999 , 113, 643-50	4.3	15
21	The caudal limit of Otx2 expression positions the isthmic organizer. <i>Nature</i> , 1999 , 401, 164-8	50.4	278
20	The winged helix transcription factor Fkh10 is required for normal development of the inner ear. <i>Nature Genetics</i> , 1998 , 20, 374-6	36.3	83
19	Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. <i>Nature Genetics</i> , 1998 , 19, 162-6	36.3	805
18	Aquarius, a novel gene isolated by gene trapping with an RNA-dependent RNA polymerase motif. <i>Developmental Dynamics</i> , 1998 , 212, 304-17	2.9	27
17	Considerations on genetic and environmental factors that contribute to resistance or sensitivity of mammals including humans to toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. Part 1: Genetic factors affecting the toxicity of TCDD. <i>Ecotoxicology and Environmental</i>	7	21
16	The mouse Engrailed-1 gene and ventral limb patterning. <i>Nature</i> , 1996 , 382, 360-3	50.4	257
15	Targeted disruption of the trkB neurotrophin receptor gene results in nervous system lesions and neonatal death. <i>Cell</i> , 1993 , 75, 113-122	56.2	538
14	Gene and enhancer trapping: mutagenic strategies for developmental studies. <i>Current Topics in Developmental Biology</i> , 1993 , 28, 181-206	5.3	15
13	Screening for novel pattern formation genes using gene trap approaches. <i>Methods in Enzymology</i> , 1993 , 225, 664-81	1.7	28

LIST OF PUBLICATIONS

12	Characterization of a class Ib gene of the rat major histocompatibility complex. <i>Immunogenetics</i> , 1993 , 38, 82-91	3.2	16
11	Genetic analysis of susceptibility to diabetes mellitus in F2-hybrids between diabetes-prone BB and various MHC-recombinant congenic rat strains. <i>Journal of Autoimmunity</i> , 1991 , 4, 543-51	15.5	7
10	A mutant rat major histocompatibility haplotype showing a large deletion of class I sequences. <i>Immunogenetics</i> , 1989 , 30, 237-42	3.2	19
9	Localization of heat shock protein 70 genes inside the rat major histocompatibility complex close to class III genes. <i>Immunogenetics</i> , 1989 , 30, 46-9	3.2	58
8	Genetic mapping of C4 and Bf complement genes in the rat major histocompatibility complex. <i>Immunogenetics</i> , 1988 , 28, 57-60	3.2	14
7	Cytotoxic T lymphocytes of the rat are predominantly restricted by RT1.A and not RT1.C-determined major histocompatibility class I antigens. <i>Immunogenetics</i> , 1984 , 20, 1-12	3.2	37
6	Regulation of the Hypothalamic-Pituitary-Adrenocortical System in Mice Deficient for CRH Receptors 1 and 2		39
5	Profound functional and molecular diversity of mitochondria revealed by cell type-specific profiling in vivo		2
4	PARK7/DJ-1 promotes pyruvate dehydrogenase activity and maintains Treg homeostasis		2
3	Canonical Wnt-signaling modulates the tempo of dendritic growth of adult-born hippocampal neurons		1
2	A resource of targeted mutant mouse lines for 5,061 genes		3
1	PARK7/DJ-1 promotes pyruvate dehydrogenase activity and maintains Treg homeostasis during ageing. <i>Nature Metabolism</i> ,	14.6	2