Wolfgang Wurst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9299096/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nature Chemical Biology, 2017, 13, 91-98.	3.9	2,069
2	Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nature Biotechnology, 2015, 33, 543-548.	9.4	1,024
3	Glutathione Peroxidase 4 Senses and Translates Oxidative Stress into 12/15-Lipoxygenase Dependent- and AIF-Mediated Cell Death. Cell Metabolism, 2008, 8, 237-248.	7.2	1,009
4	High-throughput discovery of novel developmental phenotypes. Nature, 2016, 537, 508-514.	13.7	1,001
5	Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell, 2018, 172, 409-422.e21.	13.5	920
6	Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nature Genetics, 1998, 19, 162-166.	9.4	881
7	Arc/Arg3.1 Is Essential for the Consolidation of Synaptic Plasticity and Memories. Neuron, 2006, 52, 437-444.	3.8	743
8	Targeted disruption of the trkB neurotrophin receptor gene results in nervous system lesions and neonatal death. Cell, 1993, 75, 113-122.	13.5	610
9	The Knockout Mouse Project. Nature Genetics, 2004, 36, 921-924.	9.4	556
10	A Humanized Version of Foxp2 Affects Cortico-Basal Ganglia Circuits in Mice. Cell, 2009, 137, 961-971.	13.5	555
11	Neural plate patterning: Upstream and downstream of the isthmic organizer. Nature Reviews Neuroscience, 2001, 2, 99-108.	4.9	515
12	Aberrant methylation of t <scp>RNA</scp> s links cellular stress to neuroâ€developmental disorders. EMBO Journal, 2014, 33, 2020-2039.	3.5	490
13	Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3β activity. Nature Medicine, 2007, 13, 324-331.	15.2	433
14	Essential Role for Mitochondrial Thioredoxin Reductase in Hematopoiesis, Heart Development, and Heart Function. Molecular and Cellular Biology, 2004, 24, 9414-9423.	1.1	428
15	Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress. Nature Neuroscience, 2003, 6, 1100-1107.	7.1	418
16	A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains. Genome Biology, 2013, 14, R82.	13.9	403
17	A Mouse for All Reasons. Cell, 2007, 128, 9-13.	13.5	396
18	Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. EMBO Molecular Medicine, 2009, 1, 99-111.	3.3	360

#	Article	IF	CITATIONS
19	Inducible gene deletion in astroglia and radial glia-A valuable tool for functional and lineage analysis. Glia, 2006, 54, 21-34.	2.5	356
20	Loss of Parkin or PINK1 Function Increases Drp1-dependent Mitochondrial Fragmentation. Journal of Biological Chemistry, 2009, 284, 22938-22951.	1.6	355
21	Rapamycin extends murine lifespan but has limited effects on aging. Journal of Clinical Investigation, 2013, 123, 3272-3291.	3.9	333
22	Cytoplasmic Thioredoxin Reductase Is Essential for Embryogenesis but Dispensable for Cardiac Development. Molecular and Cellular Biology, 2005, 25, 1980-1988.	1.1	315
23	Fate of Midbrain Dopaminergic Neurons Controlled by the Engrailed Genes. Journal of Neuroscience, 2001, 21, 3126-3134.	1.7	306
24	The caudal limit of Otx2 expression positions the isthmic organizer. Nature, 1999, 401, 164-168.	13.7	305
25	The isthmic organizer signal FGF8 is required for cell survival in the prospective midbrain and cerebellum. Development (Cambridge), 2003, 130, 2633-2644.	1.2	302
26	EphA-Ephrin-A-Mediated β Cell Communication Regulates Insulin Secretion from Pancreatic Islets. Cell, 2007, 129, 359-370.	13.5	300
27	The mouse Engrailed-1 gene and ventral limb patterning. Nature, 1996, 382, 360-363.	13.7	296
28	The mammalian gene function resource: the international knockout mouse consortium. Mammalian Genome, 2012, 23, 580-586.	1.0	292
29	Two lineage boundaries coordinate vertebrate apical ectodermal ridge formation. Genes and Development, 2000, 14, 1377-1389.	2.7	284
30	Development of an intein-mediated split–Cas9 system for gene therapy. Nucleic Acids Research, 2015, 43, 6450-6458.	6.5	278
31	Glutamatergic and Dopaminergic Neurons Mediate Anxiogenic and Anxiolytic Effects of CRHR1. Science, 2011, 333, 1903-1907.	6.0	268
32	Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15022-15026.	3.3	258
33	Mitochondrial glutathione peroxidase 4 disruption causes male infertility. FASEB Journal, 2009, 23, 3233-3242.	0.2	251
34	LRRK2 Controls Synaptic Vesicle Storage and Mobilization within the Recycling Pool. Journal of Neuroscience, 2011, 31, 2225-2237.	1.7	240
35	<scp>TREM</scp> 2 deficiency impairs chemotaxis and microglial responses to neuronal injury. EMBO Reports, 2017, 18, 1186-1198.	2.0	240
36	Reliability, robustness, and reproducibility in mouse behavioral phenotyping: a cross-laboratory study. Physiological Genomics, 2008, 34, 243-255.	1.0	229

#	Article	IF	CITATIONS
37	Role of Mitochondrial Metabolism in the Control of Early Lineage Progression and Aging Phenotypes in Adult Hippocampal Neurogenesis. Neuron, 2017, 93, 560-573.e6.	3.8	221
38	Enhanced and Delayed Stress-Induced Alcohol Drinking in Mice Lacking Functional CRH1 Receptors. Science, 2002, 296, 931-933.	6.0	220
39	A Wnt1-regulated genetic network controls the identity and fate of midbrain-dopaminergic progenitors in vivo. Development (Cambridge), 2006, 133, 89-98.	1.2	219
40	Disease model discovery from 3,328 gene knockouts by The International Mouse Phenotyping Consortium. Nature Genetics, 2017, 49, 1231-1238.	9.4	216
41	A public gene trap resource for mouse functional genomics. Nature Genetics, 2004, 36, 543-544.	9.4	213
42	The European dimension for the mouse genome mutagenesis program. Nature Genetics, 2004, 36, 925-927.	9.4	195
43	Otx2 regulates the extent, identity and fate of neuronal progenitor domains in the ventral midbrain. Development (Cambridge), 2004, 131, 2037-2048.	1.2	190
44	The E3 Ligase Parkin Maintains Mitochondrial Integrity by Increasing Linear Ubiquitination of NEMO. Molecular Cell, 2013, 49, 908-921.	4.5	183
45	Cell-type-specific profiling of brain mitochondria reveals functional and molecular diversity. Nature Neuroscience, 2019, 22, 1731-1742.	7.1	181
46	Roquin Paralogs 1 and 2 Redundantly Repress the Icos and Ox40 Costimulator mRNAs and Control Follicular Helper T Cell Differentiation. Immunity, 2013, 38, 655-668.	6.6	178
47	Introducing the German Mouse Clinic: open access platform for standardized phenotyping. Nature Methods, 2005, 2, 403-404.	9.0	176
48	Neuronal 3′,3,5-Triiodothyronine (T ₃) Uptake and Behavioral Phenotype of Mice Deficient in <i>Mct8</i> , the Neuronal T ₃ Transporter Mutated in Allan–Herndon–Dudley Syndrome. Journal of Neuroscience, 2009, 29, 9439-9449.	1.7	172
49	FGFR1 is independently required in both developing mid- and hindbrain for sustained response to isthmic signals. EMBO Journal, 2003, 22, 1811-1823.	3.5	168
50	Lysosomal storage disease upon disruption of the neuronal chloride transport protein ClC-6. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13854-13859.	3.3	166
51	Genomewide production of multipurpose alleles for the functional analysis of the mouse genome. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7221-7226.	3.3	161
52	Regulation of astrocyte inflammatory responses by the Parkinson's diseaseâ€associated gene <i>DJ–1</i> . FASEB Journal, 2009, 23, 2478-2489.	0.2	161
53	Modulation of dendritic differentiation by corticotropin-releasing factor in the developing hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15782-15787.	3.3	157
54	Forebrain CRF ₁ Modulates Early-Life Stress-Programmed Cognitive Deficits. Journal of Neuroscience, 2011, 31, 13625-13634.	1.7	154

#	Article	IF	CITATIONS
55	The <scp>FTD</scp> â€like syndrome causing <scp>TREM</scp> 2 T66M mutation impairs microglia function, brain perfusion, and glucose metabolism. EMBO Journal, 2017, 36, 1837-1853.	3.5	152
56	Direct production of mouse disease models by embryo microinjection of TALENs and oligodeoxynucleotides. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3782-3787.	3.3	140
57	Forebrain CRHR1 deficiency attenuates chronic stress-induced cognitive deficits and dendritic remodeling. Neurobiology of Disease, 2011, 42, 300-310.	2.1	138
58	LIM-homeodomain proteins Lhx1 and Lhx5, and their cofactor Ldb1, control Purkinje cell differentiation in the developing cerebellum. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13182-13186.	3.3	137
59	Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics. Nature Genetics, 2015, 47, 969-978.	9.4	137
60	Establishment of a gene-trap sequence tag library to generate mutant mice from embryonic stem cells. Nature Genetics, 2000, 24, 13-14.	9.4	136
61	A large-scale, gene-driven mutagenesis approach for the functional analysis of the mouse genome. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9918-9922.	3.3	134
62	Location and Size of Dopaminergic and Serotonergic Cell Populations Are Controlled by the Position of the Midbrain–Hindbrain Organizer. Journal of Neuroscience, 2003, 23, 4199-4207.	1.7	133
63	Pitchfork Regulates Primary Cilia Disassembly and Left-Right Asymmetry. Developmental Cell, 2010, 19, 66-77.	3.1	133
64	Uncoupling Malt1 Threshold Function from Paracaspase Activity Results in Destructive Autoimmune Inflammation. Cell Reports, 2014, 9, 1292-1305.	2.9	133
65	The International Gene Trap Consortium Website: a portal to all publicly available gene trap cell lines in mouse. Nucleic Acids Research, 2006, 34, D642-D648.	6.5	131
66	Expression of the Splicing Factor Gene SFRS10 Is Reduced in Human Obesity and Contributes to Enhanced Lipogenesis. Cell Metabolism, 2011, 14, 208-218.	7.2	130
67	Otx dose-dependent integrated control of antero-posterior and dorso-ventral patterning of midbrain. Nature Neuroscience, 2003, 6, 453-460.	7.1	129
68	Mouse phenotyping. Methods, 2011, 53, 120-135.	1.9	128
69	Effects of Wnt1 signaling on proliferation in the developing mid-/hindbrain region. Molecular and Cellular Neurosciences, 2004, 26, 101-111.	1.0	127
70	Functional Annotation of Mouse Genome Sequences. Science, 2001, 291, 1251-1255.	6.0	125
71	Nectin-3 links CRHR1 signaling to stress-induced memory deficits and spine loss. Nature Neuroscience, 2013, 16, 706-713.	7.1	123
72	Reduced Body Size and Decreased Intestinal Tumor Rates in HDAC2-Mutant Mice. Cancer Research, 2007, 67, 9047-9054.	0.4	121

#	Article	IF	CITATIONS
73	Genetic networks controlling the development of midbrain dopaminergic neurons. Journal of Physiology, 2006, 575, 403-410.	1.3	120
74	Exosomal secretion of \hat{I}_{\pm} -synuclein as protective mechanism after upstream blockage of macroautophagy. Cell Death and Disease, 2018, 9, 757.	2.7	117
75	A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction. Nature Communications, 2017, 8, 886.	5.8	116
76	Otx2 controls neuron subtype identity in ventral tegmental area and antagonizes vulnerability to MPTP. Nature Neuroscience, 2010, 13, 1481-1488.	7.1	114
77	EUCOMM the European Conditional Mouse Mutagenesis Program. Briefings in Functional Genomics & Proteomics, 2007, 6, 180-185.	3.8	111
78	Regulation of the Hypothalamic-Pituitary-Adrenocortical System in Mice Deficient for CRH Receptors 1 and 2. Endocrinology, 2001, 142, 4946-4955.	1.4	109
79	FoxO Function Is Essential for Maintenance of Autophagic Flux and Neuronal Morphogenesis in Adult Neurogenesis. Neuron, 2018, 99, 1188-1203.e6.	3.8	107
80	Nephrin TRAP Mice Lack Slit Diaphragms and Show Fibrotic Glomeruli and Cystic Tubular Lesions. Journal of the American Society of Nephrology: JASN, 2002, 13, 1586-1594.	3.0	106
81	Chronic CRH depletion from GABAergic, long-range projection neurons in the extended amygdala reduces dopamine release and increases anxiety. Nature Neuroscience, 2018, 21, 803-807.	7.1	106
82	Extracellular Engrailed Participates in the Topographic Guidance of Retinal Axons In Vivo. Neuron, 2009, 64, 355-366.	3.8	105
83	Evolutionarily Conserved Role of Nucleostemin: Controlling Proliferation of Stem/Progenitor Cells during Early Vertebrate Development. Molecular and Cellular Biology, 2006, 26, 9291-9301.	1.1	103
84	Towards better mouse models: enhanced genotypes, systemic phenotyping and envirotype modelling. Nature Reviews Genetics, 2009, 10, 371-380.	7.7	103
85	Restless Legs Syndrome-associated intronic common variant in <i>Meis1</i> alters enhancer function in the developing telencephalon. Genome Research, 2014, 24, 592-603.	2.4	102
86	Genetic Differences in the Immediate Transcriptome Response to Stress Predict Risk-Related Brain Function and Psychiatric Disorders. Neuron, 2015, 86, 1189-1202.	3.8	102
87	Mitochondrial Dysfunction and Decrease in Body Weight of a Transgenic Knock-in Mouse Model for TDP-43. Journal of Biological Chemistry, 2014, 289, 10769-10784.	1.6	100
88	Spinal poly-GA inclusions in a C9orf72 mouse model trigger motor deficits and inflammation without neuron loss. Acta Neuropathologica, 2017, 134, 241-254.	3.9	99
89	The specific role of histone deacetylase 2 in adult neurogenesis. Neuron Glia Biology, 2010, 6, 93-107.	2.0	98
90	A Unilateral Negative Feedback Loop Between <i>miR-200</i> microRNAs and Sox2/E2F3 Controls Neural Progenitor Cell-Cycle Exit and Differentiation. Journal of Neuroscience, 2012, 32, 13292-13308.	1.7	98

#	Article	IF	CITATIONS
91	Anterior-posterior graded response to Otx2 controls proliferation and differentiation of dopaminergic progenitors in the ventral mesencephalon. Development (Cambridge), 2008, 135, 3459-3470.	1.2	96
92	Corticotropin-releasing hormone activates ERK1/2 MAPK in specific brain areas. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6183-6188.	3.3	95
93	The rRNA m ⁶ A methyltransferase METTL5 is involved in pluripotency and developmental programs. Genes and Development, 2020, 34, 715-729.	2.7	93
94	Generation and Characterization of dickkopf3 Mutant Mice. Molecular and Cellular Biology, 2006, 26, 2317-2326.	1.1	92
95	Conditional brain-specific knockdown of MAPK using Cre/loxP regulated RNA interference. Nucleic Acids Research, 2007, 35, e90-e90.	6.5	92
96	<i>Gata2</i> is a tissue-specific post-mitotic selector gene for midbrain GABAergic neurons. Development (Cambridge), 2009, 136, 253-262.	1.2	92
97	Animal models for arthritis: innovative tools for prevention and treatment. Annals of the Rheumatic Diseases, 2011, 70, 1357-1362.	0.5	92
98	The winged helix transcription factor Fkh10 is required for normal development of the inner ear. Nature Genetics, 1998, 20, 374-376.	9.4	91
99	Cannabinoid CB1 receptor is dispensable for memory extinction in an appetitively-motivated learning task. European Journal of Pharmacology, 2005, 510, 69-74.	1.7	91
100	The Hsp90 Cochaperone p23 Is Essential for Perinatal Survival. Molecular and Cellular Biology, 2006, 26, 8976-8983.	1.1	91
101	Requirement of the RNA-editing Enzyme ADAR2 for Normal Physiology in Mice. Journal of Biological Chemistry, 2011, 286, 18614-18622.	1.6	91
102	Earlyâ€life stressâ€induced anxietyâ€related behavior in adult mice partially requires forebrain corticotropinâ€releasing hormone receptor 1. European Journal of Neuroscience, 2012, 36, 2360-2367.	1.2	91
103	The Trem2 R47H Alzheimer's risk variant impairs splicing and reduces Trem2 mRNA and protein in mice but not in humans. Molecular Neurodegeneration, 2018, 13, 49.	4.4	91
104	Telomere shortening reduces Alzheimer's disease amyloid pathology in mice. Brain, 2011, 134, 2044-2056.	3.7	90
105	Hypogonadotropic hypogonadism and peripheral neuropathy inEbf2-null mice. Development (Cambridge), 2003, 130, 401-410.	1.2	89
106	A New Partner for the International Knockout Mouse Consortium. Cell, 2007, 129, 235.	13.5	88
107	MicroRNA-9 controls dendritic development by targeting REST. ELife, 2014, 3, .	2.8	88
108	Pitx3 Is a Critical Mediator of GDNF-Induced BDNF Expression in Nigrostriatal Dopaminergic Neurons. Journal of Neuroscience, 2011, 31, 12802-12815.	1.7	87

#	Article	IF	CITATIONS
109	Every-other-day feeding extends lifespan but fails to delay many symptoms of aging in mice. Nature Communications, 2017, 8, 155.	5.8	87
110	Fibroblast Growth Factor Receptors Cooperate to Regulate Neural Progenitor Properties in the Developing Midbrain and Hindbrain. Journal of Neuroscience, 2007, 27, 8581-8592.	1.7	85
111	Selective Activation of the Hypothalamic Vasopressinergic System in Mice Deficient for the Corticotropin-Releasing Hormone Receptor 1 Is Dependent on Glucocorticoids ¹ . Endocrinology, 2000, 141, 4262-4269.	1.4	84
112	Wnt5a Regulates Ventral Midbrain Morphogenesis and the Development of A9–A10 Dopaminergic Cells In Vivo. PLoS ONE, 2008, 3, e3517.	1.1	84
113	MIM-Induced Membrane Bending Promotes Dendritic Spine Initiation. Developmental Cell, 2015, 33, 644-659.	3.1	84
114	Urocortin 3 Modulates Social Discrimination Abilities via Corticotropin-Releasing Hormone Receptor Type 2. Journal of Neuroscience, 2010, 30, 9103-9116.	1.7	83
115	Individual Stress Vulnerability Is Predicted by Short-Term Memory and AMPA Receptor Subunit Ratio in the Hippocampus. Journal of Neuroscience, 2010, 30, 16949-16958.	1.7	83
116	Musashi 2 is a regulator of the HSC compartment identified by a retroviral insertion screen and knockout mice. Blood, 2011, 118, 554-564.	0.6	76
117	A systems medicine research approach for studying alcohol addiction. Addiction Biology, 2013, 18, 883-896.	1.4	76
118	The isthmic neuroepithelium is essential for cerebellar midline fusion. Development (Cambridge), 2003, 130, 5319-5330.	1.2	75
119	Phenotypic annotation of the mouse X chromosome. Genome Research, 2010, 20, 1154-1164.	2.4	75
120	Getting closer to affective disorders: the role of CRH receptor systems. Trends in Molecular Medicine, 2004, 10, 409-415.	3.5	74
121	Efficient Isolation of Pure and Functional Mitochondria from Mouse Tissues Using Automated Tissue Disruption and Enrichment with Anti-TOM22 Magnetic Beads. PLoS ONE, 2013, 8, e82392.	1.1	74
122	Semaphorin 4C and 4G are ligands of Plexin-B2 required in cerebellar development. Molecular and Cellular Neurosciences, 2011, 46, 419-431.	1.0	73
123	Computational identification and experimental validation of microRNAs binding to the Alzheimer-related gene ADAM10. BMC Medical Genetics, 2012, 13, 35.	2.1	73
124	Zebrafish reward mutants reveal novel transcripts mediating the behavioral effects of amphetamine. Genome Biology, 2009, 10, R81.	13.9	71
125	Genetically dissecting P2rx7 expression within the central nervous system using conditional humanized mice. Purinergic Signalling, 2017, 13, 153-170.	1.1	71
126	A robust and reliable non-invasive test for stress responsivity in mice. Frontiers in Behavioral Neuroscience, 2014, 8, 125.	1.0	70

#	Article	IF	CITATIONS
127	Systemic First-Line Phenotyping. Methods in Molecular Biology, 2009, 530, 463-509.	0.4	70
128	Structural Determinants of the C-terminal Helix-Kink-Helix Motif Essential for Protein Stability and Survival Promoting Activity of DJ-1. Journal of Biological Chemistry, 2007, 282, 13680-13691.	1.6	69
129	Expression of a Catalytically Inactive Mutant Form of Glutathione Peroxidase 4 (Gpx4) Confers a Dominant-negative Effect in Male Fertility. Journal of Biological Chemistry, 2015, 290, 14668-14678.	1.6	69
130	Expression Analysis of Lrrk1, Lrrk2 and Lrrk2 Splice Variants in Mice. PLoS ONE, 2013, 8, e63778.	1.1	69
131	Essential roles of BMPR-IA signaling in differentiation and growth of hair follicles and in skin tumorigenesis. Genesis, 2004, 39, 10-25.	0.8	68
132	Orphan receptor IL-17RD tunes IL-17A signalling and is required for neutrophilia. Nature Communications, 2012, 3, 1119.	5.8	68
133	Nkx6-1 controls the identity and fate of red nucleus and oculomotor neurons in the mouse midbrain. Development (Cambridge), 2009, 136, 2545-2555.	1.2	67
134	Fgfr1-dependent boundary cells between developing mid- and hindbrain. Developmental Biology, 2005, 278, 428-439.	0.9	65
135	Multiple roles of ephrins during the formation of thalamocortical projections: Maps and more. Journal of Neurobiology, 2004, 59, 82-94.	3.7	64
136	Generating Conditional Knockout Mice. Methods in Molecular Biology, 2011, 693, 205-231.	0.4	64
137	Tumor suppressor down-regulated in renal cell carcinoma 1 (DRR1) is a stress-induced actin bundling factor that modulates synaptic efficacy and cognition. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17213-17218.	3.3	64
138	Pink1-deficiency in mice impairs gait, olfaction and serotonergic innervation of the olfactory bulb. Experimental Neurology, 2012, 235, 214-227.	2.0	64
139	Human and mouse essentiality screens as a resource for disease gene discovery. Nature Communications, 2020, 11, 655.	5.8	64
140	A protein quality control pathway regulated by linear ubiquitination. EMBO Journal, 2019, 38, .	3.5	63
141	Localization of heat shock protein 70 genes inside the rat major histocompatibility complex close to class III genes. Immunogenetics, 1989, 30, 46-49.	1.2	62
142	Expression of CRHR1 and CRHR2 in Mouse Pituitary and Adrenal Gland: Implications for HPA System Regulation. Endocrinology, 2001, 142, 4150-4153.	1.4	62
143	Highly Efficient Targeted Mutagenesis in Mice Using TALENs. Genetics, 2013, 195, 703-713.	1.2	62
144	Assessing Cognition in Mice. Current Protocols in Mouse Biology, 2015, 5, 331-358.	1.2	61

#	Article	IF	CITATIONS
145	Global site-specific neddylation profiling reveals that NEDDylated cofilin regulates actin dynamics. Nature Structural and Molecular Biology, 2020, 27, 210-220.	3.6	61
146	The REST remodeling complex protects genomic integrity during embryonic neurogenesis. ELife, 2016, 5, e09584.	2.8	61
147	The Functional Annotation of Mammalian Genomes: The Challenge of Phenotyping. Annual Review of Genetics, 2009, 43, 305-333.	3.2	60
148	Brain-Specific Inactivation of the Crhr1 Gene Inhibits Post-Dependent and Stress-Induced Alcohol Intake, but Does Not Affect Relapse-Like Drinking. Neuropsychopharmacology, 2012, 37, 1047-1056.	2.8	60
149	Wnt1-regulated genetic networks in midbrain dopaminergic neuron development. Journal of Molecular Cell Biology, 2014, 6, 34-41.	1.5	60
150	A resource of targeted mutant mouse lines for 5,061 genes. Nature Genetics, 2021, 53, 416-419.	9.4	60
151	Modeling disease mutations by gene targeting in one-cell mouse embryos. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9354-9359.	3.3	59
152	Identification of genetic elements in metabolism by high-throughput mouse phenotyping. Nature Communications, 2018, 9, 288.	5.8	59
153	Iron homeostasis in the brain: complete iron regulatory protein 2 deficiency without symptomatic neurodegeneration in the mouse. Nature Genetics, 2006, 38, 967-969.	9.4	58
154	Miswiring of Limbic Thalamocortical Projections in the Absence of Ephrin-A5. Journal of Neuroscience, 2002, 22, 9352-9357.	1.7	57
155	Sall1, Sall2, and Sall4 Are Required for Neural Tube Closure in Mice. American Journal of Pathology, 2008, 173, 1455-1463.	1.9	57
156	An integrated genome research network for studying the genetics of alcohol addiction. Addiction Biology, 2010, 15, 369-379.	1.4	57
157	Cardiopulmonary dysfunction in the Osteogenesis imperfecta mouse model Aga2 and human patients are caused by bone-independent mechanisms. Human Molecular Genetics, 2012, 21, 3535-3545.	1.4	57
158	Generation of targeted mouse mutants by embryo microinjection of TALEN mRNA. Nature Protocols, 2013, 8, 2355-2379.	5.5	57
159	Diversity matters – heterogeneity of dopaminergic neurons in the ventral mesencephalon and its relation to Parkinson's Disease. Journal of Neurochemistry, 2016, 139, 8-26.	2.1	57
160	Control of gene editing by manipulation of DNA repair mechanisms. Mammalian Genome, 2017, 28, 262-274.	1.0	57
161	Large-Scale Phenotyping of an Accurate Genetic Mouse Model of JNCL Identifies Novel Early Pathology Outside the Central Nervous System. PLoS ONE, 2012, 7, e38310.	1.1	56
162	Permutation-validated principal components analysis of microarray data. Genome Biology, 2002, 3, research0019.1.	13.9	55

#	Article	IF	CITATIONS
163	mPet-1, a mouse ETS-domain transcription factor, is expressed in central serotonergic neurons. Development Genes and Evolution, 2002, 212, 43-46.	0.4	55
164	Voluntary wheel running in mice increases the rate of neurogenesis without affecting anxiety-related behaviour in single tests. BMC Neuroscience, 2012, 13, 61.	0.8	53
165	Splinkerette PCR for more efficient characterization of gene trap events. Nature Genetics, 2007, 39, 933-934.	9.4	51
166	Impact of IVC housing on emotionality and fear learning in male C3HeB/FeJ and C57BL/6J mice. Mammalian Genome, 2007, 18, 173-186.	1.0	51
167	Pro-Survival Role for Parkinson's Associated Gene DJ-1 Revealed in Trophically Impaired Dopaminergic Neurons. PLoS Biology, 2010, 8, e1000349.	2.6	51
168	<i>Srgap3</i> ^{–/–} mice present a neurodevelopmental disorder with schizophreniaâ€related intermediate phenotypes. FASEB Journal, 2012, 26, 4418-4428.	0.2	51
169	A powerful transgenic tool for fate mapping and functional analysis of newly generated neurons. BMC Neuroscience, 2010, 11, 158.	0.8	50
170	LRRK2 guides the actin cytoskeleton at growth cones together with ARHGEF7 and Tropomyosin 4. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 2352-2367.	1.8	50
171	High-Fat Diet Induced Isoform Changes of the Parkinson's Disease Protein DJ-1. Journal of Proteome Research, 2014, 13, 2339-2351.	1.8	50
172	Products of the Parkinson's disease-related glyoxalase DJ-1, D-lactate and glycolate, support mitochondrial membrane potential and neuronal survival. Biology Open, 2014, 3, 777-784.	0.6	49
173	CRFR1 in AgRP Neurons Modulates Sympathetic Nervous System Activity to Adapt to Cold Stress and Fasting. Cell Metabolism, 2016, 23, 1185-1199.	7.2	49
174	Gene editing in mouse zygotes using the CRISPR/Cas9 system. Methods, 2017, 121-122, 55-67.	1.9	49
175	Consolidation of Remote Fear Memories Involves Corticotropin-Releasing Hormone (CRH) Receptor Type 1-Mediated Enhancement of AMPA Receptor GluR1 Signaling in the Dentate Gyrus. Neuropsychopharmacology, 2012, 37, 787-796.	2.8	48
176	Laboratory mouse housing conditions can be improved using common environmental enrichment without compromising data. PLoS Biology, 2018, 16, e2005019.	2.6	48
177	The Alzheimer's disease-associated protective Plcγ2-P522R variant promotes immune functions. Molecular Neurodegeneration, 2020, 15, 52.	4.4	48
178	Reduced Cerebral Injury in CRH-R1 Deficient Mice after Focal Ischemia: A Potential Link to Microglia and Atrocytes that Express CRH-R1. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 1151-1159.	2.4	47
179	A Wnt Signal Regulates Stem Cell Fate and Differentiation in vivo. Neurodegenerative Diseases, 2007, 4, 333-338.	0.8	47
180	CRF1 and CRF2 Receptors are Required for Potentiated Startle to Contextual but not Discrete Cues. Neuropsychopharmacology, 2009, 34, 1494-1503.	2.8	47

#	Article	IF	CITATIONS
181	The FTLD Risk Factor TMEM106B Regulates the Transport of Lysosomes at the Axon Initial Segment of Motoneurons. Cell Reports, 2020, 30, 3506-3519.e6.	2.9	47
182	Visualizing corticotropinâ€releasing hormone receptor type 1 expression and neuronal connectivities in the mouse using a novel multifunctional allele. Journal of Comparative Neurology, 2012, 520, 3150-3180.	0.9	46
183	Gene expression profiling following maternal deprivation: Involvement of the brain renin-angiotensin system. Frontiers in Molecular Neuroscience, 2009, 2, 1.	1.4	45
184	<i>Fzd3</i> and <i>Fzd6</i> deficiency results in a severe midbrain morphogenesis defect. Developmental Dynamics, 2010, 239, 246-260.	0.8	45
185	Abnormal Brain Iron Metabolism in Irp2 Deficient Mice Is Associated with Mild Neurological and Behavioral Impairments. PLoS ONE, 2014, 9, e98072.	1.1	45
186	Dissecting the genetic effect of the CRH system on anxiety and stress-related behaviour. Comptes Rendus - Biologies, 2005, 328, 199-212.	0.1	44
187	FGF regulated gene-expression and neuronal differentiation in the developing midbrain–hindbrain region. Developmental Biology, 2006, 297, 141-157.	0.9	44
188	Megane/Heslike is required for normal GABAergic differentiation in the mouse superior colliculus. Development (Cambridge), 2006, 133, 3847-3857.	1.2	44
189	Shh dependent and independent maintenance of basal midbrain. Mechanisms of Development, 2009, 126, 301-313.	1.7	44
190	Otx2 selectively controls the neurogenesis of specific neuronal subtypes of the ventral tegmental area and compensates En1-dependent neuronal loss and MPTP vulnerability. Developmental Biology, 2013, 373, 176-183.	0.9	44
191	Heterozygosity for the Mood Disorder-Associated Variant Gln460Arg Alters P2X7 Receptor Function and Sleep Quality. Journal of Neuroscience, 2017, 37, 11688-11700.	1.7	44
192	Congenic expression of poly-GA but not poly-PR in mice triggers selective neuron loss and interferon responses found in C9orf72 ALS. Acta Neuropathologica, 2020, 140, 121-142.	3.9	44
193	A novel <i>N</i> â€ethylâ€ <i>N</i> â€nitrosourea–induced mutation in <i>phospholipase Cγ2</i> causes inflammatory arthritis, metabolic defects, and male infertility in vitro in a murine model. Arthritis and Rheumatism, 2011, 63, 1301-1311.	6.7	43
194	MTO1 mediates tissue specificity of OXPHOS defects via tRNA modification and translation optimization, which can be bypassed by dietary intervention. Human Molecular Genetics, 2015, 24, 2247-2266.	1.4	43
195	"Sighted C3H" mice - a tool for analysing the influence of vision on mouse behaviour?. Frontiers in Bioscience - Landmark, 2008, Volume, 5810.	3.0	41
196	MAPK Signaling Determines Anxiety in the Juvenile Mouse Brain but Depression-Like Behavior in Adults. PLoS ONE, 2012, 7, e35035.	1.1	41
197	Differential mRNA distribution of components of the ERK/MAPK signalling cascade in the adult mouse brain. Journal of Comparative Neurology, 2007, 500, 542-556.	0.9	40
198	Central Deficiency of Corticotropin-Releasing Hormone Receptor Type 1 (CRH-R1) Abolishes Effects of CRH on NREM But Not on REM Sleep in Mice. Sleep, 2010, 33, 427-436.	0.6	40

#	Article	IF	CITATIONS
199	Innovations in phenotyping of mouse models in the German Mouse Clinic. Mammalian Genome, 2012, 23, 611-622.	1.0	40
200	<scp>M</scp> i <scp>R</scp> â€34a deficiency accelerates medulloblastoma formation <i>in vivo</i> . International Journal of Cancer, 2015, 136, 2293-2303.	2.3	40
201	Cytotoxic T lymphocytes of the rat are predominantly restricted by RTL1.A and Not RT1.C-determined major histocompatibility class I antigens. Immunogenetics, 1984, 20, 1-12.	1.2	39
202	N-desalkylquetiapine activates ERK1/2 to induce GDNF release in C6 glioma cells: A putative cellular mechanism for quetiapine as antidepressant. Neuropharmacology, 2012, 62, 209-216.	2.0	39
203	Elevated glutaric acid levels in Dhtkd1-/Gcdh- double knockout mice challenge our current understanding of lysine metabolism. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2220-2228.	1.8	39
204	CRISPR-Mediated Induction of Neuron-Enriched Mitochondrial Proteins Boosts Direct Glia-to-Neuron Conversion. Cell Stem Cell, 2021, 28, 524-534.e7.	5.2	39
205	Regulation of the Hypothalamic-Pituitary-Adrenocortical System in Mice Deficient for CRH Receptors 1 and 2. , 0, .		39
206	Reduced intragraft mRNA expression of matrix metalloproteinases Mmp3, Mmp12, Mmp13 and Adam8, and diminished transplant arteriosclerosis in Ccr5-deficient mice. European Journal of Immunology, 2004, 34, 2568-2578.	1.6	38
207	Expression of Fgf receptors 1, 2, and 3 in the developing mid- and hindbrain of the mouse. Developmental Dynamics, 2005, 233, 1023-1030.	0.8	38
208	A WNT1-regulated developmental gene cascade prevents dopaminergic neurodegeneration in adult En1 mice. Neurobiology of Disease, 2015, 82, 32-45.	2.1	38
209	Alterations in neuronal control of body weight and anxiety behavior by glutathione peroxidase 4 deficiency. Neuroscience, 2017, 357, 241-254.	1.1	38
210	TDP-43 induces p53-mediated cell death of cortical progenitors and immature neurons. Scientific Reports, 2018, 8, 8097.	1.6	38
211	Tests for Anxietyâ€Related Behavior in Mice. Current Protocols in Mouse Biology, 2015, 5, 291-309.	1.2	38
212	High Mobility Group N Proteins Modulate the Fidelity of the Cellular Transcriptional Profile in a Tissue- and Variant-specific Manner. Journal of Biological Chemistry, 2013, 288, 16690-16703.	1.6	37
213	Creation of targeted genomic deletions using TALEN or CRISPR/Cas nuclease pairs in oneâ€cell mouse embryos. FEBS Open Bio, 2015, 5, 26-35.	1.0	37
214	Identification of genes required for eye development by high-throughput screening of mouse knockouts. Communications Biology, 2018, 1, 236.	2.0	37
215	Spatial Analysis of Expression Patterns Predicts Cenetic Interactions at the Mid-Hindbrain Boundary. PLoS Computational Biology, 2009, 5, e1000569.	1.5	36
216	Microphthalmia, parkinsonism, and enhanced nociception in Pitx3 416insG mice. Mammalian Genome, 2010, 21, 13-27.	1.0	36

#	Article	IF	CITATIONS
217	Orphan receptor IL-17RD regulates Toll-like receptor signalling via SEFIR/TIR interactions. Nature Communications, 2015, 6, 6669.	5.8	36
218	Interplay between H1 and HMGN epigenetically regulates OLIG1&2 expression and oligodendrocyte differentiation. Nucleic Acids Research, 2017, 45, 3031-3045.	6.5	36
219	Pleiotropic effects in Eya3knockout mice. BMC Developmental Biology, 2008, 8, 118.	2.1	35
220	Differential gene expression in ADAM10 and mutant ADAM10 transgenic mice. BMC Genomics, 2009, 10, 66.	1.2	35
221	Delayed dopaminergic neuron differentiation in <i>Lrp6</i> mutant mice. Developmental Dynamics, 2010, 239, 211-221.	0.8	35
222	<i>Mga</i> is essential for the survival of pluripotent cells during peri-implantation development. Development (Cambridge), 2015, 142, 31-40.	1.2	35
223	Metformin Supports the Antidiabetic Effect of a Sodium Glucose Cotransporter 2 Inhibitor by Suppressing Endogenous Glucose Production in Diabetic Mice. Diabetes, 2015, 64, 284-290.	0.3	35
224	Disruption of feeding behavior in CRH receptor I-deficient mice is dependent on glucocorticoids. NeuroReport, 2000, 11, 1963-1966.	0.6	34
225	An induction gene trap for identifying a homeoprotein-regulated locus. Nature Biotechnology, 2000, 18, 746-749.	9.4	34
226	CIN85 regulates dopamine receptor endocytosis and governs behaviour in mice. EMBO Journal, 2010, 29, 2421-2432.	3.5	34
227	The Aryl Hydrocarbon Receptor Pathway Defines the Time Frame for Restorative Neurogenesis. Cell Reports, 2018, 25, 3241-3251.e5.	2.9	34
228	Aquarius, a novel gene isolated by gene trapping with an RNA-dependent RNA polymerase motif. , 1998, 212, 304-317.		33
229	Specification of midbrain territory. Cell and Tissue Research, 2004, 318, 5-14.	1.5	33
230	Neurobeachin, a Regulator of Synaptic Protein Targeting, Is Associated with Body Fat Mass and Feeding Behavior in Mice and Body-Mass Index in Humans. PLoS Genetics, 2012, 8, e1002568.	1.5	33
231	Assessing Behavioural Effects of Chronic HPA Axis Activation Using Conditional CRH-Overexpressing Mice. Cellular and Molecular Neurobiology, 2012, 32, 815-828.	1.7	33
232	Simultaneous Creâ€mediated conditional knockdown of two genes in mice. Genesis, 2008, 46, 144-151.	0.8	32
233	Fgf15-mediated control of neurogenic and proneural gene expression regulates dorsal midbrain neurogenesis. Developmental Biology, 2011, 350, 496-510.	0.9	32
234	[40] Screening for novel pattern formation genes using gene trap approaches. Methods in Enzymology, 1993, 225, 664-681.	0.4	31

#	Article	IF	CITATIONS
235	Corticotropin-releasing factor (CRF) receptor type 1-dependent modulation of synaptic plasticity. Neuroscience Letters, 2007, 416, 82-86.	1.0	31
236	NeuBtracker—imaging neurobehavioral dynamics in freely behaving fish. Nature Methods, 2017, 14, 1079-1082.	9.0	31
237	Understanding gene functions and disease mechanisms: Phenotyping pipelines in the German Mouse Clinic. Behavioural Brain Research, 2018, 352, 187-196.	1.2	31
238	Conditional CRF receptor 1 knockout mice show altered neuronal activation pattern to mild anxiogenic challenge. Psychopharmacology, 2006, 188, 374-385.	1.5	30
239	Cell-based simulation of dynamic expression patterns in the presomitic mesoderm. Journal of Theoretical Biology, 2007, 248, 120-129.	0.8	30
240	Novel Allele ofCrybb2in the Mouse and Its Expression in the Brain. , 2008, 49, 1533.		30
241	Neurological phenotype and reduced lifespan in heterozygous Tim23 knockout mice, the first mouse model of defective mitochondrial import. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 371-376.	0.5	30
242	Dickkopf 3 Promotes the Differentiation of a Rostrolateral Midbrain Dopaminergic Neuronal Subset <i>In Vivo</i> and from Pluripotent Stem Cells <i>In Vitro</i> in the Mouse. Journal of Neuroscience, 2015, 35, 13385-13401.	1.7	30
243	Lifetime study in mice after acute low-dose ionizing radiation: a multifactorial study with special focus on cataract risk. Radiation and Environmental Biophysics, 2018, 57, 99-113.	0.6	30
244	The Deep Genome Project. Genome Biology, 2020, 21, 18.	3.8	30
245	Progressive loss of the spongiotrophoblast layer ofBirc6/Bruce mutants results in embryonic lethality. Genesis, 2005, 42, 91-103.	0.8	29
246	Altered dopaminergic innervation and amphetamine response in adult Otx2 conditional mutant mice. Molecular and Cellular Neurosciences, 2006, 31, 293-302.	1.0	29
247	Immune homeostasis and regulation of the interferon pathway require myeloid-derived Regnase-3. Journal of Experimental Medicine, 2019, 216, 1700-1723.	4.2	29
248	Generation of shRNA Transgenic Mice. Methods in Molecular Biology, 2009, 530, 101-129.	0.4	28
249	Fgfr2 and Fgfr3 are not required for patterning and maintenance of the midbrain and anterior hindbrain. Developmental Biology, 2007, 303, 231-243.	0.9	27
250	Urocortin 2 modulates aspects of social behaviour in mice. Behavioural Brain Research, 2012, 233, 331-336.	1.2	27
251	Serotonin Hyperinnervation Abolishes Seizure Susceptibility in <i>Otx2</i> Conditional Mutant Mice. Journal of Neuroscience, 2008, 28, 9271-9276.	1.7	26
252	Activation of ERK/MAPK in the Lateral Amygdala of the Mouse is Required for Acquisition of a Fear-Potentiated Startle response. Neuropsychopharmacology, 2009, 34, 356-366.	2.8	26

#	Article	IF	CITATIONS
253	<i>HIC2</i> Is a Novel Dosage-Dependent Regulator of Cardiac Development Located Within the Distal 22q11 Deletion Syndrome Region. Circulation Research, 2014, 115, 23-31.	2.0	26
254	High-throughput phenotypic assessment of cardiac physiology in four commonly used inbred mouse strains. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2014, 184, 763-775.	0.7	26
255	Zebrafish and medaka offer insights into the neurobehavioral correlates of vertebrate magnetoreception. Nature Communications, 2018, 9, 802.	5.8	26
256	Parkinson's disease motor symptoms rescue by CRISPRaâ€reprogramming astrocytes into GABAergic neurons. EMBO Molecular Medicine, 2022, 14, e14797.	3.3	26
257	Efficient conditional and promoter-specific in vivo expression of cDNAs of choice by taking advantage of recombinase-mediated cassette exchange using FIEx gene traps. Nucleic Acids Research, 2010, 38, e106-e106.	6.5	25
258	Voltage-sensitive dye imaging demonstrates an enhancing effect of corticotropin-releasing hormone on neuronal activity propagation through the hippocampal formation. Journal of Psychiatric Research, 2011, 45, 256-261.	1.5	25
259	Centralized mouse repositories. Mammalian Genome, 2012, 23, 559-571.	1.0	25
260	Otx2 cell-autonomously determines dorsal mesencephalon versus cerebellum fate independently of isthmic organizing activity. Development (Cambridge), 2014, 141, 377-388.	1.2	25
261	Conditional Reduction of Adult Born Doublecortin-Positive Neurons Reversibly Impairs Selective Behaviors. Frontiers in Behavioral Neuroscience, 2015, 9, 302.	1.0	25
262	Meis1 effects on motor phenotypes and the sensorimotor system in mice. DMM Disease Models and Mechanisms, 2017, 10, 981-991.	1.2	25
263	Regulation of Epidermal Bullous Pemphigoid Antigen 1 (BPAG1) Synthesis by Homeoprotein Transcription Factors. Journal of Investigative Dermatology, 1999, 113, 643-650.	0.3	24
264	The mouse Trm1-like gene is expressed in neural tissues and plays a role in motor coordination and exploratory behaviour. Gene, 2007, 389, 174-185.	1.0	24
265	Expression Profiling Identifies the CRH/CRH-R1 System as a Modulator of Neurovascular Gene Activity. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 1476-1495.	2.4	24
266	Sall4 isoforms act during proximal–distal and anterior–posterior axis formation in the mouse embryo. Genesis, 2008, 46, 463-477.	0.8	24
267	A patient-based model of RNA mis-splicing uncovers treatment targets in Parkinson's disease. Science Translational Medicine, 2020, 12, .	5.8	24
268	Genome editing for Duchenne muscular dystrophy: a glimpse of the future?. Gene Therapy, 2021, 28, 542-548.	2.3	24
269	Considerations on Genetic and Environmental Factors That Contribute to Resistance or Sensitivity of Mammals Including Humans to Toxicity of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and Related Compounds. Ecotoxicology and Environmental Safety, 1997, 36, 213-230.	2.9	23
270	Expression domains of murine ephrin-A5 in the pituitary and hypothalamus. Mechanisms of Development, 2000, 93, 165-168.	1.7	23

#	Article	IF	CITATIONS
271	The Role of Fibroblast Growth Factor-Binding Protein 1 in Skin Carcinogenesis and Inflammation. Journal of Investigative Dermatology, 2018, 138, 179-188.	0.3	23
272	Efficient Generation of Rat Induced Pluripotent Stem Cells Using a Non-Viral Inducible Vector. PLoS ONE, 2013, 8, e55170.	1.1	23
273	Enhanced gene trapping in mouse embryonic stem cells. Nucleic Acids Research, 2008, 36, e133-e133.	6.5	22
274	Ascl1 and Helt act combinatorially to specify thalamic neuronal identity by repressing Dlxs activation. Developmental Biology, 2015, 398, 280-291.	0.9	22
275	The Parkinson's disease-linked Leucine-rich repeat kinase 2 (LRRK2) is required for insulin-stimulated translocation of GLUT4. Scientific Reports, 2019, 9, 4515.	1.6	22
276	A comprehensive and comparative phenotypic analysis of the collaborative founder strains identifies new and known phenotypes. Mammalian Genome, 2020, 31, 30-48.	1.0	22
277	Simple and reliable detection of CRISPR-induced on-target effects by qgPCR and SNP genotyping. Nature Protocols, 2021, 16, 1714-1739.	5.5	22
278	Disrupting Roquin-1 interaction with Regnase-1 induces autoimmunity and enhances antitumor responses. Nature Immunology, 2021, 22, 1563-1576.	7.0	22
279	Extensive identification of genes involved in congenital and structural heart disorders and cardiomyopathy. , 2022, 1, 157-173.		22
280	6 Gene and Enhancer Trapping: Mutagenic Strategies for Developmental Studies. Current Topics in Developmental Biology, 1993, 28, 181-206.	1.0	21
281	Optimized Vector for Conditional Gene Targeting in Mouse Embryonic Stem Cells. BioTechniques, 2003, 34, 1136-1140.	0.8	21
282	β atenin signaling modulates the tempo of dendritic growth of adultâ€born hippocampal neurons. EMBO Journal, 2020, 39, e104472.	3.5	21
283	cGMP-dependent protein kinase I, the circadian clock, sleep and learning. Communicative and Integrative Biology, 2009, 2, 298-301.	0.6	20
284	Conditional RNAi in mice. Methods, 2011, 53, 142-150.	1.9	20
285	Crybb2 coding for $\hat{1}^2$ B2-crystallin affects sensorimotor gating and hippocampal function. Mammalian Genome, 2013, 24, 333-348.	1.0	20
286	Epigenome-wide DNA methylation profiling in Progressive Supranuclear Palsy reveals major changes at DLX1. Nature Communications, 2018, 9, 2929.	5.8	20
287	A mutant rat major histocompatibility haplotype showing a large deletion of class I sequences. Immunogenetics, 1989, 30, 237-242.	1.2	19
288	Overview on Mouse Mutagenesis. Methods in Molecular Biology, 2009, 530, 1-12.	0.4	19

#	Article	IF	CITATIONS
289	Alpha-synuclein fragments trigger distinct aggregation pathways. Cell Death and Disease, 2020, 11, 84.	2.7	19
290	Mouse mutant phenotyping at scale reveals novel genes controlling bone mineral density. PLoS Genetics, 2020, 16, e1009190.	1.5	19
291	Sphingomyelin Synthase 1 Is Essential for Male Fertility in Mice. PLoS ONE, 2016, 11, e0164298.	1.1	19
292	Novel caspaseâ€suicide proteins for tamoxifenâ€inducible apoptosis. Genesis, 2008, 46, 530-536.	0.8	18
293	Bioinformatics Identification of Modules of Transcription Factor Binding Sites in Alzheimer's Disease-Related Genes by In Silico Promoter Analysis and Microarrays. International Journal of Alzheimer's Disease, 2011, 2011, 1-13.	1.1	18
294	FGF/FGFR2 Signaling Regulates the Generation and Correct Positioning of Bergmann Glia Cells in the Developing Mouse Cerebellum. PLoS ONE, 2014, 9, e101124.	1.1	18
295	Sox2 controls Schwann cell self-organization through fibronectin fibrillogenesis. Scientific Reports, 2020, 10, 1984.	1.6	18
296	Cytosolic Hsp90α and its mitochondrial isoform Trap1 are differentially required in a breast cancer model. Oncotarget, 2017, 8, 17428-17442.	0.8	18
297	PARK7/DJ-1 promotes pyruvate dehydrogenase activity and maintains Treg homeostasis during ageing. Nature Metabolism, 2022, 4, 589-607.	5.1	18
298	Characterization of a class Ib gene of the rat major histocompatibility complex. Immunogenetics, 1993, 38, 82-91.	1.2	17
299	Molecular characterization, structure and developmental expression of Megane bHLH factor. Gene, 2006, 377, 65-76.	1.0	17
300	High-throughput trapping of secretory pathway genes in mouse embryonic stem cells. Nucleic Acids Research, 2006, 34, e25-e25.	6.5	17
301	Dll1 Haploinsufficiency in Adult Mice Leads to a Complex Phenotype Affecting Metabolic and Immunological Processes. PLoS ONE, 2009, 4, e6054.	1.1	17
302	MTO1-Deficient Mouse Model Mirrors the Human Phenotype Showing Complex I Defect and Cardiomyopathy. PLoS ONE, 2014, 9, e114918.	1.1	17
303	Generation of targeted mouse mutants by embryo microinjection of TALENs. Methods, 2014, 69, 94-101.	1.9	17
304	A mouse model for intellectual disability caused by mutations in the X-linked 2′‑O‑methyltransferase Ftsj1 gene. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2083-2093.	1.8	17
305	Type 2 diabetes risk gene Dusp8 regulates hypothalamic Jnk signaling and insulin sensitivity. Journal of Clinical Investigation, 2020, 130, 6093-6108.	3.9	17
306	TRAF6 prevents fatal inflammation by homeostatic suppression of MALT1 protease. Science Immunology, 2021, 6, eabh2095.	5.6	17

#	Article	IF	CITATIONS
307	Sharpening of expression domains induced by transcription and microRNA regulationwithin a spatio-temporal model of mid-hindbrain boundary formation. BMC Systems Biology, 2013, 7, 48.	3.0	16
308	Pleiotropic Functions for Transcription Factor Zscan10. PLoS ONE, 2014, 9, e104568.	1.1	16
309	Mouse brain proteomics establishes MDGA1 and CACHD1 as in vivo substrates of the Alzheimer protease BACE1. FASEB Journal, 2020, 34, 2465-2482.	0.2	16
310	Dose-Dependent and Subset-Specific Regulation of Midbrain Dopaminergic Neuron Differentiation by LEF1-Mediated WNT1/b-Catenin Signaling. Frontiers in Cell and Developmental Biology, 2020, 8, 587778.	1.8	16
311	Gene expression profiling in the stress control brain region hypothalamic paraventricular nucleus reveals a novel gene network including Amyloid beta Precursor Protein. BMC Genomics, 2010, 11, 546.	1.2	15
312	ENCoRE: an efficient software for CRISPR screens identifies new players in extrinsic apoptosis. BMC Genomics, 2017, 18, 905.	1.2	15
313	Genetically Controlled Lysosomal Entrapment of Superparamagnetic Ferritin for Multimodal and Multiscale Imaging and Actuation with Low Tissue Attenuation. Advanced Functional Materials, 2018, 28, 1706793.	7.8	15
314	Genetic mapping of C4 and Bf complement genes in the rat major histocompatibility complex. Immunogenetics, 1988, 28, 57-60.	1.2	14
315	Ontogeny of steroid receptor coactivators in the hippocampus and their role in regulating postnatal HPA axis function. Brain Research, 2007, 1174, 1-6.	1.1	14
316	Corticotropin-Releasing Hormone Receptor Type 1 (CRHR1) Clustering with MAGUKs Is Mediated via Its C-Terminal PDZ Binding Motif. PLoS ONE, 2015, 10, e0136768.	1.1	14
317	Caspase-mediated apoptosis induction in zebrafish cerebellar Purkinje neurons. Development (Cambridge), 2016, 143, 4279-4287.	1.2	14
318	Fgf15 regulates thalamic development by controlling the expression of proneural genes. Brain Structure and Function, 2016, 221, 3095-3109.	1.2	14
319	Multiple molecular pathways stimulating macroautophagy protect from alpha-synuclein-induced toxicity in human neurons. Neuropharmacology, 2019, 149, 13-26.	2.0	14
320	miRâ€191 modulates Bâ€cell development and targets transcription factors E2A, Foxp1, and Egr1. European Journal of Immunology, 2019, 49, 121-132.	1.6	14
321	Dose-dependent long-term effects of a single radiation event on behaviour and glial cells. International Journal of Radiation Biology, 2021, 97, 156-169.	1.0	14
322	Susceptibility to diet-induced obesity at thermoneutral conditions is independent of UCP1. American Journal of Physiology - Endocrinology and Metabolism, 2022, 322, E85-E100.	1.8	14
323	Expression of a novel mouse gene â€~mbFZb' in distinct regions of the developing nervous system and the adult brain. Mechanisms of Development, 2001, 100, 123-126.	1.7	13
324	Gene Knockdown in the Mouse Through RNAi. Methods in Enzymology, 2010, 477, 387-414.	0.4	13

#	Article	IF	CITATIONS
325	Resources for proteomics in mouse embryonic stem cells. Nature Methods, 2011, 8, 103-104.	9.0	13
326	Low catalytic activity is insufficient to induce disease pathology in triosephosphate isomerase deficiency. Journal of Inherited Metabolic Disease, 2019, 42, 839-849.	1.7	13
327	Crybb2 Mutations Consistently Affect Schizophrenia Endophenotypes in Mice. Molecular Neurobiology, 2019, 56, 4215-4230.	1.9	13
328	Mammalian VPS45 orchestrates trafficking through the endosomal system. Blood, 2021, 137, 1932-1944.	0.6	13
329	Genetic analysis of susceptibility to diabetes mellitus in F2-hybrids between diabetes-prone BB and various MHC-recombinant congenic rat strains. Journal of Autoimmunity, 1991, 4, 543-551.	3.0	12
330	Mouse geneticists need European strategy too. Nature, 2005, 433, 13-13.	13.7	12
331	Periphilin is strongly expressed in the murine nervous system and is indispensable for murine development. Genesis, 2009, 47, 697-707.	0.8	12
332	Serum Response Factor (SRF) Ablation Interferes with Acute Stress-Associated Immediate and Long-Term Coping Mechanisms. Molecular Neurobiology, 2017, 54, 8242-8262.	1.9	12
333	Analysis of locomotor behavior in the German Mouse Clinic. Journal of Neuroscience Methods, 2018, 300, 77-91.	1.3	12
334	In-depth phenotyping reveals common and novel disease symptoms in a hemizygous knock-in mouse model (Mut-ko/ki) of mut-type methylmalonic aciduria. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165622.	1.8	12
335	Functional Genomics by Gene-Trapping in Embryonic Stem Cells. , 2002, 185, 347-379.		11
336	Hairy/Enhancer-of-Split MEGANE and Proneural MASH1 Factors Cooperate Synergistically in Midbrain GABAergic Neurogenesis. PLoS ONE, 2015, 10, e0127681.	1.1	11
337	Diet-induced and mono-genetic obesity alter volatile organic compound signature in mice. Journal of Breath Research, 2016, 10, 016009.	1.5	11
338	Fgf9 Y162C Mutation Alters Information Processing and Social Memory in Mice. Molecular Neurobiology, 2018, 55, 4580-4595.	1.9	11
339	Non-invasive and high-throughput interrogation of exon-specific isoform expression. Nature Cell Biology, 2021, 23, 652-663.	4.6	11
340	A truncating Aspm allele leads to a complex cognitive phenotype and region-specific reductions in parvalbuminergic neurons. Translational Psychiatry, 2020, 10, 66.	2.4	11
341	Constitutive and conditional RNAi transgenesis in mice. Methods, 2011, 53, 430-436.	1.9	10
342	The development of diet-induced obesity and associated metabolic impairments in Dj-1 deficient mice. Journal of Nutritional Biochemistry, 2015, 26, 75-81.	1.9	10

#	Article	IF	CITATIONS
343	CRISPR-Cas9 enables conditional mutagenesis of challenging loci. Scientific Reports, 2016, 6, 32326.	1.6	10
344	Pig models for Duchenne muscular dystrophy – from disease mechanisms to validation of new diagnostic and therapeutic concepts. Neuromuscular Disorders, 2022, 32, 543-556.	0.3	10
345	Forced expression of platelet-derived growth factor B in the mouse cerebellar primordium changes cell migration during midline fusion and causes cerebellar ectopia. Molecular and Cellular Neurosciences, 2004, 26, 308-321.	1.0	9
346	Systematic phenotyping of mouse mutants. Nature Biotechnology, 2010, 28, 684-685.	9.4	9
347	The Chromatin-Associated Phf12 Protein Maintains Nucleolar Integrity and Prevents Premature Cellular Senescence. Molecular and Cellular Biology, 2017, 37, .	1.1	9
348	Comprehensive miRNome-Wide Profiling in a Neuronal Cell Model of Synucleinopathy Implies Involvement of Cell Cycle Genes. Frontiers in Cell and Developmental Biology, 2021, 9, 561086.	1.8	9
349	The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations. G3: Genes, Genomes, Genetics, 2016, 6, 4035-4046.	0.8	9
350	Immunology, Signal Transduction, and Behavior in Hypothalamic–Pituitary–Adrenal Axisâ€related Genetic Mouse Models. Annals of the New York Academy of Sciences, 2009, 1153, 120-130.	1.8	8
351	Fast Synchronization of Ultradian Oscillators Controlled by Delta-Notch Signaling with Cis-Inhibition. PLoS Computational Biology, 2014, 10, e1003843.	1.5	8
352	Chapter 5 – "Parkinson's disease – A role of non-enzymatic posttranslational modifications in disease onset and progression?― Molecular Aspects of Medicine, 2022, 86, 101096.	2.7	8
353	Reversible and tissueâ€specific activation of MAP kinase signaling by tamoxifen in braf ^{V637} ER ^{T2} mice. Genesis, 2013, 51, 448-455.	0.8	7
354	CRHR1-dependent effects on protein expression and posttranslational modification in AtT-20 cells. Molecular and Cellular Endocrinology, 2008, 292, 1-10.	1.6	6
355	Ectopic Dopaminergic Progenitor Cells from <i>En1</i> ^{<i>+/Otx2lacZ</i>} Transgenic Mice Survive and Functionally Reinnervate the Striatum Following Transplantation in a Rat Model of Parkinson's Disease. Cell Transplantation, 2010, 19, 1085-1101.	1.2	6
356	Design and Generation of Geneâ€Targeting Vectors. Current Protocols in Mouse Biology, 2011, 1, 199-211.	1.2	6
357	Does enamelin have pleiotropic effects on organs other than the teeth? Lessons from a phenotyping screen of two enamelinâ€mutant mouse lines. European Journal of Oral Sciences, 2012, 120, 269-277.	0.7	6
358	Amygdala and neocortex: common origins and shared mechanisms. Nature Neuroscience, 2007, 10, 1081-1082.	7.1	5
359	Local Knockdown of ERK2 in the Adult Mouse Brain Via Adeno-Associated Virus-Mediated RNA Interference. Molecular Biotechnology, 2009, 41, 263-269.	1.3	5
360	Deducing corticotropin-releasing hormone receptor type 1 signaling networks from gene expression data by usage of genetic algorithms and graphical Gaussian models. BMC Systems Biology, 2010, 4, 159.	3.0	5

#	Article	IF	CITATIONS
361	Response to Brosch etÂal Cell Metabolism, 2012, 15, 267-269.	7.2	5
362	Viable Ednra Y129F mice feature human mandibulofacial dysostosis with alopecia (MFDA) syndrome due to the homologue mutation. Mammalian Genome, 2016, 27, 587-598.	1.0	5
363	Differences in the spatiotemporal expression and epistatic gene regulation of the mesodiencephalic dopaminergic precursor marker PITX3 during chicken and mouse development. Development (Cambridge), 2016, 143, 691-702.	1.2	5
364	Dusp8 affects hippocampal size and behavior in mice and humans. Scientific Reports, 2019, 9, 19483.	1.6	5
365	DGK and DZHK position paper on genome editing: basic science applications and future perspective. Basic Research in Cardiology, 2021, 116, 2.	2.5	5
366	Characterising a homozygous twoâ€exon deletion in <i>UQCRH</i> : comparing human and mouse phenotypes. EMBO Molecular Medicine, 2021, 13, e14397.	3.3	5
367	Target Validation in Mice by Constitutive and Conditional RNAi. Methods in Molecular Biology, 2013, 986, 307-323.	0.4	4
368	A comprehensive phenotypic characterization of a whole-body Wdr45 knock-out mouse. Mammalian Genome, 2021, 32, 332-349.	1.0	4
369	Innate Immune Pathways Promote Oligodendrocyte Progenitor Cell Recruitment to the Injury Site in Adult Zebrafish Brain. Cells, 2022, 11, 520.	1.8	4
370	Corticotropin-releasing hormone regulates common target genes with divergent functions in corticotrope and neuronal cells. Molecular and Cellular Endocrinology, 2012, 362, 29-38.	1.6	3
371	In vitro analysis of bone phenotypes in Col1a1 and Jagged1 mutant mice using a standardized osteoblast cell culture system. Journal of Bone and Mineral Metabolism, 2013, 31, 293-303.	1.3	3
372	Mutant non-coding RNA resource in mouse embryonic stem cells. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	3
373	Mutations in <scp><i>HID1</i></scp> Cause Syndromic Infantile Encephalopathy and Hypopituitarism. Annals of Neurology, 2021, 90, 143-158.	2.8	3
374	Animal Models Are Valid to Uncover Disease Mechanisms. PLoS Genetics, 2016, 12, e1006013.	1.5	3
375	Post-synaptic scaffold protein TANC2 in psychiatric and somatic disease risk. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	3
376	Mouse mutagenesis and gene function. , 2005, , .		2
377	Direct Cloning of Isogenic Murine DNA in Yeast and Relevance of Isogenicity for Targeting in Embryonic Stem Cells. PLoS ONE, 2013, 8, e74207.	1.1	2
378	An RNAi-Based Approach to Down-Regulate a Gene Family In Vivo. PLoS ONE, 2013, 8, e80312.	1.1	2

#	Article	IF	CITATIONS
379	Simple Derivation of Transgene-Free iPS Cells by a Dual Recombinase Approach. Molecular Biotechnology, 2014, 56, 697-713.	1.3	2
380	Mouse IDGenes: a reference database for genetic interactions in the developing mouse brain. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau083-bau083.	1.4	2
381	Limitations of <i>In Vivo</i> Reprogramming to Dopaminergic Neurons via a Tricistronic Strategy. Human Gene Therapy Methods, 2015, 26, 107-122.	2.1	2
382	Genome Editing in Mice Using TALE Nucleases. Methods in Molecular Biology, 2016, 1338, 229-243.	0.4	2
383	Diabetes type 2 risk gene Dusp8 is associated with altered sucrose reward behavior in mice and humans. Brain and Behavior, 2021, 11, e01928.	1.0	2
384	Endoglycan (PODXL2) is proteolytically processed by ADAM10 (a disintegrin and metalloprotease 10) and controls neurite branching in primary neurons. FASEB Journal, 2021, 35, e21813.	0.2	2
385	Gene Editing in Oneâ€Cell Embryos by Zincâ€Finger and TAL Nucleases. Current Protocols in Mouse Biology, 2012, 2, 347-364.	1.2	2
386	Genetic Models of Parkinson's Disease. Neuromethods, 2011, , 243-265.	0.2	1
387	Mouse Genetics and Metabolic Mouse Phenotyping. , 2012, , 85-106.		1
388	A Customizable Protocol for String Assembly gRNA Cloning (STAgR). Journal of Visualized Experiments, 2018, , .	0.2	1
389	Determination of morphine and norlaudanosoline in murine brain regions by dispersive liquid-liquid micro-extraction and liquid chromatograpy-electrochemical detection. Neurochemistry International, 2021, 150, 105174.	1.9	0
390	4.1 Genetic Control of Meso-diencephalic Dopaminergic Neuron Development in Rodents. , 2009, , 141-159.		0
391	Genetisch verÄ ¤ derte Tiere. , 2012, , 149-167.		0