Hidekazu Sueyoshi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9298887/publications.pdf

Version: 2024-02-01

87	429	11	17
papers	citations	h-index	g-index
88	88	88	285
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mechanism of Pb Removal from Brass Scrap by Compound Separation Using Ca and NaF. International Journal of Nonferrous Metallurgy, 2018, 07, 1-7.	0.5	6
2	The Kinetics of Pb Removal from Brass Scrap Using Compound Separation. International Journal of Nonferrous Metallurgy, 2018, 07, 39-55.	0.5	0
3	Bending strength of zirconia/porcelain functionally graded materials prepared using spark plasma sintering. Journal of Dentistry, 2014, 42, 1569-1576.	1.7	22
4	Effect of surface oxide film and atmosphere on microwave heating of compacted copper powder. Materials Chemistry and Physics, 2011, 125, 723-728.	2.0	4
5	Microstructure and mechanical properties of silicon nitride–titanium nitride composites prepared by spark plasma sintering. Materials Research Bulletin, 2011, 46, 460-463.	2.7	23
6	Life Cycle Assessment of Copper Sulfide-Dispersed Lead-Free Bronze. Materials Transactions, 2010, 51, 394-398.	0.4	0
7	Removal of Magnesium from Aluminum Scrap by Compound-Separation Method Using Shirasu as an Additive. Materials Transactions, 2010, 51, 775-780.	0.4	O
8	Removal of Magnesium from Molten Aluminum Scrap by Compound-Separation Method with Shirasu. Materials Transactions, 2010, 51, 838-843.	0.4	5
9	Properties of Si3N4–TiN composites fabricated by spark plasma sintering by using a mixture of Si3N4 and Ti powders. Ceramics International, 2010, 36, 491-496.	2.3	51
10	Iron Aluminide Coating on Steel Surface by Mechanical Alloying at Elevated Temperature. Transactions of the Materials Research Society of Japan, 2009, 34, 565-569.	0.2	1
11	Preparation and properties of C/SiC/ZrO2 porous composites by hot isostatic pressing the pyrolyzed preforms. Ceramics International, 2009, 35, 349-358.	2.3	5
12	Mechanical Properties of Copper Sulfide-Dispersed Lead-Free Bronze. Materials Transactions, 2009, 50, 776-781.	0.4	4
13	Machinability of Copper Sulfide-Dispersed Lead-Free Bronze. Materials Transactions, 2009, 50, 847-852.	0.4	8
14	Effect of additional methods using Shirasu on removal of magnesium from molten aluminum scrap. Keikinzoku/Journal of Japan Institute of Light Metals, 2009, 59, 632-636.	0.1	0
15	Iron Aluminide Coating of Structural Steel by Mechanical Alloying Followed by Annealing. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2009, 56, 427-432.	0.1	3
16	Characterization of Si ₃ N ₄ ï¼TiN Composites Prepared by Spark Plasma Sintering. Transactions of the Materials Research Society of Japan, 2009, 34, 793-797.	0.2	2
17	Effect of temperature on the formation of β-silicon carbide by hot isostatic pressing the pyrolyzed phenol resin–silicon composite. Journal of the European Ceramic Society, 2008, 28, 311-319.	2.8	5
18	Fabrication and characterization of ceramic matrix composites reinforced by in situ formation of \hat{l}^2 -silicon carbide. Scripta Materialia, 2008, 58, 711-714.	2.6	5

#	Article	IF	Citations
19	Solid State Bonding of Carbon Material to Copper with Nickel Insert. Materials Transactions, 2008, 49, 2063-2067.	0.4	6
20	Effect of preforms on the synthesis of micro .BETASiC from phenol resin and silicon. Journal of the Ceramic Society of Japan, 2008, 116, 807-811.	0.5	1
21	Properties of Soldering Cu/Fe Alloy Produced by Powder Metallurgy. Materials Transactions, 2008, 49, 2881-2886.	0.4	2
22	Microstructure and Properties of Porous CMCs Prepared by HIPing the Pyrolyzed ZrO _{/sub>/ Si / Phenol Resin Composite. Materials Science Forum, 2007, 561-565, 747-750.}	0.3	1
23	Microwave Heating of Thin Au Film. Materials Transactions, 2007, 48, 531-537.	0.4	11
24	Removal of Lead from Copper Alloy Scraps by Compound-Separation Method. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2007, 71, 476-481.	0.2	0
25	Life Cycle Assessment of Manufacturing System of Lead-Free Bronze Products. Materials Transactions, 2007, 48, 1534-1537.	0.4	2
26	107 Preparation of Ceramic Fiber-Reinforced Iron-Matrix Composite by Low Isostatic Press Sintering. The Proceedings of Conference of Kyushu Branch, 2007, 2007, 13-14.	0.0	0
27	Removal of Lead from Scrap Bronze. Materials Transactions, 2006, 47, 2997-3000.	0.4	2
28	Low-Isostatic-Press Sintering of Iron Alloy Powder. Materials Transactions, 2006, 47, 2828-2834.	0.4	1
29	Effect of Graphitization on Solid State Bonding of Carbon to Nickel. Materials Transactions, 2006, 47, 399-404.	0.4	9
30	Consumption of Soldering Iron by Pb-Free Solder. Materials Transactions, 2006, 47, 1221-1226.	0.4	5
31	Removal of Lead from Copper Alloy Scraps by Compound-Separation Method. Materials Transactions, 2005, 46, 2719-2724.	0.4	12
32	Life Cycle Assessment of Manufacturing System of Lead-Free Bronze Products. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2005, 69, 1053-1056.	0.2	0
33	LCA of Manufacturing Lead-Free Copper Alloys. Materials Transactions, 2005, 46, 2713-2718.	0.4	2
34	Removal of Lead from Brass Scrap by Compound-Separation Method. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2005, 69, 198-201.	0.2	10
35	Improvement of Cutting Tool's Life by Multilayering Structure of Tool Materials(Advanced machining) Tj ETQq1 21st Century LEM21, 2005, 2005.2, 535-540.	1 0.78431 0.0	4 rgBT /Overl 0
36	Polymer impregnation and pyrolysis (PIP) method for the preparation of laminated woven fabric/mullite matrix composites with pseudoductility. Journal of the European Ceramic Society, 2004, 24, 53-64.	2.8	25

3

#	Article	IF	CITATIONS
37	Evaluation of the Residual Stress and Strength in Joints and Composites by means of Indendation-Fracture Method. The Proceedings of Conference of Kyushu Branch, 2004, 2004.57, 65-66.	0.0	O
38	Damping capacity and mechanical property of hexagonal boron nitride-dispersed composite steel. Journal of Alloys and Compounds, 2003, 355, 120-125.	2.8	14
39	Effects of Carbon Fiber Orientation and Graphitization on Solid State Bonding of C/C Composite to Nickel. Materials Transactions, 2003, 44, 148-154.	0.4	19
40	Fe-C System Alloys Prepared by Mechanical Alloying and Powder Metallurgy. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2003, 50, 976-980.	0.1	3
41	Processing of a Continuous Ceramic Fiber/Iron Alloy Composite. Materials Transactions, 2002, 43, 735-740.	0.4	3
42	Processing of a Continuous Ceramic Fiber-Reinforced Iron Alloy. Materials Transactions, 2002, 43, 2866-2872.	0.4	3
43	Effects of Carbon Fiber Orientation and Graphitization on Solid State Bonding of C/C Composite to Nickel. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2002, 66, 792-798.	0.2	0
44	Processing of a Continuous Ceramic Fiber-Reinforced Iron Alloy. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2002, 66, 677-683.	0.2	0
45	Solid State Bonding of Graphite to Inconel 718. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2001, 65, 303-309.	0.2	1
46	Effects of microstructural factors and alloying elements on dezincification of brass. Journal of Advanced Science, 2001, 13, 277-280.	0.1	1
47	Solid State Bonding of Graphite to Nickel. Materials Transactions, 2001, 42, 163-170.	0.4	12
48	Effect of Joining Compressive Stress on Solid State Bonding of Graphite to Nickel. Materials Transactions, 2001, 42, 2559-2566.	0.4	5
49	Damping Capacity of Graphite-Dispersed Composite Steel. Materials Transactions, 2001, 42, 965-969.	0.4	3
50	Solid State Bonding of Graphite to Inconel 718. Materials Transactions, 2001, 42, 1945-1951.	0.4	9
51	Processing of Continuous Ceramic Fiber/Iron Alloy Composite. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2001, 65, 961-966.	0.2	9
52	Removal of lead from scrap brass Journal of Advanced Science, 2001, 13, 273-276.	0.1	14
53	Effect of Joining Compressive Stress on Solid State Bonding of Graphite to Nickel. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2001, 65, 470-476.	0.2	1
54	Solid State Bonding of Graphite to SUS304 Steel. Materials Transactions, JIM, 2000, 41, 414-419.	0.9	9

#	Article	IF	CITATIONS
55	Solid State Bonding of Graphite to Nickel. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2000, 64, 597-603.	0.2	2
56	Effect of Processing Conditions on Gas Nitriding of Austenitic Stainless Steels. Materials Transactions, JIM, 1999, 40, 13-19.	0.9	2
57	Solid State Bonding of Graphite to SUS304 Steel. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1999, 63, 1212-1217.	0.2	2
58	Solid State Bonding of Graphite to S45C Steel. Materials Transactions, JIM, 1998, 39, 1084-1092.	0.9	9
59	Effect of Preheating in Air on Gas Nitriding of Austenitic Stainless Steels. Materials Transactions, JIM, 1998, 39, 849-856.	0.9	2
60	Effect of Processing Condition on Gas Nitriding of Austenitic Stainless Steels. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1998, 62, 310-316.	0.2	2
61	Effect of Preheating in Air on Gas Nitriding of SUS304 Stainless Steel. Materials Transactions, JIM, 1997, 38, 148-154.	0.9	5
62	Effect of Preheating in Air on Gas Nitriding of Austenitic Stainless Steels. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1997, 61, 1198-1205.	0.2	4
63	Solid State Bonding of Graphite to S45C Steel. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1997, 61, 736-743.	0.2	3
64	Effect of Preheating in Air on Gas Nitriding of SUS304. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1996, 60, 616-623.	0.2	2
65	Effect of Mechanical Pretreatment on Gas Nitriding Behavior of Austenitic Stainless Steels. Materials Transactions, JIM, 1996, 37, 150-156.	0.9	12
66	Effect of Mechanical Pre-Treatment on Gas Nitriding Behavior in Austenitic Stainless Steels. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1995, 59, 133-139.	0.2	3
67	Anisotropy of Growth Behavior of Small Fatigue Crack in Rolled Plate of Age-Hardened Al Alloy Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1994, 60, 909-914.	0.2	2
68	Microstructures, Surface Morphologies and Machinability of Sn& ndash; Bi Alloys for Utensils and Vessels. Materials Transactions, JIM, 1992, 33, 611-617.	0.9	1
69	Effect of Bi on the Properties of Tin Alloys for Utensils and Vessels. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1991, 55, 481-487.	0.2	O
70	Corrosion of Metals in Volcanic Atmosphere. Corrosion Engineering, 1990, 39, 247-253.	0.1	4
71	Characteristics of small fatigue crack growth in a triphase steel composed of ferrite, martensite and spheroidal graphite Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1990, 56, 2217-2222.	0.2	0
72	Tensile and fatigue strengths of triphase steel composed of ferrite, martensite and spheroidal graphite Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1990, 56, 501-506.	0.2	0

#	Article	IF	CITATIONS
73	Heat-Treatment and Machinability of the Tri-Phase Steel Composed of Ferrite, Martensite, and Graphite. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1990, 54, 231-236.	0.2	2
74	Tool Wear and Chip-Disposability in the Cutting of the Tri-Phase Steel Composed of Ferrite, Martensite, and Graphite. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1990, 54, 589-595.	0.2	0
75	Evaluation of fatigue-crack growth resistance of graphite steels based on the small-crack growth law Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1989, 55, 416-423.	0.2	1
76	Cold Forgeability and Machinability after Cold Forging of Hypo-Eutectoid Graphitic Steels. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1989, 53, 206-211.	0.2	4
77	Machinability of Hypo-Eutectoid Graphitic Steels. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1988, 52, 1285-1292.	0.2	5
78	Effect of Austenitizing Treatment Followed by Slow Cooling on Graphitization in Hypo-Eutectoid Alloy Steels. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1987, 51, 518-524.	0.2	5
79	Ductile Fracture of Hypo-Eutectoid Graphitic Steels. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1987, 51, 1139-1144.	0.2	1
80	Effects of Microstructural Factors on the Tensile Properties of Hypo-Eutectoid Graphitic Steels. Transactions of the Japan Institute of Metals, 1985, 26, 397-404.	0.5	1
81	Graphite Precipitation from Austenite in Hypo-Eutectoid Steel. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1985, 49, 20-25.	0.2	2
82	Effects of Microstructural Factors on Fatigue Limit of Hypo-Eutectoid Graphitic Steels. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1984, 48, 965-971.	0.2	1
83	Effects of Microstructural Factors on Fatigue Crack Propagation Behavior of Hypo-Eutectoid Graphitic Steels. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1984, 48, 971-977.	0.2	O
84	Effects of Microstructural Factors on the Tensile Properties of Hypo-Eutectoid Graphitic Steels. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1984, 48, 15-20.	0.2	0
85	Graphite Precipitation during Isothermal Transformation of Hypo-Eutectoid Alloy Steels. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1981, 45, 304-310.	0.2	2
86	Effects of Alloying Elements on the Graphitization of Hypo-Eutectoid Steel. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1979, 43, 333-339.	0.2	5
87	Effects of Pre-treatment on the Graphitization Behaviour in Hypo-Eutectoid Low Alloy Steel. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1978, 42, 676-682.	0.2	6