Henriette de Loor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9298563/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	p-Cresol and Cardiovascular Risk in Mild-to-Moderate Kidney Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2010, 5, 1182-1189.	2.2	265
2	Gas Chromatographic–Mass Spectrometric Analysis for Measurement of p-Cresol and Its Conjugated Metabolites in Uremic and Normal Serum. Clinical Chemistry, 2005, 51, 1535-1538.	1.5	172
3	Microbiota-Derived Phenylacetylglutamine Associates with Overall Mortality and Cardiovascular Disease in Patients with CKD. Journal of the American Society of Nephrology: JASN, 2016, 27, 3479-3487.	3.0	144
4	p-Cresyl Sulfate and Indoxyl Sulfate in Hemodialysis Patients. Clinical Journal of the American Society of Nephrology: CJASN, 2009, 4, 1932-1938.	2.2	142
5	Natural killer cell infiltration is discriminative for antibody-mediated rejection and predicts outcome after kidney transplantation. Kidney International, 2019, 95, 188-198.	2.6	116
6	Albumin is the main plasma binding protein for indoxyl sulfate and <i>p</i> resyl sulfate. Biopharmaceutics and Drug Disposition, 2013, 34, 165-175.	1.1	104
7	Current target ranges of mycophenolic acid exposure and drug-related adverse events: A 5-year, open-label, prospective, clinical follow-up study in renal allograft recipients. Clinical Therapeutics, 2008, 30, 673-683.	1.1	100
8	In Vivo CYP3A4 Activity, CYP3A5 Genotype, and Hematocrit Predict Tacrolimus Dose Requirements and Clearance in Renal Transplant Patients. Clinical Pharmacology and Therapeutics, 2012, 92, 366-375.	2.3	100
9	Warning: the unfortunate end of p-cresol as a uraemic toxin. Nephrology Dialysis Transplantation, 2011, 26, 1464-1467.	0.4	86
10	The Influence of Prebiotic Arabinoxylan Oligosaccharides on Microbiota Derived Uremic Retention Solutes in Patients with Chronic Kidney Disease: A Randomized Controlled Trial. PLoS ONE, 2016, 11, e0153893.	1.1	74
11	FK506 reduces neuroinflammation and dopaminergic neurodegeneration in an α-synuclein-based rat model for Parkinson's disease. Neurobiology of Aging, 2015, 36, 1559-1568.	1.5	68
12	Sodium octanoate to reverse indoxyl sulfate and p-cresyl sulfate albumin binding in uremic and normal serum during sample preparation followed by fluorescence liquid chromatography. Journal of Chromatography A, 2009, 1216, 4684-4688.	1.8	65
13	Metabolism, Protein Binding, and Renal Clearance of Microbiota–Derived p-Cresol in Patients with CKD. Clinical Journal of the American Society of Nephrology: CJASN, 2016, 11, 1136-1144.	2.2	57
14	The Impact of Renal Allograft Function on Exposure and Elimination of Mycophenolic Acid (MPA) and Its Metabolite MPA 7-O-glucuronide. Transplantation, 2007, 84, 362-373.	0.5	52
15	Impact of Hypoalbuminemia on Voriconazole Pharmacokinetics in Critically III Adult Patients. Antimicrobial Agents and Chemotherapy, 2014, 58, 6782-6789.	1.4	52
16	Progressive decline in tacrolimus clearance after renal transplantation is partially explained by decreasing CYP3A4 activity and increasing haematocrit. British Journal of Clinical Pharmacology, 2015, 80, 548-559.	1.1	48
17	The CYP3A4*22 C>T single nucleotide polymorphism is associated with reduced midazolam and tacrolimus clearance in stable renal allograft recipients. Pharmacogenomics Journal, 2015, 15, 144-152.	0.9	46
18	Combined effects of CYP3A5*1, POR*28, and CYP3A4*22 single nucleotide polymorphisms on early concentration-controlled tacrolimus exposure in de-novo renal recipients. Pharmacogenetics and Genomics, 2014, 24, 597-606.	0.7	44

Henriette de Loor

#	Article	IF	CITATIONS
19	A liquid chromatography – tandem mass spectrometry method to measure a selected panel of uremic retention solutes derived from endogenous and colonic microbial metabolism. Analytica Chimica Acta, 2016, 936, 149-156.	2.6	40
20	In Vivo CYP3A Activity Is Significantly Lower in Cyclosporine-Treated as Compared With Tacrolimus-Treated Renal Allograft Recipients. Clinical Pharmacology and Therapeutics, 2011, 90, 414-422.	2.3	36
21	The influence of renal transplantation on retained microbial–human co-metabolites. Nephrology Dialysis Transplantation, 2016, 31, 1721-1729.	0.4	35
22	Stability of mycophenolic acid and glucuronide metabolites in human plasma and the impact of deproteinization methodology. Clinica Chimica Acta, 2008, 389, 87-92.	0.5	32
23	Protein-Binding Characteristics of Voriconazole Determined by High-Throughput Equilibrium Dialysis. Journal of Pharmaceutical Sciences, 2014, 103, 2565-2570.	1.6	32
24	Impact of <i>CYP3A5</i> genotype on tacrolimus versus midazolam clearance in renal transplant recipients: new insights in CYP3A5-mediated drug metabolism. Pharmacogenomics, 2013, 14, 1467-1480.	0.6	31
25	Effect of Dietary Inulin Supplementation on the Gut Microbiota Composition and Derived Metabolites of Individuals Undergoing Hemodialysis: A Pilot Study. , 2021, 31, 512-522.		29
26	The Functional Implications of Common Genetic Variation in <i>CYP3A5</i> and <i>ABCB1</i> in Human Proximal Tubule Cells. Molecular Pharmaceutics, 2015, 12, 758-768.	2.3	28
27	Comparative performance of oral midazolam clearance and plasma 4βâ€hydroxycholesterol to explain interindividual variability in tacrolimus clearance. British Journal of Clinical Pharmacology, 2016, 82, 1539-1549.	1.1	24
28	Exploring binding characteristics and the related competition of different protein-bound uremic toxins. Biochimie, 2017, 139, 20-26.	1.3	19
29	A highly sensitive liquid chromatography tandem mass spectrometry method for simultaneous quantification of midazolam, 1′-hydroxymidazolam and 4-hydroxymidazolam in human plasma. Biomedical Chromatography, 2011, 25, 1091-1098.	0.8	18
30	Relationship between In Vivo CYP3A4 Activity, CYP3A5 Genotype, and Systemic Tacrolimus Metabolite/Parent Drug Ratio in Renal Transplant Recipients and Healthy Volunteers. Drug Metabolism and Disposition, 2018, 46, 1507-1513.	1.7	17
31	Apparent Elevation of Cyclosporine Whole Blood Concentrations in a Renal Allograft Recipient. Therapeutic Drug Monitoring, 2010, 32, 529-531.	1.0	16
32	Investigation of Saliva as an Alternative to Plasma Monitoring of Voriconazole. Clinical Pharmacokinetics, 2015, 54, 1151-1160.	1.6	15
33	Sevelamer Use in End-Stage Kidney Disease (ESKD) Patients Associates with Poor Vitamin K Status and High Levels of Gut-Derived Uremic Toxins: A Drug–Bug Interaction?. Toxins, 2020, 12, 351.	1.5	14
34	Cognitive Function and Uremic Toxins after Kidney Transplantation: An Exploratory Study. Kidney360, 2020, 1, 1398-1406.	0.9	11
35	Time course of asymmetric dimethylarginine and symmetric dimethylarginine levels after successful renal transplantation. Nephrology Dialysis Transplantation, 2014, 29, 1965-1972.	0.4	10
36	Fexofenadine, a Putative <i>In Vivo</i> Pâ€glycoprotein Probe, Fails to Predict Clearance of the Substrate Tacrolimus in Renal Recipients. Clinical Pharmacology and Therapeutics, 2017, 102, 989-996.	2.3	10

Henriette de Loor

#	Article	IF	CITATIONS
37	Biological pathways and comparison with biopsy signals and cellular origin of peripheral blood transcriptomic profiles during kidney allograft pathology. Kidney International, 2022, 102, 183-195.	2.6	9
38	p-Cresol for better or worse: But what are we measuring?. Kidney International, 2006, 70, 232.	2.6	7
39	Does the biomarker 15N-lactose ureide allow to estimate the site of fermentation of resistant starch?. European Journal of Nutrition, 2008, 47, 217-223.	1.8	6
40	The renal transport of hippurate and proteinâ€bound solutes. Physiological Reports, 2020, 8, e14349.	0.7	5
41	Changes in kynurenine pathway metabolites after acute psychosocial stress in healthy males: a single-arm pilot study. Stress, 2021, 24, 920-930.	0.8	5
42	Lipid Profile Is Negatively Associated with Uremic Toxins in Patients with Kidney Failure—A Tri-National Cohort. Toxins, 2022, 14, 412.	1.5	5
43	In vivo <scp>CYP</scp> 3A4 activity does not predict the magnitude of interaction between itraconazole and tacrolimus from an extended release formulation. Basic and Clinical Pharmacology and Toxicology, 2019, 124, 50-55.	1.2	4
44	On Methods for the Measurement of the Apelin Receptor Ligand Apelin. Scientific Reports, 2022, 12, 7763.	1.6	4
45	Determination of tacrolimus, three mono-demethylated metabolites and a M1 tautomer in human whole blood by liquid chromatography – tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2021, 205, 114296.	1.4	3
46	Contemporary kidney transplantation has a limited impact on bone microarchitecture. Bone Reports, 2022, 16, 101172.	0.2	2
47	Response to †Tacrolimus pharmacokinetics after kidney transplantation – Influence of changes in haematocrit and steroid dose'. British Journal of Clinical Pharmacology, 2015, 80, 1473-1474.	1.1	1
48	Spot urine versus 24-hour urine collection for estimation of the generation of uremic toxins originating from gut microbial metabolism. Kidney International, 2020, 98, 782-784.	2.6	1
49	In Vivo CYP3A4-Activity, CYP3A5-Genotype and Hematocrit Predict Tacrolimus Dose-Requirements and Clearance in Renal Transplant Recipients. Transplantation, 2012, 94, 248-249.	0.5	0