David Goulson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9298408/publications.pdf Version: 2024-02-01

		4960	5120
304	32,310	84	166
papers	citations	h-index	g-index
314	314	314	20022
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 2015, 347, 1255957.	12.6	2,565
2	More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE, 2017, 12, e0185809.	2.5	2,176
3	REVIEW: An overview of the environmental risks posed by neonicotinoid insecticides. Journal of Applied Ecology, 2013, 50, 977-987.	4.0	1,284
4	Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environmental Science and Pollution Research, 2015, 22, 5-34.	5.3	1,215
5	Neonicotinoid Pesticide Reduces Bumble Bee Colony Growth and Queen Production. Science, 2012, 336, 351-352.	12.6	985
6	Environmental fate and exposure; neonicotinoids and fipronil. Environmental Science and Pollution Research, 2015, 22, 35-67.	5.3	903
7	Decline and Conservation of Bumble Bees. Annual Review of Entomology, 2008, 53, 191-208.	11.8	874
8	Effects of neonicotinoids and fipronil on non-target invertebrates. Environmental Science and Pollution Research, 2015, 22, 68-102.	5.3	639
9	Effects of Introduced Bees on Native Ecosystems. Annual Review of Ecology, Evolution, and Systematics, 2003, 34, 1-26.	8.3	539
10	Global assessment of agricultural system redesign for sustainable intensification. Nature Sustainability, 2018, 1, 441-446.	23.7	416
11	The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013. Environmental Science and Pollution Research, 2017, 24, 17285-17325.	5.3	405
12	Causes of rarity in bumblebees. Biological Conservation, 2005, 122, 1-8.	4.1	369
13	The city as a refuge for insect pollinators. Conservation Biology, 2017, 31, 24-29.	4.7	368
14	Neonicotinoids, bee disorders and the sustainability of pollinator services. Current Opinion in Environmental Sustainability, 2013, 5, 293-305.	6.3	352
15	Are bee diseases linked to pesticides? — A brief review. Environment International, 2016, 89-90, 7-11.	10.0	350
16	Comparing the efficacy of agri-environment schemes to enhance bumble bee abundance and diversity on arable field margins. Journal of Applied Ecology, 2006, 44, 29-40.	4.0	338
17	Bumblebee flight distances in relation to the forage landscape. Journal of Animal Ecology, 2008, 77, 406-415.	2.8	330
18	Neonicotinoid Residues in Wildflowers, a Potential Route of Chronic Exposure for Bees. Environmental Science & Technology, 2015, 49, 12731-12740.	10.0	324

#	ARTICLE	IF	CITATIONS
19	The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis. Ecology Letters, 2020, 23, 1488-1498.	6.4	319
20	Environmental Risks and Challenges Associated with Neonicotinoid Insecticides. Environmental Science & Comp.; Technology, 2018, 52, 3329-3335.	10.0	316
21	An interspecific comparison of foraging range and nest density of four bumblebee (Bombus) species. Molecular Ecology, 2005, 14, 1811-1820.	3.9	304
22	Declines in forage availability for bumblebees at a national scale. Biological Conservation, 2006, 132, 481-489.	4.1	302
23	Widespread contamination of wildflower and bee-collected pollen with complex mixtures of neonicotinoids and fungicides commonly applied to crops. Environment International, 2016, 88, 169-178.	10.0	291
24	Society for Ambulatory Anesthesia Consensus Statement on Perioperative Blood Glucose Management in Diabetic Patients Undergoing Ambulatory Surgery. Anesthesia and Analgesia, 2010, 111, 1378-1387.	2.2	243
25	Can alloethism in workers of the bumblebee, Bombus terrestris, be explained in terms of foraging efficiency?. Animal Behaviour, 2002, 64, 123-130.	1.9	238
26	Parasites in bloom: flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151371.	2.6	229
27	Foraging strategies of insects for gathering nectar and pollen, and implications for plant ecology and evolution. Perspectives in Plant Ecology, Evolution and Systematics, 1999, 2, 185-209.	2.7	220
28	Quantifying and comparing bumblebee nest densities in gardens and countryside habitats. Journal of Applied Ecology, 2008, 45, 784-792.	4.0	219
29	Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency. Ecotoxicology, 2014, 23, 317-323.	2.4	218
30	Research trends in ecosystem services provided by insects. Basic and Applied Ecology, 2018, 26, 8-23.	2.7	216
31	The insect apocalypse, and why it matters. Current Biology, 2019, 29, R967-R971.	3.9	214
32	Worldwide integrated assessment on systemic pesticides. Environmental Science and Pollution Research, 2015, 22, 1-4.	5.3	209
33	Baculovirus resistance in the noctuid Spodoptera exempta is phenotypically plastic and responds to population density. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 1787-1791.	2.6	206
34	Conclusions of the Worldwide Integrated Assessment on the risks of neonicotinoids and fipronil to biodiversity and ecosystem functioning. Environmental Science and Pollution Research, 2015, 22, 148-154.	5.3	206
35	Quantifying resilience of humans and other animals. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11883-11890.	7.1	204

#	Article	IF	CITATIONS
37	Colony growth of the bumblebee, Bombus terrestris, in improved and conventional agricultural and suburban habitats. Oecologia, 2002, 130, 267-273.	2.0	193
38	The database of the <scp>PREDICTS</scp> (Projecting Responses of Ecological Diversity In Changing) Tj ETQq0	0 0 rgBT /0 1.9	Dverlock 10 T

39	The <scp>PREDICTS</scp> database: a global database of how local terrestrial biodiversity responds to human impacts. Ecology and Evolution, 2014, 4, 4701-4735.	1.9	178
40	International scientists formulate a roadmap for insect conservation and recovery. Nature Ecology and Evolution, 2020, 4, 174-176.	7.8	176
41	Use of genetic markers to quantify bumblebee foraging range and nest density. Oikos, 2004, 107, 471-478.	2.7	175
42	The invasion of southern <scp>S</scp> outh <scp>A</scp> merica by imported bumblebees and associated parasites. Journal of Animal Ecology, 2014, 83, 823-837.	2.8	175
43	Field trial of a genetically improved baculovirus insecticide. Nature, 1994, 370, 138-140.	27.8	174
44	Effects of land use at a landscape scale on bumblebee nest density and survival. Journal of Applied Ecology, 2010, 47, 1207-1215.	4.0	169
45	Niche overlap and diet breadth in bumblebees; are rare species more specialized in their choice of flowers?. Apidologie, 2004, 35, 55-63.	2.0	168
46	The <scp>T</scp> rojan hives: pollinator pathogens, imported and distributed in bumblebee colonies. Journal of Applied Ecology, 2013, 50, 1207-1215.	4.0	168
47	Contamination of wild plants near neonicotinoid seed-treated crops, and implications for non-target insects. Science of the Total Environment, 2016, 566-567, 269-278.	8.0	168
48	Breeding system, pollinator choice and variation in pollen quality in British herbaceous plants. Functional Ecology, 2008, 22, 592-598.	3.6	166
49	An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems. Environmental Science and Pollution Research, 2021, 28, 11749-11797.	5.3	155
50	Preferred nesting sites of bumblebee queens (Hymenoptera: Apidae) in agroecosystems in the UK. Biological Conservation, 2003, 109, 165-174.	4.1	150
51	Unveiling cryptic species of the bumblebee subgenus <i>Bombus s. str.</i> worldwide with COI barcodes (Hymenoptera: Apidae). Systematics and Biodiversity, 2012, 10, 21-56.	1.2	147
52	Estimation of bumblebee queen dispersal distances using sibship reconstruction method. Molecular Ecology, 2010, 19, 819-831.	3.9	142
53	Foraging bumblebees avoid flowers already visited by conspecifics or by other bumblebee species. Animal Behaviour, 1998, 55, 199-206.	1.9	140
54	The use of conspecific and interspecific scent marks by foraging bumblebees and honeybees. Animal Behaviour, 2001, 62, 183-189.	1.9	140

#	Article	IF	CITATIONS
55	Genetic diversity, parasite prevalence and immunity in wild bumblebees. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1195-1202.	2.6	135
56	An economic model of the limits to foraging range in central place foragers with numerical solutions for bumblebees. Ecological Entomology, 2000, 25, 249-255.	2.2	134
57	Do managed bees drive parasite spread and emergence in wild bees?. International Journal for Parasitology: Parasites and Wildlife, 2016, 5, 64-75.	1.5	134
58	Emerging dangers: Deadly effects of an emergent parasite in a new pollinator host. Journal of Invertebrate Pathology, 2013, 114, 114-119.	3.2	127
59	Population structure and inbreeding in a rare and declining bumblebee, Bombus muscorum (Hymenoptera: Apidae). Molecular Ecology, 2006, 15, 601-611.	3.9	125
60	The contribution of small-scale food production in urban areas to the sustainable development goals: a review and case study. Sustainability Science, 2020, 15, 1585-1599.	4.9	122
61	Pesticides linked to bird declines. Nature, 2014, 511, 295-296.	27.8	119
62	Extremely low effective population sizes, genetic structuring and reduced genetic diversity in a threatened bumblebee species, Bombus sylvarum (Hymenoptera: Apidae). Molecular Ecology, 2006, 15, 4375-4386.	3.9	118
63	Toxic Effects of Spinosad on Predatory Insects. Biological Control, 2002, 23, 156-163.	3.0	115
64	A horizon scan of future threats and opportunities for pollinators and pollination. PeerJ, 2016, 4, e2249.	2.0	115
65	Pollinator-friendly management does not increase the diversity of farmland bees and wasps. Biological Conservation, 2015, 187, 120-126.	4.1	109
66	Repellent scent-marking of flowers by a guild of foraging bumblebees (Bombus spp.). Behavioral Ecology and Sociobiology, 1998, 43, 317-326.	1.4	107
67	Measuring the economic value of pollination services: Principles, evidence and knowledge gaps. Ecosystem Services, 2015, 14, 124-132.	5.4	107
68	Quantifying exposure of wild bumblebees to mixtures of agrochemicals in agricultural and urban landscapes. Environmental Pollution, 2017, 222, 73-82.	7.5	107
69	Experimental evidence that wildflower strips increase pollinator visits to crops. Ecology and Evolution, 2015, 5, 3523-3530.	1.9	106
70	Evidence for competition between honeybees and bumblebees; effects on bumblebee worker size. Journal of Insect Conservation, 2009, 13, 177-181.	1.4	105
71	Targeted agriâ€environment schemes significantly improve the population size of common farmland bumblebee species. Molecular Ecology, 2015, 24, 1668-1680.	3.9	105
72	Flower constancy in the hoverflies Episyrphus balteatus (Degeer) and Syrphus ribesii (L.) (Syrphidae). Behavioral Ecology, 1998, 9, 213-219.	2.2	100

#	Article	IF	CITATIONS
73	Does cannibalism in Spodoptera frugiperda (Lepidoptera: Noctuidae) reduce the risk of predation?. Behavioral Ecology and Sociobiology, 2000, 48, 321-327.	1.4	100
74	Homing ability of the bumblebee Bombus terrestris (Hymenoptera: Apidae). Apidologie, 2001, 32, 105-111.	2.0	100
75	Comparison of Pesticide Exposure in Honey Bees (Hymenoptera: Apidae) and Bumble Bees (Hymenoptera:) Tj E	TQq1 1 0.7 1.4	784314 rgBT 97
76	Pollination of the invasive exotic shrub Lupinus arboreus (Fabaceae) by introduced bees in Tasmania. Biological Conservation, 2002, 106, 425-434.	4.1	96
77	Diet breadth, coexistence and rarity in bumblebees. Biodiversity and Conservation, 2008, 17, 3269-3288.	2.6	95
78	Wipfelkrankheit : modification of host behaviour during baculoviral infection. Oecologia, 1997, 109, 219-228.	2.0	94
79	The Value of Uncropped Field Margins For Foraging Bumblebees. Journal of Insect Conservation, 2001, 5, 283-291.	1.4	94
80	Fragmented woodlands in agricultural landscapes: The influence of woodland character and landscape context on bats and their insect prey. Agriculture, Ecosystems and Environment, 2013, 172, 6-15.	5.3	94
81	Effects of experience and weather on foraging rate and pollen versus nectar collection in the bumblebee, Bombus terrestris. Behavioral Ecology and Sociobiology, 2005, 58, 152-156.	1.4	93
82	Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases. Scientific Reports, 2016, 6, 31153.	3.3	92
83	Responses of Mamestra brassicae (Lepidoptera: Noctuidae) to crowding: interactions with disease resistance, colour phase and growth. Oecologia, 1995, 104, 416-423.	2.0	91
84	Selection of a Nucleopolyhedrovirus for Control of Spodoptera frugiperda (Lepidoptera: Noctuidae): Structural, Genetic, and Biological Comparison of Four Isolates from the Americas. Journal of Economic Entomology, 1999, 92, 1079-1085.	1.8	91
85	Age-related cannibalism and horizontal transmission of a nuclear polyhedrosis virus in larval Spodoptera frugiperda. Ecological Entomology, 1999, 24, 268-275.	2.2	91
86	Title is missing!. Journal of Insect Behavior, 2001, 14, 669-678.	0.7	91
87	Providing foraging resources for solitary bees on farmland: current schemes for pollinators benefit a limited suite of species. Journal of Applied Ecology, 2017, 54, 323-333.	4.0	90
88	Identity and Function of Scent Marks Deposited by Foraging Bumblebees. Journal of Chemical Ecology, 2000, 26, 2897-2911.	1.8	88
89	Effects of climate on intra- and interspecific size variation in bumble-bees. Functional Ecology, 2005, 19, 145-151.	3.6	87
90	Bumblebee nest density and the scale of available forage in arable landscapes. Insect Conservation and Diversity, 2009, 2, 116-124.	3.0	86

#	Article	IF	CITATIONS
91	Variability in bumblebee pollination buzzes affects the quantity of pollen released from flowers. Oecologia, 2013, 172, 805-816.	2.0	85
92	Are neonicotinoid insecticides driving declines of widespread butterflies?. PeerJ, 2015, 3, e1402.	2.0	85
93	Assessing the value of Rural Stewardship schemes for providing foraging resources and nesting habitat for bumblebee queens (Hymenoptera: Apidae). Biological Conservation, 2009, 142, 2023-2032.	4.1	84
94	The effectiveness of agri-environment schemes for the conservation of farmland moths: assessing the importance of a landscape-scale management approach. Journal of Applied Ecology, 2011, 48, 532-542.	4.0	83
95	Mitigating the anthropogenic spread of bee parasites to protect wild pollinators. Biological Conservation, 2015, 191, 10-19.	4.1	83
96	Are insects flower constant because they use search images to find flowers?. Oikos, 2000, 88, 547-552.	2.7	82
97	Biotope Associations and the Decline of Bumblebees (Bombus spp.). Journal of Insect Conservation, 2006, 10, 95-103.	1.4	82
98	The relationship between managed bees and the prevalence of parasites in bumblebees. PeerJ, 2014, 2, e522.	2.0	82
99	Does intraspecific size variation in bumblebees allow colonies to efficiently exploit different flowers?. Ecological Entomology, 2005, 30, 176-181.	2.2	79
100	Potential benefits of commercial willow Short Rotation Coppice (SRC) for farm-scale plant and invertebrate communities in the agri-environment. Biomass and Bioenergy, 2011, 35, 325-336.	5.7	79
101	Using citizen science to monitor Bombus populations in the UK: nesting ecology and relative abundance in the urban environment. Journal of Insect Conservation, 2012, 16, 697-707.	1.4	79
102	Sensitive determination of mixtures of neonicotinoid and fungicide residues in pollen and single bumblebees using a scaled down QuEChERS method for exposure assessment. Analytical and Bioanalytical Chemistry, 2015, 407, 8151-8162.	3.7	79
103	Floral display size in comfrey, Symphytum officinale L. (Boraginaceae): relationships with visitation by three bumblebee species and subsequent seed set. Oecologia, 1998, 113, 502-508.	2.0	77
104	Call to restrict neonicotinoids. Science, 2018, 360, 973-973.	12.6	77
105	Predicting calyptrate fly populations from the weather, and probable consequences of climate change. Journal of Applied Ecology, 2005, 42, 795-804.	4.0	75
106	The Neonicotinoid Insecticide Thiacloprid Impacts upon Bumblebee Colony Development under Field Conditions. Environmental Science & Technology, 2017, 51, 1727-1732.	10.0	74
107	Evaluating the effectiveness of wildflower seed mixes for boosting floral diversity and bumblebee and hoverfly abundance in urban areas. Insect Conservation and Diversity, 2014, 7, 480-484.	3.0	72
108	Floral abundance and resource quality influence pollinator choice. Insect Conservation and Diversity, 2016, 9, 481-494.	3.0	72

#	Article	IF	CITATIONS
109	Ornamental plants on sale to the public are a significant source of pesticide residues with implications for the health of pollinating insects. Environmental Pollution, 2017, 228, 297-304.	7.5	72
110	Maintenance of the Species Boundary between Silene dioica and S. latifolia (Red and White Campion). Oikos, 1997, 79, 115.	2.7	71
111	Pipistrelle bats and their prey do not benefit from four widely applied agri-environment management prescriptions. Biological Conservation, 2011, 144, 2233-2246.	4.1	71
112	Determination of larval melanization in the moth, Mamestra brassicae, and the role of melanin in thermoregulation. Heredity, 1994, 73, 471-479.	2.6	69
113	The influence of relative plant density and floral morphological complexity on the behaviour of bumblebees. Oecologia, 1998, 117, 543-550.	2.0	69
114	Nectar robbing, forager efficiency and seed set: Bumblebees foraging on the self incompatible plant Linaria vulgaris (Scrophulariaceae). Acta Oecologica, 2000, 21, 277-283.	1.1	69
115	Epigeic Collembola in winter wheat under organic, integrated and conventional farm management regimes. Agriculture, Ecosystems and Environment, 2001, 83, 95-110.	5.3	69
116	The influence of nectar secretion rates on the responses of bumblebees (Bombus spp.) to previously visited flowers. Behavioral Ecology and Sociobiology, 2002, 52, 239-246.	1.4	68
117	Overplaying the role of honey bees as pollinators: a comment on Aebi and Neumann (2011). Trends in Ecology and Evolution, 2012, 27, 141-142.	8.7	67
118	Chronic neonicotinoid pesticide exposure and parasite stress differentially affects learning in honeybees and bumblebees. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160246.	2.6	67
119	Foraging strategies in the small skipper butterfly,Thymelicus flavus: when to switch?. Animal Behaviour, 1997, 53, 1009-1016.	1.9	66
120	Molecular tools and bumble bees: revealing hidden details of ecology and evolution in a model system. Molecular Ecology, 2015, 24, 2916-2936.	3.9	64
121	<i>Bumble</i> â€ <scp>BEEHAVE</scp> : A systems model for exploring multifactorial causes of bumblebee decline at individual, colony, population and community level. Journal of Applied Ecology, 2018, 55, 2790-2801.	4.0	63
122	Impacts of inbreeding on bumblebee colony fitness under field conditions. BMC Evolutionary Biology, 2009, 9, 152.	3.2	59
123	Neonicotinoids impact bumblebee colony fitness in the field; a reanalysis of the UK's Food & Environment Research Agency 2012 experiment. PeerJ, 2015, 3, e854.	2.0	59
124	Cryptic differences in dispersal lead to differential sensitivity to habitat fragmentation in two bumblebee species. Molecular Ecology, 2010, 19, 53-63.	3.9	58
125	Quantifying the Impact and Relevance of Scientific Research. PLoS ONE, 2011, 6, e27537.	2.5	58
126	Microsatellite markers to assess the influence of population size, isolation and demographic change on the genetic structure of the UK butterfly Polyommatus bellargus. Molecular Ecology, 2003, 12, 3349-3357.	3.9	57

#	Article	IF	CITATIONS
127	The effects of single and mixed infections of <i>Apicystis bombi</i> and deformed wing virus in <i>Bombus terrestris</i> . Parasitology, 2016, 143, 358-365.	1.5	57
128	Quantifying the attractiveness of garden flowers for pollinators. Journal of Insect Conservation, 2019, 23, 803-817.	1.4	57
129	Evaluation of a Baculovirus Bioinsecticide for Small-Scale Maize Growers in Latin America. Biological Control, 1999, 14, 67-75.	3.0	56
130	The Neonicotinoid Insecticide Imidacloprid Repels Pollinating Flies and Beetles at Field-Realistic Concentrations. PLoS ONE, 2013, 8, e54819.	2.5	56
131	How should conservationists respond to pesticides as a driver of biodiversity loss in agroecosystems?. Biological Conservation, 2017, 209, 449-453.	4.1	56
132	The combined effects of a monotonous diet and exposure to thiamethoxam on the performance of bumblebee micro-colonies. Ecotoxicology and Environmental Safety, 2017, 139, 194-201.	6.0	54
133	The impacts of predators and parasites on wild bumblebee colonies. Ecological Entomology, 2018, 43, 168-181.	2.2	54
134	The best wildflowers for wild bees. Journal of Insect Conservation, 2019, 23, 819-830.	1.4	54
135	Pollination biology of fruit-bearing hedgerow plants and the role of flower-visiting insects in fruit-set. Annals of Botany, 2009, 104, 1397-1404.	2.9	53
136	Impacts of non-native bumblebees in Western Europe and North America. Applied Entomology and Zoology, 2010, 45, 7-12.	1.2	53
137	Quantifying the food requirements and effects of food stress on bumble bee colony development. Journal of Apicultural Research, 2017, 56, 288-299.	1.5	53
138	Do exotic bumblebees and honeybees compete with native flower-visiting insects in Tasmania?. Journal of Insect Conservation, 2002, 6, 179-189.	1.4	52
139	Mandibular gland chemistry of grass-cutting ants: species, caste, and colony variation. Journal of Chemical Ecology, 2001, 27, 109-124.	1.8	51
140	Choosing rewarding flowers; perceptual limitations and innate preferences influence decision making in bumblebees and honeybees. Behavioral Ecology and Sociobiology, 2007, 61, 1523-1529.	1.4	51
141	Influence of urbanisation on the prevalence of protozoan parasites of bumblebees. Ecological Entomology, 2012, 37, 83-89.	2.2	51
142	Using citizen science to monitor pollination services. Ecological Entomology, 2015, 40, 3-11.	2.2	50
143	Occurrence of Neonicotinoids in Chinese Apiculture and a Corresponding Risk Exposure Assessment. Environmental Science & Technology, 2020, 54, 5021-5030.	10.0	50
144	Potential role of veterinary flea products in widespread pesticide contamination of English rivers. Science of the Total Environment, 2021, 755, 143560.	8.0	49

#	Article	IF	CITATIONS
145	Analysis of museum specimens suggests extreme genetic drift in the adonis blue butterfly (Polyommatus bellargus). Biological Journal of the Linnean Society, 2006, 88, 447-452.	1.6	48
146	Anesthesia for Gastrointestinal Endoscopic Procedures. Anesthesiology Clinics, 2009, 27, 71-85.	1.4	48
147	Synergistic interactions between an exotic honeybee and an exotic weed: pollination of Lantana camara in Australia. Weed Research, 2004, 44, 195-202.	1.7	47
148	A Model to Predict the Influence of Insect Flower Constancy on Interspecific Competition between Insect Pollinated Plants. Journal of Theoretical Biology, 1994, 168, 309-314.	1.7	46
149	Pollinator effectiveness and fruit set in common ivy, Hedera helix (Araliaceae). Arthropod-Plant Interactions, 2010, 4, 19-28.	1.1	46
150	Two Bee-Pollinated Plant Species Show Higher Seed Production when Grown in Gardens Compared to Arable Farmland. PLoS ONE, 2010, 5, e11753.	2.5	46
151	Population structure, dispersal and colonization history of the garden bumblebee Bombus hortorum in the Western Isles of Scotland. Conservation Genetics, 2011, 12, 867-879.	1.5	45
152	Factors influencing moth assemblages in woodland fragments on farmland: Implications for woodland management and creation schemes. Biological Conservation, 2012, 153, 265-275.	4.1	45
153	Rapid rise in toxic load for bees revealed by analysis of pesticide use in Great Britain. PeerJ, 2018, 6, e5255.	2.0	45
154	Can flower constancy in nectaring butterflies be explained by Darwin's interference hypothesis?. Oecologia, 1997, 112, 225-231.	2.0	44
155	Evidence for Handedness in Bumblebees. , 2001, 14, 47-55.		44
156	The benefits of multiple mating to female seaweed flies, Coelopa frigida (Diptera: Coelpidae). Behavioral Ecology and Sociobiology, 2005, 58, 128-135.	1.4	44
157	Impacts of the Use of Nonnative Commercial Bumble Bees for Pollinator Supplementation in Raspberry. Journal of Economic Entomology, 2011, 104, 107-114.	1.8	44
158	Cryptic Bumblebee Species: Consequences for Conservation and the Trade in Greenhouse Pollinators. PLoS ONE, 2012, 7, e32992.	2.5	43
159	Effects of Male age and Size on Mating Success in the Bumblebee Bombus terrestris. Journal of Insect Behavior, 2012, 25, 362-374.	0.7	43
160	Gone with the wind: effects of wind on honey bee visit rate and foraging behaviour. Animal Behaviour, 2020, 161, 23-31.	1.9	43
161	Comment on "Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances― Science, 2020, 370, .	12.6	41
162	Polyethism and the importance of context in the alarm reaction of the grass-cutting ant, Atta capiguara. Behavioral Ecology and Sociobiology, 2001, 49, 503-508.	1.4	40

#	Article	IF	CITATIONS
163	Niche partitioning in a sympatric cryptic species complex. Ecology and Evolution, 2016, 6, 1328-1339.	1.9	40
164	First evidence of neonicotinoid residues in a long-distance migratory raptor, the European honey buzzard (Pernis apivorus). Science of the Total Environment, 2018, 639, 929-933.	8.0	40
165	Sublethal Effects of Baculovirus in the Cabbage Moth, Mamestra brassicae. Biological Control, 1995, 5, 361-367.	3.0	39
166	Bumble bees in Tasmania: their distribution and potential impact on Australian flora and fauna. Bee World, 2000, 81, 80-86.	0.8	38
167	Botanical diversity of beetle banks. Agriculture, Ecosystems and Environment, 2002, 93, 403-412.	5.3	38
168	Larval exposure to field-realistic concentrations of clothianidin has no effect on development rate, over-winter survival or adult metabolic rate in a solitary bee, <i>Osmia bicornis</i> . PeerJ, 2017, 5, e3417.	2.0	37
169	Evaluating ecosystem processes in willow short rotation coppice bioenergy plantations. GCB Bioenergy, 2013, 5, 257-266.	5.6	36
170	The Canary in the Coalmine; Bee Declines as an Indicator of Environmental Health. Science Progress, 2016, 99, 312-326.	1.9	36
171	Is It Feasible to Use Optical Brightener Technology with a Baculovirus Bioinsecticide for Resource-Poor Maize Farmers in Mesoamerica?. Biological Control, 2000, 17, 174-181.	3.0	35
172	Kin recognition and inbreeding reluctance in bumblebees. Apidologie, 2009, 40, 627-633.	2.0	35
173	Testing the effectiveness of surveying techniques in determining bat community composition within woodland. Wildlife Research, 2013, 40, 675.	1.4	35
174	Parasitoid–Pathogen–Pest Interactions of Chelonus insularis, Campoletis sonorensis, and a Nucleopolyhedrovirus in Spodoptera frugiperda Larvae. Biological Control, 2000, 19, 265-273.	3.0	34
175	Formulation of a Nucleopolyhedrovirus with Boric Acid for Control of Spodoptera frugiperda (Lepidoptera: Noctuidae) in Maize. Biological Control, 2002, 23, 87-95.	3.0	34
176	Social learning drives handedness in nectar-robbing bumblebees. Behavioral Ecology and Sociobiology, 2013, 67, 1141-1150.	1.4	34
177	Monitoring Neonicotinoid Exposure for Bees in Rural and Peri-urban Areas of the U.K. during the Transition from Pre- to Post-moratorium. Environmental Science & Technology, 2018, 52, 9391-9402.	10.0	34
178	Reconstructing demographic events from population genetic data: the introduction of bumblebees to New Zealand. Molecular Ecology, 2011, 20, 2888-2900.	3.9	33
179	Testing a detection dog to locate bumblebee colonies and estimate nest density. Apidologie, 2011, 42, 200-205.	2.0	33
180	Introduced weeds pollinated by introduced bees: Cause or effect?. Weed Biology and Management, 2003, 3, 204-212.	1.4	32

#	Article	IF	CITATIONS
181	The role of hedgerows in the recolonisation of arable fields by epigeal Collembola. Pedobiologia, 2000, 44, 516-526.	1.2	31
182	The response of grass-cutting ants to natural and synthetic versions of their alarm pheromone. Physiological Entomology, 2001, 26, 165-172.	1.5	31
183	Humans versus dogs; a comparison of methods for the detection of bumble bee nests. Journal of Apicultural Research, 2012, 51, 204-211.	1.5	31
184	Cryptic species identification: a simple diagnostic tool for discriminating between two problematic bumblebee species. Molecular Ecology Notes, 2006, 6, 540-542.	1.7	30
185	Seasonal complementary in pollinators of soft-fruit crops. Basic and Applied Ecology, 2017, 19, 45-55.	2.7	30
186	Environmental versus genetic influences on fluctuating asymmetry in the house fly, Musca domestica. Biological Journal of the Linnean Society, 2000, 70, 403-413.	1.6	29
187	Effect of weeds on insect pests of maize and their natural enemies in Southern Mexico. International Journal of Pest Management, 2003, 49, 155-161.	1.8	29
188	Crofting and bumblebee conservation: The impact of land management practices on bumblebee populations in northwest Scotland. Biological Conservation, 2010, 143, 492-500.	4.1	29
189	Translating research into action; bumblebee conservation as a case study. Journal of Applied Ecology, 2011, 48, 3-8.	4.0	28
190	Triploid bumblebees indicate a direct cost of inbreeding in fragmented populations. Molecular Ecology, 2012, 21, 3988-3995.	3.9	28
191	Investigating the impact of deploying commercial <i>Bombus terrestris for</i> crop pollination on pathogen dynamics in wild bumble bees. Journal of Apicultural Research, 2013, 52, 149-157.	1.5	28
192	Larval exposure to the neonicotinoid imidacloprid impacts adult size in the farmland butterfly <i>Pieris brassicae</i> . PeerJ, 2018, 6, e4772.	2.0	28
193	Incomplete sexual isolation in sympatry between subspecies of the butterfly Danaus chrysippus (L.) and the creation of a hybrid zone. Heredity, 2003, 90, 236-246.	2.6	27
194	No effect of low-level chronic neonicotinoid exposure on bumblebee learning and fecundity. PeerJ, 2016, 4, e1808.	2.0	27
195	Variation in the genitalia of the butterfly Maniola jurtina (Lepidoptera: Satyrinae). Zoological Journal of the Linnean Society, 1993, 107, 65-71.	2.3	26
196	Isolation of microsatellite markers from the Adonis blue butterfly (Lysandra bellargus). Molecular Ecology, 2000, 9, 1948-1949.	3.9	26
197	Spatial distribution modelling reveals climatically suitable areas for bumblebees in undersampled parts of the Iberian Peninsula. Insect Conservation and Diversity, 2016, 9, 391-401.	3.0	26
198	Neonicotinoids thiamethoxam and clothianidin adversely affect the colonisation of invertebrate populations in aquatic microcosms. Environmental Science and Pollution Research, 2018, 25, 9593-9599.	5.3	26

#	Article	IF	CITATIONS
199	Effects of Field-Relevant Concentrations of Clothianidin on Larval Development of the Butterfly <i>Polyommatus icarus</i> (Lepidoptera, Lycaenidae). Environmental Science & Technology, 2018, 52, 3990-3996.	10.0	26
200	Improving pesticide-use data for the EU. Nature Ecology and Evolution, 2021, 5, 1560-1560.	7.8	26
201	The potential of Chrysoperla rufilabris and Doru taeniatum as agents for dispersal of Spodoptera frugiperda nucleopolyhedrovirus in maize. Entomologia Experimentalis Et Applicata, 2001, 98, 353-359.	1.4	25
202	Evidence for habitat and climatic specializations driving the longâ€ŧerm distribution trends of <scp>UK</scp> and <scp>I</scp> rish bumblebees. Diversity and Distributions, 2015, 21, 864-875.	4.1	25
203	Moth species richness, abundance and diversity in fragmented urban woodlands: implications for conservation and management strategies. Biodiversity and Conservation, 2014, 23, 2875-2901.	2.6	24
204	Location of bumblebee nests is predicted by counts of nestâ€searching queens. Ecological Entomology, 2017, 42, 731-736.	2.2	24
205	Multiple stressors interact to impair the performance of bumblebee <i>Bombus terrestris</i> colonies. Journal of Animal Ecology, 2021, 90, 415-431.	2.8	24
206	Using ecological and field survey data to establish a national list of the wild bee pollinators of crops. Agriculture, Ecosystems and Environment, 2021, 315, 107447.	5.3	24
207	Mate location in the deathwatch beetle, Xestobium rufovillosum De Geer (Anobiidae): orientation to substrate vibrations. Animal Behaviour, 1994, 47, 899-907.	1.9	23
208	The butterfly Danaus chrysippus (L.) in East Africa comprises polyphyletic, sympatric lineages that are, despite behavioural isolation, driven to hybridization by female-biased sex ratios. Biological Journal of the Linnean Society, 2005, 86, 117-131.	1.6	23
209	Niche differentiation of a cryptic bumblebee complex in the Western Isles of Scotland. Insect Conservation and Diversity, 2011, 4, 46-52.	3.0	23
210	A comparison of techniques for assessing farmland bumblebee populations. Oecologia, 2015, 177, 1093-1102.	2.0	23
211	A mechanistic framework to explain the immunosuppressive effects of neurotoxic pesticides on bees. Functional Ecology, 2018, 32, 1921-1930.	3.6	23
212	Functional significance of the dark central floret of <i>Daucus carota</i> (Apiaceae) L.; is it an insect mimic?. Plant Species Biology, 2009, 24, 77-82.	1.0	22
213	SIZE, SYMMETRY, AND SEXUAL SELECTION IN THE HOUSEFLY, <i>MUSCA DOMESTICA </i> . Evolution; International Journal of Organic Evolution, 1999, 53, 527-534.	2.3	21
214	Bumblebee Pupae Contain High Levels of Aluminium. PLoS ONE, 2015, 10, e0127665.	2.5	21
215	Bergmann's Body Size Rule Operates in Facultatively Endothermic Insects: Evidence from a Complex of Cryptic Bumblebee Species. PLoS ONE, 2016, 11, e0163307.	2.5	21
216	Evaluating competition for forage plants between honey bees and wild bees in Denmark. PLoS ONE, 2021, 16, e0250056.	2.5	21

#	Article	IF	CITATIONS
217	Effect of Tinopal LPW on the Insecticidal Properties and Genetic Stability of the Nucleopolyhedrovirus of Spodoptera exigua (Lepidoptera: Noctuidae). Journal of Economic Entomology, 2003, 96, 1668-1674.	1.8	20
218	Effect of Tinopal LPW on the Insecticidal Properties and Genetic Stability of the Nucleopolyhedrovirus of <i>Spodoptera exigua</i> (Lepidoptera: Noctuidae). Journal of Economic Entomology, 2003, 96, 1668-1674.	1.8	20
219	The use of off-farm habitats by foraging bumblebees in agricultural landscapes: implications for conservation management. Apidologie, 2012, 43, 113-127.	2.0	20
220	Effects of Optical Brighteners Used in Biopesticide Formulations on the Behavior of Pollinators. Biological Control, 2000, 19, 232-236.	3.0	19
221	Overwintering populations of beetle larvae (Coleoptera) in cereal fields and their contribution to adult populations in the spring. Pedobiologia, 2001, 45, 84-95.	1.2	19
222	Evaluation of (Z)-9-tricosene baited targets for control of the housefly (Musca domestica) in outdoor situations. Journal of Applied Entomology, 2004, 128, 478-482.	1.8	19
223	Worker drift and egg dumping by queens in wild Bombus terrestris colonies. Behavioral Ecology and Sociobiology, 2013, 67, 621-627.	1.4	19
224	Sown mini-meadows increase pollinator diversity in gardens. Journal of Insect Conservation, 2022, 26, 299-314.	1.4	19
225	An evaluation of (Z)-9-tricosene and food odours for attracting house flies, Musca domestica, to baited targets in deep-pit poultry units. Entomologia Experimentalis Et Applicata, 1998, 89, 183-192.	1.4	18
226	Consequences of Interspecific Competition on the Virulence and Genetic Composition of a Nucleopolyhedrovirus in Spodoptera frugiperda Larvae Parasitized by Chelonus insularis. Biocontrol Science and Technology, 2001, 11, 649-662.	1.3	18
227	Field Evaluation of Potential of Alarm Pheromone Compounds to Enhance Baits for Control of Grass-Cutting Ants (Hymenoptera: Formicidae). Journal of Economic Entomology, 2002, 95, 537-543.	1.8	18
228	Effects of optical brighteners included in biopesticide formulations on the growth of crops. Agriculture, Ecosystems and Environment, 2003, 95, 235-240.	5.3	18
229	Identifying agricultural pesticides that may pose a risk for birds. PeerJ, 2020, 8, e9526.	2.0	18
230	Paternal investment in relation to size in the deathwatch beetle,Xestobium rufovillosum (Coleoptera:) Tj ETQq0 C 539-547.	0 rgBT /C 0.7	verlock 10 T 17
231	Aggregations of maleBombus muscorum(Hymenoptera: Apidae) at mature nests. Incestuous brothers or amorous suitors?. Apidologie, 2007, 38, 518-524.	2.0	17
232	Nondestructive <scp>DNA</scp> sampling from bumblebee faeces. Molecular Ecology Resources, 2013, 13, 225-229.	4.8	17
233	Revealing the hidden niches of cryptic bumblebees in Great Britain: Implications for conservation. Biological Conservation, 2015, 182, 126-133.	4.1	17
234	Anthropogenic influences on bee foraging. Science, 2022, 375, 970-972.	12.6	17

#	Article	IF	CITATIONS
235	Visual responses of Musca domestica to pheromone impregnated targets in poultry units. Medical and Veterinary Entomology, 1999, 13, 132-138.	1.5	16
236	The use of heterospecific scent marks by the sweat bee Halictus aerarius. Die Naturwissenschaften, 2007, 94, 1021-1024.	1.6	16
237	Forage use and niche partitioning by non-native bumblebees in New Zealand: implications for the conservation of their populations of origin. Journal of Insect Conservation, 2010, 14, 607-615.	1.4	16
238	The trade-off between agriculture and biodiversity in marginal areas: Can crofting and bumblebee conservation be reconciled?. Ecological Economics, 2011, 70, 1162-1169.	5.7	16
239	Commercial bumble bees on soft fruit farms collect pollen mainly from wildflowers rather than the target crops. Journal of Apicultural Research, 2014, 53, 404-407.	1.5	16
240	Companion planting to attract pollinators increases the yield and quality of strawberry fruit in gardens and allotments. Ecological Entomology, 2020, 45, 1025-1034.	2.2	16
241	Assessing the efficacy of artificial domiciles for bumblebees. Journal for Nature Conservation, 2011, 19, 154-160.	1.8	15
242	Pesticides and bees: Ecological-economic modelling of bee populations on farmland. Ecological Modelling, 2017, 360, 53-62.	2.5	15
243	Evaluating the role of ecological isolation in maintaining the species boundary between Silene dioica and S. latifolia. Plant Ecology, 2009, 205, 201-211.	1.6	14
244	Mark recapture estimates of dispersal ability and observations on the territorial behaviour of the rare hoverfly, Hammerschmidtia ferruginea (Diptera, Syrphidae). Journal of Insect Conservation, 2014, 18, 179-188.	1.4	14
245	Effects of chronic exposure to thiamethoxam on larvae of the hoverfly <i>Eristalis tenax</i> (Diptera,) Tj ETQq1 1	0.784314 2.0	rgβT /Overlo
246	The evolutionary significance of bimodal emergence in the butterfly, Maniola jurtina (Lepidoptera:) Tj ETQq0 0 0	rgBT /Ove 1.6	rlock 10 Tf 50
247	Delineating species for conservation using mitochondrial sequence data: the taxonomic status of two problematic Bombus species (Hymenoptera: Apidae). Journal of Insect Conservation, 2005, 9, 75-83.	1.4	13
248	Genetic variation and population decline of an endangered hoverfly Blera fallax (Diptera: Syrphidae). Conservation Genetics, 2012, 13, 1283-1291.	1.5	13
249	Effect of parasitism on a nucleopolyhedrovirus amplified inSpodoptera frugiperdalarvae parasitized byCampoletis sonorensis. Entomologia Experimentalis Et Applicata, 2000, 97, 257-264.	1.4	12
250	The lesser wanderer butterfly, Danaus petilia (Stoll 1790) stat. rev. (Lepidoptera: Danainae), reinstated as a species. Australian Journal of Entomology, 2005, 44, 6-14.	1.1	12
251	Effects of a neonicotinoid pesticide on honey bee colonies: a response to the field study by Pilling et al. (2013). Environmental Sciences Europe, 2015, 27, 28.	5.5	12
252	Pesticides, Corporate Irresponsibility, and the Fate of Our Planet. One Earth, 2020, 2, 302-305.	6.8	12

#	Article	IF	CITATIONS
253	Long-Term Studies of the medionigra Polymorphism in the Moth Panaxia dominula: A Critique. Oikos, 1997, 80, 613.	2.7	11
254	The use of alarm pheromones to enhance bait harvest by grass-cutting ants. Bulletin of Entomological Research, 2002, 92, 213-218.	1.0	11
255	A modular system for trapping and mass-marking bumblebees: applications for studying food choice and foraging range. Apidologie, 2006, 37, 341-350.	2.0	11
256	Restoration and management of machair grassland for the conservation of bumblebees. Journal of Insect Conservation, 2013, 17, 491-502.	1.4	11
257	Genetic diversity and parasite prevalence in two species of bumblebee. Journal of Insect Conservation, 2014, 18, 667-673.	1.4	11
258	Causes of colony mortality in bumblebees. Animal Conservation, 2018, 21, 45-53.	2.9	11
259	Can novel seed mixes provide a more diverse, abundant, earlier, and longer-lasting floral resource for bees than current mixes?. Basic and Applied Ecology, 2022, 60, 34-47.	2.7	11
260	Hybrid queen butterflies from the cross Danaus chrysippus (L.)Â×ÂD. gilippus (Cramer):confirmation of species status for the parents and further support for Haldane's Rule. Biological Journal of the Linnean Society, 2002, 76, 535-544.	1.6	10
261	Keeping bees in their place: impacts of bees outside their native range. Bee World, 2004, 85, 45-46.	0.8	10
262	Neonicotinoids and bees: What's all the buzz?. Significance, 2013, 10, 6-11.	0.4	10
263	Luring houseflies (<i>Musca domestica</i>) to traps: do cuticular hydrocarbons and visual cues increase catch?. Medical and Veterinary Entomology, 2009, 23, 26-33.	1.5	9
264	Qualifying pollinator decline evidence—Response. Science, 2015, 348, 982-982.	12.6	9
265	Growth, development, and lifeâ€history strategies in an unpredictable environment: case study of a rare hoverfly <i><scp>B</scp>lera fallax</i> (<scp>D</scp> iptera, <scp>S</scp> yrphidae). Ecological Entomology, 2016, 41, 85-95.	2.2	9
266	Evidence for alloethism in stingless bees (Meliponinae). Apidologie, 2005, 36, 411-412.	2.0	9
267	Entomology: The bee-all and end-all. Nature, 2015, 521, S57-S59.	27.8	8
268	From pastures to forests: Changes in Mediterranean wild bee communities after rural land abandonment. Insect Conservation and Diversity, 2022, 15, 325-336.	3.0	8
269	Size, Symmetry, and Sexual Selection in the Housefly, Musca domestica. Evolution; International Journal of Organic Evolution, 1999, 53, 527.	2.3	7
270	Relocation risky for bumblebee colonies. Science, 2015, 350, 286-287.	12.6	7

#	Article	IF	CITATIONS
271	The conservation of bumble bees. Bee World, 2003, 84, 105-106.	0.8	6
272	Evidence for hilltopping in bumblebees?. Ecological Entomology, 2011, 36, 560-563.	2.2	6
273	Effect of Temperature on the Expression of the Medionigra Phenotype of the Moth Panaxia dominula (Lepidoptera: Arctiidae). Oikos, 1994, 71, 107.	2.7	5
274	Mitochondrial DNA Clocks and the Phylogeny of Danaus Butterflies. International Journal of Tropical Insect Science, 2003, 23, 309-315.	1.0	5
275	Trialling techniques for rearing long-tongued bumblebees under laboratory conditions. Apidologie, 2020, 51, 254-266.	2.0	5
276	Effects of chronic exposure to clothianidin on the earthworm <i>Lumbricus terrestris</i> . PeerJ, 2017, 5, e3177.	2.0	5
277	Field evidence of UK wild bird exposure to fludioxonil and extrapolation to other pesticides used as seed treatments. Environmental Science and Pollution Research, 2022, 29, 22151-22162.	5.3	5
278	Molecular evidence for a recent founder event in the UK populations of the Adonis blue butterfly (Polyommatus bellargus). Journal of Insect Conservation, 2008, 12, 147-153.	1.4	4
279	Response to Comment on "Neonicotinoid Residues in Wildflowers, A Potential Route of Chronic Exposure for Bees― Environmental Science & Technology, 2016, 50, 1630-1631.	10.0	4
280	Population assessment and foraging ecology of nest aggregations of the rare solitary bee, Eucera longicornis at Gatwick Airport, and implications for their management. Journal of Insect Conservation, 2020, 24, 947-960.	1.4	4
281	Novel nectar robbing negatively affects reproduction in <i>Digitalis purpurea</i> . Ecology and Evolution, 2021, 11, 13455-13463.	1.9	4
282	Environmental versus genetic influences on fluctuating asymmetry in the house fly, Musca domestica. Biological Journal of the Linnean Society, 2000, 70, 403-413.	1.6	4
283	Why Studies of the Medionigra Polymorphism in Panaxia dominula Do Not Provide Evidence for Natural Selection. Oikos, 1999, 87, 181.	2.7	3
284	Population dynamics of the invasive weed <i>Lupinus arboreus</i> in Tasmania, and interactions with two nonâ€native pollinators. Weed Research, 2012, 52, 535-541.	1.7	3
285	Polymorphic microsatellite loci for the endangered pine hoverfly Blera fallax (Diptera: Syrphidae). Conservation Genetics Resources, 2012, 4, 117-120.	0.8	3
286	The evolutionary significance of bimodal emergence in the butterfly, Maniola jurtina (Lepidoptera:) Tj ETQq0 0 0	rgBT /Ove 1.6	rlogk 10 Tf 50
287	Variation in the genitalia of the butterfly Maniola jurtina (Lepidoptera: Satyrinae). Zoological Journal of the Linnean Society, 1993, 107, 65-71.	2.3	3

Investigating the Foraging, Guarding and Drifting Behaviors of Commercial Bombus terrestris.
Journal of Insect Behavior, 2021, 34, 334-345.
0.7 3

#	Article	IF	CITATIONS
289	Population assessment and foraging ecology of the rare solitary bee Anthophora retusa at Seaford Head Nature reserve. Journal of Insect Conservation, 2021, 25, 49-63.	1.4	2
290	Yearâ€round flea treatment is not required. Veterinary Record, 2021, 188, 77-78.	0.3	2
291	Effects of imidacloprid on survival and nest development in the neo-tropical bumblebee Bombus ephippiatus. Apidologie, 2022, 53, .	2.0	2
292	Stinging risk and sting pain of the ivy bee, Colletes hederae. Journal of Apicultural Research, 2020, 59, 223-231.	1.5	1
293	Phenology of the specialist bee Colletes hederae and its dependence on Hedera helix L. in comparison to a generalist, Apis mellifera. Arthropod-Plant Interactions, 2021, 15, 183-195.	1.1	1
294	Foraging Range and the Spatial Distribution of Worker Bumble Bees. Contemporary Topics in Entomology Series, 2009, , 97-111.	0.3	1
295	Interspecific differences in response to novel landmarks in bumblebees (Bombus sp.). Apidologie, 2004, 35, 619-622.	2.0	0
296	A vote for plan bee. New Scientist, 2013, 218, 26-27.	0.0	0
297	Give bees a chance. New Scientist, 2013, 217, 29.	0.0	0
298	Sowing confusion. New Scientist, 2015, 227, 24-25.	0.0	0
299	<i>In response</i> : Current evidence and implications—An academic perspective. Environmental Toxicology and Chemistry, 2015, 34, 1454-1456.	4.3	0
300	Bumble Bees (Bombus). , 2021, , 146-149.		0
301	Imidacloprid contamination risk in marine environment. Veterinary Record, 2021, 189, 292-293.	0.3	0
302	Bumble Bees (Bombus). , 2019, , 1-4.		0
303	Bees and Medicinal Plants – Prospective for Entomovectoring. Progress in Biological Control, 2020, , 231-248.	0.5	0
304	Martin Whitehead and Dave Goulson, coauthors of the perkins paper, respond. Veterinary Record, 2020, 187, 496-497.	0.3	0