Anne Spurkland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9298316/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature, 2011, 476, 214-219.	27.8	2,400
2	Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nature Genetics, 2013, 45, 1353-1360.	21.4	1,213
3	Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science, 2019, 365, .	12.6	710
4	Class II HLA interactions modulate genetic risk for multiple sclerosis. Nature Genetics, 2015, 47, 1107-1113.	21.4	312
5	A High-Density Screen for Linkage in Multiple Sclerosis. American Journal of Human Genetics, 2005, 77, 454-467.	6.2	268
6	VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. EMBO Journal, 2005, 24, 2342-2353.	7.8	243
7	VEGFR2 induces c-Src signaling and vascular permeability in vivo via the adaptor protein TSAd. Journal of Experimental Medicine, 2012, 209, 1363-1377.	8.5	194
8	Network-Based Multiple Sclerosis Pathway Analysis with GWAS Data from 15,000 Cases and 30,000 Controls. American Journal of Human Genetics, 2013, 92, 854-865.	6.2	164
9	Distribution of HLAâ€ÐRB1, â€ÐQA1 and â€ÐQB1 alleles and DQA1â€ÐQB1 genotypes among Norwegian patien with insulinâ€dependent diabetes mellitus. Tissue Antigens, 1991, 37, 105-111.	ts 1.0	153
10	The expanding genetic overlap between multiple sclerosis and type I diabetes. Genes and Immunity, 2009, 10, 11-14.	4.1	153
11	HLA class II haplotypes in primary sclerosing cholangitis patients from five European populations. Tissue Antigens, 1999, 53, 459-469.	1.0	151
12	CTLA4 promoter and exon 1 dimorphisms in multiple sclerosiso. Tissue Antigens, 1999, 53, 106-110.	1.0	150
13	The amino acid at position 57 of the HLA-DQB chain and susceptibility to develop insulin-dependent diabetes mellitus. Human Immunology, 1989, 26, 215-225.	2.4	139
14	HLA-DQA1 and HLA-DQB1 genes may jointly determine susceptibility to develop multiple sclerosis. Human Immunology, 1991, 30, 69-75.	2.4	138
15	Genes in the HLA class I region may contribute to the HLA class II-associated genetic susceptibility to multiple sclerosis. Tissue Antigens, 2004, 63, 237-247.	1.0	130
16	Distribution of HLA class II alleles among Norwegian caucasians. Human Immunology, 1990, 29, 275-281.	2.4	120
17	Replication analysis identifies TYK2 as a multiple sclerosis susceptibility factor. European Journal of Human Genetics, 2009, 17, 1309-1313.	2.8	115
18	Low-Frequency and Rare-Coding Variation Contributes to Multiple Sclerosis Risk. Cell, 2018, 175, 1679-1687.e7.	28.9	115

#	Article	IF	CITATIONS
19	Identification of lectin-like receptors expressed by antigen presenting cells and neutrophils and their mapping to a novel gene complex. Immunogenetics, 2004, 56, 506-517.	2.4	114
20	HLA-DR and -DQ genotypes of celiac disease patients serologically typed to be non-DR3 or non-DR5/7. Human Immunology, 1992, 35, 188-192.	2.4	112
21	Association of the tumour necrosis factor alpha -308 but not the interleukin 10 -627 promoter polymorphism with genetic susceptibility to primary sclerosing cholangitis. Gut, 2001, 49, 288-294.	12.1	97
22	Coordinated Expression of DNAM-1 and LFA-1 in Educated NK Cells. Journal of Immunology, 2015, 194, 4518-4527.	0.8	81
23	Cholangiocarcinoma in primary sclerosing cholangitis: K-ras mutations and Tp53 dysfunction are implicated in the neoplastic development. Journal of Hepatology, 2000, 32, 374-380.	3.7	79
24	Primary sclerosing cholangitis is associated to an extended B8-DR3 haplotype including particular MICA and MICB alleles. Hepatology, 2001, 34, 625-630.	7.3	79
25	p21â€ <i>ras</i> â€peptideâ€specific Tâ€cell responses in a patient with colorectal cancer. CD4 ⁺ and CD8 ⁺ T cells recognize a peptide corresponding to a common mutation (13Gly → Asp). International Journal of Cancer, 1994, 56, 40-45.	5.1	79
26	A genome-wide screen for linkage in Nordic sib-pairs with multiple sclerosis. Genes and Immunity, 2002, 3, 279-285.	4.1	73
27	Hla class ii alleles and heterogeneity of juvenile rheumatoid arthritis.drb1*0101 may define a novel subset of the disease. Arthritis and Rheumatism, 1993, 36, 465-472.	6.7	70
28	IL12A, MPHOSPH9/CDK2AP1 and RGS1 are novel multiple sclerosis susceptibility loci. Genes and Immunity, 2010, 11, 397-405.	4.1	70
29	The impact of HLA-A and -DRB1 on age at onset, disease course and severity in Scandinavian multiple sclerosis patients. European Journal of Neurology, 2007, 14, 835-840.	3.3	68
30	Susceptibility to develop celiac disease is primarily associated with HLA-DQ alleles. Human Immunology, 1990, 29, 157-165.	2.4	67
31	A "Candidate-Interactome―Aggregate Analysis of Genome-Wide Association Data in Multiple Sclerosis. PLoS ONE, 2013, 8, e63300.	2.5	66
32	Molecular Cloning of a T Cell-specific Adapter Protein (TSAd) Containing an Src Homology (SH) 2 Domain and Putative SH3 and Phosphotyrosine Binding Sites. Journal of Biological Chemistry, 1998, 273, 4539-4546.	3.4	63
33	Memory T cells of a patient with follicular thyroid carcinoma recognize peptides derived from mutated p21 ras (Gin → Leu61). International Immunology, 1992, 4, 1331-1337.	4.0	60
34	A rare variant of the TYK2 gene is confirmed to be associated with multiple sclerosis. European Journal of Human Genetics, 2010, 18, 502-504.	2.8	60
35	HLA matching of unrelated bone marrow transplant pairs: Direct sequencing of <i>in vitro</i> amplified HLAâ€DRB1 and â€DQB1 genes using magnetic beads as solid support. Tissue Antigens, 1993, 41, 155-164.	1.0	58
36	Rheumatoid arthritis may be primarily associated with HLAâ€DR4 molecules sharing a particular sequence at residues 67–74. Tissue Antigens, 1990, 36, 235-240.	1.0	56

#	Article	IF	CITATIONS
37	Killer immunoglobulinâ€like receptor ligand HLAâ€Bw4 protects against multiple sclerosis. Annals of Neurology, 2009, 65, 658-666.	5.3	55
38	A Role for <i>VAV1</i> in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Science Translational Medicine, 2009, 1, 10ra21.	12.4	52
39	Cutting Edge: T Cell-Specific Adapter Protein Inhibits T Cell Activation by Modulating Lck Activity. Journal of Immunology, 2000, 165, 2927-2931.	0.8	50
40	Myasthenia gravis patients with thymus hyperplasia and myasthenia gravis patients with thymoma display different HLA associations. Tissue Antigens, 1991, 37, 90-93.	1.0	48
41	Association of matrix metalloproteinase-1 and -3 promoter polymorphisms with clinical subsets of Norwegian primary sclerosing cholangitis patients. Journal of Hepatology, 2004, 41, 209-214.	3.7	48
42	The T cell regulator gene SH2D2A contributes to the genetic susceptibility of multiple sclerosis. Genes and Immunity, 2001, 2, 263-268.	4.1	44
43	Primary sclerosing cholangitis is associated with extended HLA-DR3 and HLA-DR6 haplotypes. Tissue Antigens, 2007, 69, 161-169.	1.0	41
44	Demonstration of identical expanded clones within both CD8+ CD28+ and CD8+ CD28â^' T cell subsets HIV type 1-infected individuals. European Journal of Immunology, 1998, 28, 1738-1742.	in 2.9	40
45	Exploring the CLEC16A gene reveals a MS-associated variant with correlation to the relative expression of CLEC16A isoforms in thymus. Genes and Immunity, 2011, 12, 191-198.	4.1	40
46	The endothelial adaptor molecule TSAd is required for VEGF-induced angiogenic sprouting through junctional c-Src activation. Science Signaling, 2016, 9, ra72.	3.6	35
47	The multiple sclerosis susceptibility genes TAGAP and IL2RA are regulated by vitamin D in CD4+ T cells. Genes and Immunity, 2016, 17, 118-127.	4.1	35
48	Multiple sclerosis-associated single-nucleotide polymorphisms in CLEC16A correlate with reduced SOCS1 and DEXI expression in the thymus. Genes and Immunity, 2013, 14, 62-66.	4.1	33
49	Linkage disequilibrium screening for multiple sclerosis implicates JAG1 and POU2AF1 as susceptibility genes in Europeans. Journal of Neuroimmunology, 2006, 179, 108-116.	2.3	29
50	X chromosome inactivation in females with multiple sclerosis. European Journal of Neurology, 2007, 14, 1392-1396.	3.3	29
51	T cell epitopes encompassing the mutational hot spot position 61 of p21 ras. Promiscuity in ras peptide binding to HLA. European Journal of Immunology, 1994, 24, 410-414.	2.9	28
52	Molecular genetic studies of natives on Easter Island: evidence of an early European and Amerindian contribution to the Polynesian gene pool. Tissue Antigens, 2007, 69, 10-18.	1.0	28
53	Genetics in multiple sclerosis: past and future perspectives. Acta Neurologica Scandinavica, 2007, 115, 34-38.	2.1	28
54	Lack of association with the CD28/CTLA4/ICOS gene region among Norwegian multiple sclerosis patients. Journal of Neuroimmunology, 2005, 166, 197-201.	2.3	27

#	Article	IF	CITATIONS
55	Genetic association between juvenile rheumatoid arthritis and polymorphism in the SH2D2A gene. Genes and Immunity, 2004, 5, 310-312.	4.1	25
56	Modulation of Lck Function through Multisite Docking to T Cell-specific Adapter Protein. Journal of Biological Chemistry, 2008, 283, 21909-21919.	3.4	25
57	A STRONG IMPACT OF MATCHING FOR A LIMITED NUMBER OF HLA-DR ANTIGENS ON GRAFT SURVIVAL AND REJECTION EPISODES. Transplantation, 1998, 66, 523-528.	1.0	25
58	Concordance for disease course and age of onset in Scandinavian multiple sclerosis coaffected sib pairs. Multiple Sclerosis Journal, 2004, 10, 5-8.	3.0	24
59	NR1H3 p.Arg415Gln Is Not Associated to Multiple Sclerosis Risk. Neuron, 2016, 92, 333-335.	8.1	24
60	The C?terminus of T?cell-specific adapter protein (TSAd) is necessary for TSAd-mediated inhibition of Lck activity. European Journal of Immunology, 2005, 35, 1612-1620.	2.9	23
61	Lack of support for association between the KIF1B rs10492972[C] variant and multiple sclerosis. Nature Genetics, 2010, 42, 469-470.	21.4	23
62	SH2D2A Modulates T Cell Mediated Protection to a B Cell Derived Tumor in Transgenic Mice. PLoS ONE, 2012, 7, e48239.	2.5	23
63	Retinoic acid-induced IgG production in TLR-activated human primary B cells involves ULK1-mediated autophagy. Autophagy, 2015, 11, 460-471.	9.1	23
64	HLAâ€DRB1, â€DQA1, â€DQB1, â€DPA1 and â€DPB1 genes in Japanese multiple sclerosis patients. Tissue Antige 37, 171-173.	ns, 1991, 1.0	21
65	HLA profile of three ethnic groups living in the North-Western region of Russia. Tissue Antigens, 2002, 59, 38-43.	1.0	21
66	The kinase Itk and the adaptor TSAd change the specificity of the kinase Lck in T cells by promoting the phosphorylation of Tyr ¹⁹² . Science Signaling, 2014, 7, ra118.	3.6	21
67	T Cell Specific Adapter Protein (TSAd) Interacts with Tec Kinase ITK to Promote CXCL12 Induced Migration of Human and Murine T Cells. PLoS ONE, 2010, 5, e9761.	2.5	20
68	Novel HLAâ€DR2 and â€DR3 haplotypes among Norwegian Caucasians. Tissue Antigens, 1991, 37, 165-167.	1.0	18
69	No linkage or association of the nitric oxide synthase genes to multiple sclerosis. Journal of Neuroimmunology, 2001, 119, 95-100.	2.3	18
70	Structure function analysis of SH2D2A isoforms expressed in T cells reveals a crucial role for the proline rich region encoded by SH2D2A exon 7. BMC Immunology, 2006, 7, 15.	2.2	18
71	Retinoic acid enhances the levels of IL-10 in TLR-stimulated B cells from patients with relapsing–remitting multiple sclerosis. Journal of Neuroimmunology, 2015, 278, 11-18.	2.3	18
72	No association of multiple sclerosis to alleles at the TAP2 locus. Human Immunology, 1994, 39, 299-301.	2.4	17

#	Article	IF	CITATIONS
73	The T cell receptor repertoire of CD8+ CD28â^' T lymphocytes is dominated by expanded clones that persist over time. Clinical and Experimental Immunology, 1999, 117, 298-303.	2.6	17
74	Polarity of CD4+ T cells towards the antigen presenting cell is regulated by the Lck adapter TSAd. Scientific Reports, 2018, 8, 13319.	3.3	17
75	Isolation and Characterization of a Human Pseudogene for the Regulatory Subunit Rlα of cAMP-Dependent Protein Kinases and Its Sublocalization on Chromosome 1. Genomics, 1993, 15, 591-597.	2.9	16
76	Multiple Sclerosis Risk Allele in CLEC16A Acts as an Expression Quantitative Trait Locus for CLEC16A and SOCS1 in CD4+ T Cells. PLoS ONE, 2015, 10, e0132957.	2.5	16
77	Two genome-wide linkage disequilibrium screens in Scandinavian multiple sclerosis patients. Journal of Neuroimmunology, 2003, 143, 101-106.	2.3	15
78	Transcriptional Activation of theSH2D2AGene Is Dependent on a Cyclic Adenosine 5′-Monophosphate-Responsive Element in the ProximalSH2D2APromoter. Journal of Immunology, 2004, 172, 6144-6151.	0.8	15
79	Expression of SH2D2A in T-cells is regulated both at the transcriptional and translational level. Molecular Immunology, 2008, 45, 2380-2390.	2.2	15
80	The SH2D2A gene and susceptibility to multiple sclerosis. Journal of Neuroimmunology, 2008, 197, 152-158.	2.3	14
81	T cell specific adaptor protein (TSAd) promotes interaction of Nck with Lck and SLP-76 in T cells. Cell Communication and Signaling, 2015, 13, 31.	6.5	14
82	Activation and Proliferation of CD8+ T Cells in Lymphoid Tissues of HIV-1-Infected Individuals in the Absence of the High-Affinity IL-2 Receptor. Journal of Acquired Immune Deficiency Syndromes, 1998, 19, 332-338.	0.3	13
83	cDNA cloning of a rat orthologue of SH2D2A encoding T-cell-specific adaptor protein (TSAd): expression in T and NK cells. Immunogenetics, 2004, 56, 338-42.	2.4	12
84	Microchimerism in immune competent patients related to the leukocyte content of transfused red blood cell concentrates. Transfusion and Apheresis Science, 2004, 31, 173-180.	1.0	11
85	Adaptor proteins: Flexible and dynamic modulators of immune cell signalling. Scandinavian Journal of Immunology, 2020, 92, e12951.	2.7	10
86	Linkage disequilibrium between DPA1 and DPB1 alleles among Norwegian caucasoids and Japanese. Tissue Antigens, 1992, 40, 1-4.	1.0	9
87	Molecular analysis of the complementarity determining region 3 of the human T cell receptor β chain. Establishment of a reference panel of CDR3 lengths from phytohaemagglutinin activated lymphocytes. Journal of Immunological Methods, 1999, 223, 207-216.	1.4	9
88	Method for Avoiding PCR-Inhibiting Contaminants when Eluting DNA from Polyacrylamide Gels. BioTechniques, 2000, 29, 694-696.	1.8	9
89	No major effect of theCD28/CTLA4/ICOSgene region on susceptibility to primary sclerosing cholangitis. Scandinavian Journal of Gastroenterology, 2006, 41, 586-591.	1.5	9
90	The SH3 domains of the protein kinases ITK and LCK compete for adjacent sites on T cell–specific adapter protein. Journal of Biological Chemistry, 2019, 294, 15480-15494.	3.4	9

#	Article	IF	CITATIONS
91	A simple and efficient workflow for generation of knockâ€ i n mutations in Jurkat T cells using CRISPR/Cas9. Scandinavian Journal of Immunology, 2020, 91, e12862.	2.7	9
92	Genetic and Molecular Approaches to the Immunopathogenesis of Multiple Sclerosis: An Update. Current Molecular Medicine, 2009, 9, 591-611.	1.3	7
93	Mapping genes and pathways in autoimmune disease. Trends in Immunology, 2006, 27, 336-342.	6.8	6
94	Tyr192 Regulates Lymphocyte-Specific Tyrosine Kinase Activity in T Cells. Journal of Immunology, 2021, 207, 1128-1137.	0.8	6
95	Heterogeneity of T cells specific for a particular peptide/HLA-DQ complex. Human Immunology, 1994, 39, 61-68.	2.4	5
96	Concordance for disease course and age of onset in Scandinavian multiple sclerosis coaffected sib pairs. Multiple Sclerosis Journal, 2004, 10, 5-8.	3.0	5
97	Expression of the Tâ€cellâ€specific adapter protein in oral epithelium. European Journal of Oral Sciences, 2010, 118, 159-167.	1.5	5
98	<scp>B</scp> â€cell tolerance to the <scp>B</scp> â€cell receptor variable regions. European Journal of Immunology, 2013, 43, 2577-2587.	2.9	5
99	Linkage analysis suggests a region of importance for multiple sclerosis in 3p14–13. Genes and Immunity, 2001, 2, 451-454.	4.1	4
100	Parent of origin in multiple sclerosis. Neurology, 2008, 71, 786-787.	1.1	4
101	Solubility of recombinant Src homology 2 domains expressed in E. coli can be predicted by TANGO. BMC Biotechnology, 2014, 14, 3.	3.3	4
102	Exploring the role of the multiple sclerosis susceptibility gene <i>CLEC16A</i> in T cells. Scandinavian Journal of Immunology, 2021, 94, e13050.	2.7	4
103	Expression of the T Cellâ€specific Adapter Protein in Human Tissues. Scandinavian Journal of Immunology, 2014, 80, 169-179.	2.7	3
104	Reduced MCMV Δm157 viral clearance in the absence of TSAd. Scientific Reports, 2015, 5, 9219.	3.3	3
105	Coding region polymorphisms in T cell signal transduction genes. Prevalence and association to development of multiple sclerosis. Journal of Neuroimmunology, 2006, 177, 40-45.	2.3	2
106	In vitro analysis of antigen induced T cell-monocyte conjugates by imaging flow cytometry. Journal of Immunological Methods, 2018, 460, 93-100.	1.4	2
107	Improving assessment quality in professional higher education: Could external peer review of items be the answer?. Cogent Medicine, 2019, 6, 1659746.	0.7	1
108	Tumour Necrosis Factor Receptor Superfamily Member 6 Gene Mutation Detection by Denaturing High-Performance Liquid Chromatography. Scandinavian Journal of Immunology, 2004, 59, 496-503.	2.7	0

#	Article	IF	CITATIONS
109	A follow-up study of Nordic multiple sclerosis candidate gene regions. Multiple Sclerosis Journal, 2007, 13, 584-589.	3.0	0
110	Erik Thorsby (1938–2021). Immunogenetics, 2021, 73, 203-205.	2.4	0
111	VEGFR2 induces c-Src signaling and vascular permeability in vivo via the adaptor protein TSAd. Journal of Cell Biology, 2012, 197, i10-i10.	5.2	0