

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9298085/publications.pdf Version: 2024-02-01

<u>7171 Yu</u>

#	Article	IF	CITATIONS
1	Facile access to versatile fluorescent carbon dots toward light-emitting diodes. Chemical Communications, 2012, 48, 2692.	2.2	463
2	Tough Supramolecular Polymer Networks with Extreme Stretchability and Fast Roomâ€Temperature Selfâ€Healing. Advanced Materials, 2017, 29, 1605325.	11.1	347
3	Versatile Bifunctional Magneticâ€Fluorescent Responsive Janus Supraballs Towards the Flexible Bead Display. Advanced Materials, 2011, 23, 2915-2919.	11.1	335
4	Biomimetic Supramolecular Polymer Networks Exhibiting both Toughness and Selfâ€Recovery. Advanced Materials, 2017, 29, 1604951.	11.1	185
5	Cucurbit[<i>n</i>]uril-Based Microcapsules Self-Assembled within Microfluidic Droplets: A Versatile Approach for Supramolecular Architectures and Materials. Accounts of Chemical Research, 2017, 50, 208-217.	7.6	181
6	Triphase Microfluidicâ€Directed Selfâ€Assembly: Anisotropic Colloidal Photonic Crystal Supraparticles and Multicolor Patterns Made Easy. Angewandte Chemie - International Edition, 2012, 51, 2375-2378.	7.2	177
7	Highâ€Performance Wearable Microâ€Supercapacitors Based on Microfluidicâ€Directed Nitrogenâ€Doped Graphene Fiber Electrodes. Advanced Functional Materials, 2017, 27, 1702493.	7.8	144
8	Bioinspired supramolecular fibers drawn from a multiphase self-assembled hydrogel. Proceedings of the United States of America, 2017, 114, 8163-8168.	3.3	111
9	Large-scale colloidal films with robust structural colors. Materials Horizons, 2019, 6, 90-96.	6.4	106
10	Interfacial assembly of dendritic microcapsules with host–guest chemistry. Nature Communications, 2014, 5, 5772.	5.8	101
11	A Covalent Black Phosphorus/Metal–Organic Framework Heteroâ€nanostructure for Highâ€Performance Flexible Supercapacitors. Angewandte Chemie - International Edition, 2021, 60, 10366-10374.	7.2	82
12	Supramolecular hydrogel microcapsules via cucurbit[8]uril host–guest interactions with triggered and UV-controlled molecular permeability. Chemical Science, 2015, 6, 4929-4933.	3.7	77
13	Unexpected stability of aqueous dispersions of raspberry-like colloids. Nature Communications, 2018, 9, 3614.	5.8	57
14	Uniform fluorescent photonic crystal supraballs generated from nanocrystal-loaded hydrogel microspheres. Journal of Materials Chemistry, 2010, 20, 6182.	6.7	52
15	Supramolecular Nested Microbeads as Building Blocks for Macroscopic Selfâ€Healing Scaffolds. Angewandte Chemie - International Edition, 2018, 57, 3079-3083.	7.2	50
16	Film characterization of poly(styrene-butylacrylate-acrylic acid)–silica nanocomposite. Journal of Colloid and Interface Science, 2008, 322, 51-58.	5.0	46
17	Supramolecular colloidosomes: fabrication, characterisation and triggered release of cargo. Chemical Communications, 2014, 50, 7048-7051.	2.2	45
18	Electrostatically Directed Selfâ€Assembly of Ultrathin Supramolecular Polymer Microcapsules. Advanced Functional Materials, 2015, 25, 4091-4100.	7.8	44

Ziyi Yu

#	Article	IF	CITATIONS
19	Spherical Colloidal Photonic Crystals with Selected Lattice Plane Exposure and Enhanced Color Saturation for Dynamic Optical Displays. ACS Applied Materials & Interfaces, 2019, 11, 42629-42634.	4.0	43
20	Label-Free Analysis and Sorting of Microalgae and Cyanobacteria in Microdroplets by Intrinsic Chlorophyll Fluorescence for the Identification of Fast Growing Strains. Analytical Chemistry, 2016, 88, 10445-10451.	3.2	42
21	Breath figure lithography for the construction of a hierarchical structure in sponges and their applications to oil/water separation. Journal of Materials Chemistry A, 2017, 5, 16369-16375.	5.2	42
22	Granular hydrogels for 3D bioprinting applications. View, 2020, 1, 20200060.	2.7	39
23	Microfluidic Droplet-Facilitated Hierarchical Assembly for Dual Cargo Loading and Synergistic Delivery. ACS Applied Materials & amp; Interfaces, 2016, 8, 8811-8820.	4.0	33
24	A hydrogel microsphere-based sensor for dual and highly selective detection of Al3+ and Hg2+. Sensors and Actuators B: Chemical, 2020, 321, 128490.	4.0	33
25	Spatially Controlled Supramolecular Polymerization of Peptide Nanotubes by Microfluidics. Angewandte Chemie - International Edition, 2020, 59, 6902-6908.	7.2	32
26	Bioinspired 3D Printing of Functional Materials by Harnessing Enzymeâ€Induced Biomineralization. Advanced Functional Materials, 2022, 32, .	7.8	32
27	Patterned Arrays of Supramolecular Microcapsules. Advanced Functional Materials, 2018, 28, 1800550.	7.8	31
28	3D Printed Biocatalytic Living Materials with Dualâ€Network Reinforced Bioinks. Small, 2022, 18, e2104820.	5.2	29
29	Bioinspired hydrogel microfibres colour-encoded with colloidal crystals. Materials Horizons, 2019, 6, 1938-1943.	6.4	25
30	Droplet-based microfluidic analysis and screening of single plant cells. PLoS ONE, 2018, 13, e0196810.	1.1	23
31	Viscoelastic Hydrogel Microfibers Exploiting Cucurbit[8]uril Host–Guest Chemistry and Microfluidics. ACS Applied Materials & Interfaces, 2020, 12, 17929-17935.	4.0	23
32	Photonic Plasticines with Uniform Structural Colors, High Processability, and Selfâ€Healing Properties. Small, 2021, 17, e2007426.	5.2	23
33	Droplet-based microfluidic screening and sorting of microalgal populations for strain engineering applications. Algal Research, 2021, 56, 102293.	2.4	23
34	Controllable Fabrication of Nanocrystal-Loaded Photonic Crystals with a Polymerizable Macromonomer via the CCTP Technique. Langmuir, 2010, 26, 10657-10662.	1.6	22
35	Dual-responsive supramolecular colloidal microcapsules from cucurbit[8]uril molecular recognition in microfluidic droplets. Polymer Chemistry, 2016, 7, 5996-6002.	1.9	22
36	Structural Design of Robust and Biocompatible Photonic Hydrogels from an In Situ Cross-Linked Hyperbranched Polymer System. Chemistry of Materials, 2018, 30, 6091-6098.	3.2	20

Ziyi Yu

#	Article	IF	CITATIONS
37	Acoustic-Controlled Bubble Generation and Fabrication of 3D Polymer Porous Materials. ACS Applied Materials & Interfaces, 2020, 12, 22318-22326.	4.0	20
38	A facile pathway for the fast synthesis of colloidal crystalâ€loaded hydrogels via frontal polymerization. Journal of Polymer Science Part A, 2011, 49, 3121-3128.	2.5	18
39	A new design for living cell-based biosensors: Microgels with a selectively permeable shell that can harbor bacterial species. Sensors and Actuators B: Chemical, 2021, 334, 129648.	4.0	18
40	Focused surface acoustic waves induced microdroplets generation and its application for microgels. Sensors and Actuators B: Chemical, 2019, 291, 1-8.	4.0	15
41	Droplet microfluidics on analysis of pathogenic microbes for wastewater-based epidemiology. TrAC - Trends in Analytical Chemistry, 2021, 143, 116333.	5.8	14
42	Fabrication of quantum dot-based photonic materials from small to large via interfacial self-assembly. Journal of Materials Chemistry, 2011, 21, 8496.	6.7	13
43	Injectable Granular Hydrogels as Colloidal Assembly Microreactors for Customized Structural Colored Objects. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
44	Microfluidic spinning-induced heterotypic bead-on-string fibers for dual-cargo release and wound healing. Journal of Materials Chemistry B, 2021, 9, 2727-2735.	2.9	12
45	Displacement Induced Off–On Fluorescent Biosensor Targeting IDO1 Activity in Live Cells. Analytical Chemistry, 2019, 91, 14943-14950.	3.2	11
46	Spatially Controlled Supramolecular Polymerization of Peptide Nanotubes by Microfluidics. Angewandte Chemie, 2020, 132, 6969-6975.	1.6	11
47	Biocatalytic living materials built by compartmentalized microorganisms in annealable granular hydrogels. Chemical Engineering Journal, 2022, 445, 136822.	6.6	11
48	Surface-immobilised micelles via cucurbit[8]uril-rotaxanes for solvent-induced burst release. Chemical Communications, 2015, 51, 4858-4860.	2.2	10
49	Encodable multiple-fluorescence CdTe@carbon nanoparticles from nanocrystal/colloidal crystal guest–host ensembles. Nanotechnology, 2013, 24, 135602.	1.3	9
50	Supracolloidal Architectures Selfâ€Assembled in Microdroplets. Chemistry - A European Journal, 2015, 21, 15516-15519.	1.7	9
51	Construction of core–shell microcapsules <i>via</i> focused surface acoustic wave microfluidics. Lab on A Chip, 2020, 20, 3104-3108.	3.1	9
52	Microdroplets confined assembly of opal composites in dynamic borate ester-based networks. Chemical Engineering Journal, 2021, 426, 127581.	6.6	9
53	Biaxially Morphing Droplet Shape by an Active Surface. Advanced Materials Interfaces, 2021, 8, 2001199.	1.9	9
54	Cucurbit[7]uril-based high-performance catalytic microreactors. Nanoscale, 2018, 10, 14835-14839.	2.8	7

Ziyi Yu

#	Article	IF	CITATIONS
55	Supramolecular Nested Microbeads as Building Blocks for Macroscopic Selfâ€Healing Scaffolds. Angewandte Chemie, 2018, 130, 3133-3137.	1.6	6
56	Fluorescent labeling based acoustofluidic screening of Japanese encephalitis virus. Sensors and Actuators B: Chemical, 2020, 322, 128649.	4.0	6
57	Sessile Microdropletâ€Based Writing Board for Patterning of Structural Colored Hydrogels. Advanced Materials Interfaces, 2021, 8, 2001201.	1.9	6
58	Single-Cell Analysis Identifies Thymic Maturation Delay in Growth-Restricted Neonatal Mice. Frontiers in Immunology, 2018, 9, 2523.	2.2	4
59	Microfluidic encapsulation of supramolecular optical chemosensors for high-throughput analysis and screening. Sensors and Actuators B: Chemical, 2022, 355, 131302.	4.0	3
60	Electrochromic performances and photoluminescence characteristics of versatile N-vinylimidazole-based hybrid hydrogels. Colloid and Polymer Science, 2012, 290, 371-377.	1.0	2
61	Injectable Granular Hydrogels as Colloidal Assembly Microreactors for Customized Structural Colored Objects. Angewandte Chemie, 2022, 134, .	1.6	1
62	Wearable Devices: Highâ€Performance Wearable Microâ€Supercapacitors Based on Microfluidicâ€Directed Nitrogenâ€Doped Graphene Fiber Electrodes (Adv. Funct. Mater. 36/2017). Advanced Functional Materials, 2017, 27, .	7.8	0