Ilya Korolkov

List of Publications by Citations

Source: https://exaly.com/author-pdf/9297369/ilya-korolkov-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

106 18 28 1,137 h-index g-index citations papers 1,401 110 2.3 4.52 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
106	Formation of Inert Bi2Se3(0001) Cleaved Surface. Crystal Growth and Design, 2011, 11, 5507-5514	3.5	97
105	Synthesis of Y3Al5O12:Ce3+ phosphor in the Y2O3Al metal@eO2 ternary system. <i>Journal of Materials Science</i> , 2017 , 52, 13033-13039	4.3	69
104	Preparation of PET track-etched membranes for membrane distillation by photo-induced graft polymerization. <i>Materials Chemistry and Physics</i> , 2018 , 205, 55-63	4.4	44
103	Antimicrobial potential of ZnO, TiO2 and SiO2 nanoparticles in protecting building materials from biodegradation. <i>International Biodeterioration and Biodegradation</i> , 2020 , 146, 104821	4.8	43
102	Polymeric iodobismuthates {[Bi3I10]} and {[BiI4]} with N-heterocyclic cations: promising perovskite-like photoactive materials for electronic devices. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 5957-5966	13	40
101	The effect of oxidation pretreatment of polymer template on the formation and catalytic activity of Au/PET membrane composites. <i>Chemical Papers</i> , 2017 , 71, 2353-2358	1.9	34
100	A Novel Family of Polyiodo-Bromoantimonate(III) Complexes: Cation-Driven Self-Assembly of Photoconductive Metal-Polyhalide Frameworks. <i>Chemistry - A European Journal</i> , 2018 , 24, 14707-14711	4.8	33
99	Unprecedented bistability domain and interplay between spin crossover and polymorphism in a mononuclear iron(II) complex. <i>Dalton Transactions</i> , 2014 , 43, 3906-10	4.3	31
98	Optical Properties of TiO2 Films Deposited by Reactive Electron Beam Sputtering. <i>Journal of Electronic Materials</i> , 2017 , 46, 6089-6095	1.9	30
97	Luminescent properties of 4,4-bipyridinium chlorobismuthate salt: Strong influence of solvation. <i>Inorganic Chemistry Communication</i> , 2015 , 54, 89-91	3.1	29
96	Binuclear Bi(III) halide complexes with 4,4?-ethylenepyridinium cations: luminescence tuning by reversible solvation. <i>New Journal of Chemistry</i> , 2015 , 39, 5529-5533	3.6	29
95	Bromobismuthates: Cation-induced structural diversity and Hirshfeld surface analysis of cation and Incompanies of Cation a	2.7	25
94	Halobismuthates with bis(pyridinium)alkane cations: Correlations in crystal structures and optical properties. <i>Inorganica Chimica Acta</i> , 2018 , 469, 32-37	2.7	24
93	Modification of PET ion track membranes for membrane distillation of low-level liquid radioactive wastes and salt solutions. <i>Separation and Purification Technology</i> , 2019 , 227, 115694	8.3	23
92	Syntheses of [Rh(NH3)5Cl][MCl6] (M = Re, Os, Ir) and Investigation of Their Thermolysis Products. Crystal Structure of [Rh(NH3)5Cl][OsCl6]. <i>Journal of Structural Chemistry</i> , 2002 , 43, 488-494	0.9	22
91	Prototypical iron(ii) complex with 4-amino-1,2,4-triazole reinvestigated: an unexpected impact of water on spin transition. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 4056-4068	3.6	20
90	Chlorobismuthates Trapping Dibromine: Formation of Two-Dimensional Supramolecular Polyhalide Networks with Br2 Linkers. <i>European Journal of Inorganic Chemistry</i> , 2017 , 2017, 4925-4929	2.3	20

(2014-2014)

Electronic Structure of Noncentrosymmetric &GeO2 with Oxygen Vacancy: Ab Initio Calculations and Comparison with Experiment. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 3644-3650	3.8	20	
A mononuclear iron(II) complex: cooperativity, kinetics and activation energy of the solvent-dependent spin transition. <i>Dalton Transactions</i> , 2016 , 45, 107-20	4.3	18	
Binuclear and polymeric bromobismuthate complexes: Crystal structures and thermal stability. <i>Polyhedron</i> , 2019 , 159, 318-322	2.7	18	
Formation of SnO and SnO2 phases during the annealing of SnO(x) films obtained by molecular beam epitaxy. <i>Applied Surface Science</i> , 2020 , 512, 145735	6.7	17	
1D and 2D Polybromotellurates(IV): Structural Studies and Thermal Stability. <i>European Journal of Inorganic Chemistry</i> , 2018 , 2018, 3264-3269	2.3	17	
Terbium oxide films grown by chemical vapor deposition from terbium(III) dipivaloylmethanate. <i>Inorganic Materials</i> , 2014 , 50, 379-386	0.9	17	
Copper nanotube composite membrane as a catalyst in Mannich reaction. <i>Chemical Papers</i> , 2018 , 72, 3189-3194	1.9	16	
Growth and microstructure of heterogeneous crystal GaSe:InS. CrystEngComm, 2013, 15, 1365	3.3	16	
Metal solid solutions obtained by thermolysis of Pt and Re salts. Crystal structure of [Pt(NH3)4](ReO4)2. <i>Journal of Structural Chemistry</i> , 2006 , 47, 489-498	0.9	16	
MOCVD Synthesis of Terbium Oxide Films and their Optical Properties. <i>Chemical Vapor Deposition</i> , 2015 , 21, 150-155		14	
Volatile Heterobimetallic Complexes from Pd and Cu Diketonates: Structure, Magnetic Anisotropy, and Thermal Properties Related to the Chemical Vapor Deposition of Cu?Pd Thin Films. <i>ChemPlusChem</i> , 2015 , 80, 1457-1464	2.8	13	
Synthesis and crystal structure of mer-nitroaquatriamminenitrosylruthenium(II) nitrate [RuNO(NH3)3(NO2)(H2O)](NO3)2. <i>Inorganic Chemistry Communication</i> , 2016 , 68, 1-3	3.1	13	
Composition-sensitive growth kinetics and dispersive optical properties of thin HfxTi1\(\mathbb{R}\)O2 (0 \(\mathbb{L}\)L\(\mathbb{D}\)) films prepared by the ALD method. <i>Journal of Materials Science: Materials in Electronics</i> , 2019 , 30, 812-823	2.1	13	
Volatile heterometallics: structural diversity of Pd-Pb Ediketonates and correlation with thermal properties. <i>Dalton Transactions</i> , 2017 , 46, 12245-12256	4.3	12	
Volatile PdPb and CuPb heterometallic complexes: structure, properties, and trans-to-cis isomerization under cocrystallization of Pd and Cu Ediketonates with Pb hexafluoroacetylacetonate. <i>Journal of Coordination Chemistry</i> , 2015 , 68, 1890-1902	1.6	12	
Synthesis, crystal structure, and properties of [Rh(NH3)5Cl][ReBr6]. <i>Journal of Structural Chemistry</i> , 2005 , 46, 109-115	0.9	11	
Isomerization as a tool to design volatile heterometallic complexes with methoxy-substituted Ediketonates. <i>Journal of Coordination Chemistry</i> , 2018 , 71, 2194-2208	1.6	11	
Polyoxomolybdate-supported bismuth trihalides [Mo8O26(BiX3)2](4-) (X = Cl, Br, I): syntheses and study of polymorphism. <i>Inorganic Chemistry</i> , 2014 , 53, 6886-92	5.1	10	
	and Comparison with Experiment. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 3644-3650 A mononuclear iron(II) complex: cooperativity, kinetics and activation energy of the solvent-dependent spin transition. <i>Dalton Transactions</i> , 2016 , 45, 107-20 Binuclear and polymeric bromobismuthate complexes: Crystal structures and thermal stability. <i>Polyhedron</i> , 2019 , 159, 318-322 Formation of SnO and SnO2 phases during the annealing of SnO(x) films obtained by molecular beam epitaxy. <i>Applied Surface Science</i> , 2020 , 512, 145735 1D and 2D Polybromotellurates(IV): Structural Studies and Thermal Stability. <i>European Journal of Inorganic Chemistry</i> , 2018 , 2018, 3264-3269 Terbium oxide films grown by chemical vapor deposition from terbium(III) dipivaloylmethanate. <i>Inorganic Materials</i> , 2014 , 50, 379-386 Copper nanotube composite membrane as a catalyst in Mannich reaction. <i>Chemical Papers</i> , 2018 , 72, 3189-3194 Growth and microstructure of heterogeneous crystal GaSe:InS. <i>CrystEngComm</i> , 2013 , 15, 1365 Metal solid solutions obtained by thermolysis of Pt and Re salts. Crystal structure of [Pt(NH3)4](ReO4)2. <i>Journal of Structural Chemistry</i> , 2006 , 47, 489-498 MOCVD Synthesis of Terbium Oxide Films and their Optical Properties. <i>Chemical Vapor Deposition</i> , 2015 , 21, 150-155 Volatile Heterobimetallic Complexes from Pd and Cu EDiketonates: Structure, Magnetic Anisotropy, and Thermal Properties Related to the Chemical Vapor Deposition of Cu?Pd Thin Films. <i>ChemPlusChem</i> , 2015 , 80, 1457-1464 Synthesis and crystal structure of men-nitroaquatriamminenitrosylruthenium(II) nitrate [RuNO(NH3)3(NO2)(H2O)](NO3)2. <i>Inorganic Chemistry Communication</i> , 2016 , 68, 1-3 Volatile heterometallics: structural diversity of Pd-Pb Hilketonates and correlation with thermal properties. <i>Dalton Transactions</i> , 2017 , 46, 12245-12256 Volatile PdBb and CuBb heterometallic complexes: structure, properties, and trans-to-cis isomerization under cocrystallization of Pd and Cu Hilketonates with Pb hexafluoroacetylacetonate.	and Comparison with Experiment. Journal of Physical Chemistry C, 2014, 118, 3644-3650 A mononuclear iron(II) complex: cooperativity, kinetics and activation energy of the solvent-dependent spin transition. Dalton Transactions, 2016, 45, 107-20 Binuclear and polymeric bromobismuthate complexes: Crystal structures and thermal stability. Polyhedron, 2019, 159, 318-322 Formation of SnO and SnO2 phases during the annealing of SnO(x) films obtained by molecular beam epitaxy. Applied Surface Science, 2020, 512, 145735 1D and 2D Polybromotellurates(IV): Structural Studies and Thermal Stability. European Journal of Inorganic Chemistry, 2018, 2018, 3264-3269 1erbium oxide films grown by chemical vapor deposition from terbium(III) dipivaloylmethanate. Inorganic Materials, 2014, 50, 379-386 Copper nanotube composite membrane as a catalyst in Mannich reaction. Chemical Papers, 2018, 72, 3189-3194 Growth and microstructure of heterogeneous crystal GaSe:Ins. Crystal structure of [Pt(NH3)4](ReO4)2. Journal of Structural Chemistry, 2006, 47, 489-498 MOCVD Synthesis of Terbium Oxide Films and their Optical Properties. Chemical Vapor Deposition, 2015, 21, 150-155 Volatile Heterobimetallic Complexes from Pd and Cu Diketonates: Structure, Magnetic Anisotropy, and Thermal Properties Related to the Chemical Vapor Deposition of Cu?Pd Thin Films. ChemPluschem, 2015, 80, 1457-1464 Synthesis and crystal structure of mer-nitroaquatriamminenitrosylruthenium(III) nitrate [RuNO(NH3)3(NO2)(H2O)](NO3)2. Inorganic Chemistry Communication, 2016, 68, 1-3 2.8 Composition-sensitive growth kinetics and dispersive optical properties of thin HK:TiRO2 (OK II) films prepared by the ALD method. Journal of Materials Science: Materials in Electronics, 2019, 30, 812-823 Volatile heterometallics structure diversity of Pd-Pb Bilketonates and correlation with thermal properties. Dalton Transactions, 2017, 46, 12245-12256 Volatile PdBb and CuBb heterometallic complexes: Structure, properties, and trans-to-cis isomerization under cocrystallization	A mononuclear iron(II) complex: cooperativity, kinetics and activation energy of the solvent-dependent spin transition. <i>Dalton Transactions</i> , 2016, 45, 107-20 Binuclear and polymeric bromobismuthate complexes: Crystal structures and thermal stability. <i>Polyhedron</i> , 2019, 159, 318-322 Formation of SnO and SnO2 phases during the annealing of SnO(x) films obtained by molecular beam epitaxy. <i>Applied Surface Science</i> , 2020, 512, 145735 1D and 2D Polybromotellurates(IV): Structural Studies and Thermal Stability. <i>European Journal of Inarganic Chemistry</i> , 2018, 2018, 2264-3269 12-3-47 Terbium oxide films grown by chemical vapor deposition from terbium(III) dipivaloylmethanate. <i>Inarganic Materials</i> , 2014, 50, 379-386 Copper nanotube composite membrane as a catalyst in Mannich reaction. <i>Chemical Papers</i> , 2018, 159-3194 Growth and microstructure of heterogeneous crystal GaSe:InS. <i>CrystEngComm</i> , 2013, 15, 1365 3-3-16 Metal solid solutions obtained by thermolysis of Pt and Re salts. Crystal structure of [Pt(NH3)4] (ReO4)2. <i>Journal of Structural Chemistry</i> , 2006, 47, 489-498 MOCVD Synthesis of Terbium Oxide Films and their Optical Properties. <i>Chemical Vapor Deposition</i> , 2015, 21, 150-155 Volatile Heterobimetallic Complexes from Pd and Cu EDiketonates: Structure, Magnetic Anisotropy, and Thermal Properties Related to the Chemical Vapor Deposition of Cu?Pd Thin Films. <i>2</i> , 8 13 Composition-monity and Chemistry Communication, 2016, 68, 1-3 Composition-sensitive growth kinetics and dispersive optical properties of thin HfxTi1802 (0 (B II) films prepared by the ALD method. <i>Journal of Materials Science: Materials in Electronics</i> , 2.1 13 Volatile PdPb and CuBb heterometallic complexes structure, properties, and trans-to-cis isomerization under corystalization of Pd and Gu Biketonates and correlation with thermal properties. <i>Dalton Transactions</i> , 2017, 46, 12245-12256 Volatile PdBb and CuBb heterometallic complexes structure, properties, and trans-to-cis isomerization under corystalization of Pd and Gu Biket

71	Thermolysis of [Pt(NH3)4][ReHlg6] (Hlg = Cl, Br). Structure refinement for [Pt(NH3)4][ReCl6]. Journal of Structural Chemistry, 2005 , 46, 479-487	0.9	10
70	Functionalization of PET Track-Etched Membranes by UV-Induced Graft (co)Polymerization for Detection of Heavy Metal Ions in Water. <i>Polymers</i> , 2019 , 11,	4.5	10
69	Synthesis of Octafluorobiphenyl-4,4?-dicarboxylic acid and photoluminescent compounds based thereon. <i>Russian Journal of General Chemistry</i> , 2015 , 85, 1617-1622	0.7	9
68	Structure and paramagnetic properties of tris -pivaloyltrifluoracetonate thulium(III) complexes with 18-crown-6 by X-ray analysis and NMR. <i>Polyhedron</i> , 2016 , 105, 178-185	2.7	9
67	Hydrophobization of PET track-etched membranes for direct contact membrane distillation. <i>Materials Research Express</i> , 2018 , 5, 065317	1.7	9
66	Structure and thermal properties of Pb(II) complex with functionalized Ediketonate. <i>Journal of Organometallic Chemistry</i> , 2016 , 819, 115-119	2.3	9
65	Magnetic properties and vapochromism of a composite on the base of an iron(II) spin crossover complex. <i>Inorganic Chemistry Communication</i> , 2019 , 105, 82-85	3.1	8
64	Oxalato complexes of Pd(II) with Co(II) and Ni(II) as single-source precursors for bimetallic nanoalloys. <i>Journal of Thermal Analysis and Calorimetry</i> , 2019 , 138, 111-121	4.1	8
63	Complex salts of Pd(II) and Pt(II) with Co(II) and Ni(II) aqua-cations as single-source precursors for bimetallic nanoalloys and mixed oxides. <i>New Journal of Chemistry</i> , 2018 , 42, 8843-8850	3.6	8
62	Synthesis and crystal structure of nitrosoruthenium complexes cis-[Ru(NO)Py2Cl2(OH)] and cis-[Ru(NO)Py2Cl2(H2O)]Cl. Photoinduced transformations of cis-[Ru(NO)Py2Cl2(OH)]. <i>New Journal of Chemistry</i> , 2016 , 40, 10267-10273	3.6	8
61	Crystal structure of [Ir(NH3)5Cl]2[OsCl6]Cl2. Crystal-chemical analysis of the iridium-osmium system. <i>Journal of Structural Chemistry</i> , 2005 , 46, 1052-1059	0.9	8
60	Complexes of non-lacunary Keggin- and Dawson-type polyoxometalates with Pb(II): formation of 1D coordination polymers with different bonding modes. <i>New Journal of Chemistry</i> , 2016 , 40, 9981-9985	₅ 3.6	8
59	Kinetics of phase formation in the LnDB (Ln=La, Gd, Y) systems during oxide sulfidation in ammonium thiocyanate vapor. <i>Journal of the American Ceramic Society</i> , 2017 , 100, 1320-1329	3.8	7
58	A HPLC-ICP-AES technique for the screening of [XW11NbO40]n aqueous solutions. <i>New Journal of Chemistry</i> , 2018 , 42, 7940-7948	3.6	7
57	Features of the sol-gel process of formation of nanostructured gadolinium oxide. <i>Russian Journal of General Chemistry</i> , 2013 , 83, 1808-1814	0.7	7
56	Unexpected Polymorphism in Bromoantimonate(III) Complexes and Its Effect on Optical Properties. <i>Inorganic Chemistry</i> , 2021 , 60, 2797-2804	5.1	7
55	Structure and thermal properties of heterometallic complexes for chemical vapor deposition of Cu B d films. <i>Journal of Structural Chemistry</i> , 2017 , 58, 1522-1529	0.9	6
54	Binuclear bromide complex of Bi(III): Thermally induced changes in optical properties. <i>Journal of Molecular Structure</i> , 2016 , 1112, 21-24	3.4	6

53	Crystal Structures of [Dy(dpm)3]2 and Dy(dpm)3, Luminescent and X-Ray Fluorescent Study of Lanthanide(III) Tris-Dipivaloylmethanates. <i>Journal of Structural Chemistry</i> , 2018 , 59, 676-683	0.9	6
52	X-ray diffraction study of [Ru(NH3)5Cl][ReCl6] and [Ru(NH3)5Cl]2[ReCl6]Cl2 and their thermolysis products. Crystal-chemical analysis of the Ru-Re system. <i>Journal of Structural Chemistry</i> , 2009 , 50, 120-1	26 ⁹	6
51	Structure and Properties of (C4N2H12)[Pt(NO3)6] Salt. <i>Journal of Structural Chemistry</i> , 2019 , 60, 1327-1	33 4	5
50	Crystal structure of [Rh(H2O)5Cl](C7H7O3S)2 and Cs[Rh(H2O)5NO3](C7H7O3S)3⊞2O. <i>Journal of Structural Chemistry</i> , 2015 , 56, 1606-1612	0.9	5
49	Synthesis, structure, and properties of the thermolysis products of [Os(NH3)5Cl][ReCl6]. <i>Journal of Structural Chemistry</i> , 2007 , 48, 379-382	0.9	5
48	Mononuclear Sb(V) Bromide Complexes with 3-Halopyridinium Cations: Synthesis, Structures, and Thermal Stability. <i>Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya</i> , 2019 , 45, 128-1	32 ⁶	4
47	Membrane distillation of pesticide solutions using hydrophobic track-etched membranes. <i>Chemical Papers</i> , 2020 , 74, 3445-3453	1.9	4
46	Synthesis of the Ruthenium Nitrosyl Complex with Coordinated Ammonia and Pyridine at Room Temperature. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2020 , 646, 58-64	1.3	4
45	Crystal Structure and Properties of Two Samarium EDiketonates. <i>Journal of Structural Chemistry</i> , 2018 , 59, 433-438	0.9	4
44	Crystal Structure and Properties of [Rh2(H2O)8(EDH)2](NO3)4E4H2O. <i>Journal of Structural Chemistry</i> , 2018 , 59, 664-668	0.9	4
43	Synthesis and characterization of polycrystalline CdSiP2. <i>Materials Research Express</i> , 2018 , 5, 056204	1.7	4
42	Methoxy-Substituted Transition Metal EDiketonates: Synthesis and Properties. <i>Journal of Structural Chemistry</i> , 2019 , 60, 1635-1647	0.9	4
41	Spin crossover in iron(II) hexafluorophosphate complexes with 2-(pyridin-2-yl)-4-(3,5-di-R-1H-pyrazol-1-yl)-6-methylpyrimidines. <i>Inorganica Chimica Acta</i> , 2017 , 467, 238	- 2 73	4
40	New praseodymium polyselenide PrSe1.95: Synthesis and X-ray diffraction study of crystals. <i>Journal of Structural Chemistry</i> , 2015 , 56, 673-679	0.9	4
39	Phase transformations of the Re0.3Ir0.7 solid solution. <i>Journal of Structural Chemistry</i> , 2005 , 46, 474-47	8 0.9	4
38	Five new Sb(V) bromide complexes and their polybromide derivatives with pyridinium-type cations: Structures, thermal stability and features of halogen?halogen contacts in solid state. <i>Inorganica Chimica Acta</i> , 2020 , 502, 119278	2.7	4
37	Volatile zirconium complexes with sterically hindered Ediketonates: Structure and thermal properties. <i>Journal of Structural Chemistry</i> , 2017 , 58, 1530-1537	0.9	3
36	Volatile trinuclear heterometallic beta-diketonates: Structure and thermal properties related to the chemical vapor deposition of composite thin films. <i>Polyhedron</i> , 2020 , 191, 114806	2.7	3

35	New polymorphic modification of Y, Ho, Tm and Lu tris-2,2,6,6-tetramethyl-heptane-2,4-dionates: Structure, volatility and luminescence. <i>Polyhedron</i> , 2021 , 198, 115077	2.7	3
34	Cu2ZnSnS4 crystal growth using an SnCl2 based flux. <i>CrystEngComm</i> , 2021 , 23, 1025-1032	3.3	3
33	Synthesis, thermal properties and photoisomerization of trans-[Ru(NO)Py2Cl2(H2O)]H2PO4?H2O. Journal of Chemical Sciences, 2017 , 129, 441-448	1.8	2
32	Double complex salts containing [Pt(NO3)6]2- anion and Rh(III) complex cations: Synthesis, structure and utilisation for preparing (RhPt)/CeO2 catalysts. <i>Journal of Molecular Structure</i> , 2020 , 1211, 128108	3.4	2
31	Features of the Thermolysis of Fe(II), Co(II), Ni(II), and Cu(II) Salts of Maleic and Phthalic Acids with the Formation of Metal Nanoparticles. <i>Russian Journal of Physical Chemistry A</i> , 2019 , 93, 1327-1332	0.7	2
30	High-throughput powder X-ray diffraction, IR-spectroscopy and ion chromatography analysis of urinary stones: A comparative study. <i>Open Chemistry</i> , 2013 , 11, 2107-2119	1.6	2
29	New volatile zirconium(IV) complex with methoxy substituted Ediketonate. <i>Journal of Structural Chemistry</i> , 2017 , 58, 831-834	0.9	2
28	Films of (Gd1 NTbx)2O2S Solid Solutions Produced by Oxide Sulfidation in NH4SCN Vapor and Their Optical Properties. <i>Inorganic Materials</i> , 2020 , 56, 836-846	0.9	2
27	Secondary Coordination in the Structures of Zinc(II) and Manganese(II) Oxalatopalladates(II). <i>Journal of Structural Chemistry</i> , 2020 , 61, 719-726	0.9	2
26	MOCVD of Noble Metal Film Materials for Medical Implants: Microstructure and Biocompatibility of Ir and Au/Ir Coatings on TiNi. <i>Coatings</i> , 2021 , 11, 638	2.9	2
25	Crystal structure of [Pb3(OH)4Co(NO2)3](NO3)(NO2)型H2O. <i>Journal of Structural Chemistry</i> , 2016 , 57, 625-627	0.9	2
24	Special Features of Localization of Eu3+ Ion in the Matrix of (GdxY1\(\mathbb{Q}\))2O3: Eu3+ Solutions During Sol-Gel Synthesis of the Luminophor. <i>Russian Journal of General Chemistry</i> , 2018 , 88, 992-999	0.7	2
23	Homo- and heterometallic iodobismuthates(III) with 1,3,5-trimethylpyridinium cation: Preparation and features of optical behavior. <i>Polyhedron</i> , 2022 , 216, 115720	2.7	2
22	Obtaining and Characterizing SilverBorbitan Monooleate Nanocomposite and Conducting Films Based on It. <i>Russian Journal of Physical Chemistry A</i> , 2019 , 93, 717-722	0.7	1
21	Structure and Properties of the ⊞cs2Mo2⊠WxO7 Solid Solution. <i>Journal of Structural Chemistry</i> , 2019 , 60, 952-960	0.9	1
20	Synthesis and Crystal Structure of Chloride complexes of Rh(III) Diammino- and Monoammino Series. <i>Journal of Structural Chemistry</i> , 2019 , 60, 1482-1488	0.9	1
19	Structure, Volatility, and Luminescence of Phenanthroline Adducts with Lanthanide Tris-Dipivaloylmethanates. <i>Journal of Structural Chemistry</i> , 2020 , 61, 101-108	0.9	1
18	Platinum(IV) Nitrato Complexes with 1,10-Phenanthroline. <i>Russian Journal of Inorganic Chemistry</i> , 2020 , 65, 1552-1557	1.5	1

LIST OF PUBLICATIONS

17	MICROSTRUCTURE OF IRIDIUM ENRICHED PtxIr(11) FILMS PREPARED BY CHEMICAL VAPOR DEPOSITION. <i>Journal of Structural Chemistry</i> , 2021 , 62, 1447-1456	0.9	1
16	Study of structural and optical properties of a dual-band material based on tin oxides and GeSiSn compounds. <i>Applied Surface Science</i> , 2022 , 573, 151615	6.7	1
15	The influence of the solutions pH on the microstructure of hydrogels of yttrium and europium oxohydrates prepared via the sol-gel method. <i>Russian Journal of General Chemistry</i> , 2016 , 86, 224-230	0.7	1
14	One-Dimensional Supramolecular Hybrid Iodobismuthate (1-EtPy)3{[Bi2I9](I2)0.75}: Structural Features and Theoretical Studies of I Non-Covalent Interactions. <i>Journal of Cluster Science</i> , 2021 , 32, 787-791	3	1
13	Mixed-Ligand Iridium(III) Nitro Complexes with Phenantroline. <i>Journal of Structural Chemistry</i> , 2019 , 60, 640-646	0.9	O
12	ADDUCTS OF PLATINUM(IV) NITRATE COMPLEXES WITH 15-CROWN-5 ETHER. <i>Journal of Structural Chemistry</i> , 2020 , 61, 1422-1431	0.9	O
11	Preparation of a rhodium(III) cis-diaquacomplex by protic acid induced oxalate-release from mer-[Rh(C2O4)Cl(py)3]. <i>New Journal of Chemistry</i> , 2018 , 42, 19637-19643	3.6	O
10	Gold-Induced Crystallization of Thin Films of Amorphous Silicon Suboxide. <i>Technical Physics Letters</i> , 2021 , 47, 726-729	0.7	O
9	Halogen-rich halorhenates(IV): (Me4N)2{[ReX6](X2)} (XŒCl, Br). Polyhedron, 2022 , 221, 115876	2.7	O
8	New gadolinium polyselenide GdSe1.89(6) in the PbFCl matlockite structure type. <i>Journal of Structural Chemistry</i> , 2016 , 57, 1150-1157	0.9	
7	A study of the structure and properties of mixed-ligand Cu(II) complexes with hexafluoroacetylacetone and methyl-, phenyl-ketoimines. <i>Journal of Structural Chemistry</i> , 2013 , 54, 123	3-928	
6	MONITORING COMPOSITION AND STRUCTURE OF MOCVD ZrO2-BASED MULTICOMPONENT FILMS BY INNOVATIVE MIXED METAL-ORGANIC PRECURSORS. <i>Journal of Structural Chemistry</i> , 2020 , 61, 1729-1739	0.9	
5	Structural and Optical Properties of a Hybrid Material Based on Tin Oxides and Multilayer Periodic Structures with Pseudomorphic GeSiSn Layers. <i>Russian Physics Journal</i> ,1	0.7	
4	Thermal properties of indium tris-dipivaloylmethanate as a volatile precursor for indium oxide materials. <i>Vacuum</i> , 2022 , 197, 110856	3.7	
3	NEW ESUBSTITUTED EDIKETONATES OF Al(III), Fe(III), AND Cu(II). <i>Journal of Structural Chemistry</i> , 2020 , 61, 1615-1623	0.9	
2	STRUCTURE OF COMPOUNDS DERIVED FROM [Au(Dien)Cl]Cl2 AND PLATINUM CHLORIDE COMPLEXES. <i>Journal of Structural Chemistry</i> , 2021 , 62, 1270-1278	0.9	
1	CRYSTAL TEXTURE AND MECHANICAL STRESSES IN VO2 FILMS OBTAINED BY MOCVD. <i>Journal of Structural Chemistry</i> , 2022 , 63, 235-241	0.9	