Gregory Timp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9297110/publications.pdf

Version: 2024-02-01

331670 477307 2,509 30 21 29 h-index citations g-index papers 31 31 31 2610 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Beyond mass spectrometry, the next step in proteomics. Science Advances, 2020, 6, eaax8978.	10.3	208
2	Measurements of the size and correlations between ions using an electrolytic point contact. Nature Communications, 2019, 10, 2382.	12.8	34
3	Method for Dynamically Detecting Secretions from Single Cells Using a Nanopore. Nano Letters, 2018, 18, 4263-4272.	9.1	10
4	Gene Expression in Electron-Beam-Irradiated Bacteria in Reply to "Live Cell Electron Microscopy Is Probably Impossible― ACS Nano, 2017, 11, 3-7.	14.6	20
5	Discriminating Residue Substitutions in a Single Protein Molecule Using a Sub-nanopore. ACS Nano, 2017, 11, 5440-5452.	14.6	42
6	Single-molecule protein identification by sub-nanopore sensors. PLoS Computational Biology, 2017, 13, e1005356.	3.2	52
7	Reading the primary structure of a protein with 0.07 nm3 resolution using a subnanometre-diameter pore. Nature Nanotechnology, 2016, 11, 968-976.	31.5	137
8	Wiring Together Synthetic Bacterial Consortia to Create a Biological Integrated Circuit. ACS Synthetic Biology, 2016, 5, 1421-1432.	3.8	11
9	Live Bacterial Physiology Visualized with 5 nm Resolution Using Scanning Transmission Electron Microscopy. ACS Nano, 2016, 10, 2669-2677.	14.6	46
10	Think Small: Nanopores for Sensing and Synthesis. IEEE Access, 2014, 2, 1396-1408.	4.2	18
11	Direct, Concurrent Measurements of the Forces and Currents Affecting DNA in a Nanopore with Comparable Topography. ACS Nano, 2014, 8, 5484-5493.	14.6	44
12	Single Cell Transfection with Single Molecule Resolution Using a Synthetic Nanopore. Nano Letters, 2014, 14, 604-611.	9.1	23
13	Direct Visualization of Single-Molecule Translocations through Synthetic Nanopores Comparable in Size to a Molecule. ACS Nano, 2013, 7, 4057-4069.	14.6	45
14	Using a nanopore for single molecule detection and single cell transfection. Analyst, The, 2012, 137, 3020.	3.5	23
15	High-Yield Transfer Printing of Metal–Insulator–Metal Nanodiodes. ACS Nano, 2012, 6, 2853-2859.	14.6	38
16	Third Generation DNA Sequencing with a Nanopore. , 2011, , 287-311.		0
17	Molecular diagnostics for personal medicine using a nanopore. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2, 367-381.	6.1	18
18	Nanopore Sequencing: Electrical Measurements of the Code of Life. IEEE Nanotechnology Magazine, 2010, 9, 281-294.	2.0	81

#	Article	IF	CITATION
19	Slowing the translocation of double-stranded DNA using a nanopore smaller than the double helix. Nanotechnology, 2010, 21, 395501.	2.6	74
20	Microscopic Mechanics of Hairpin DNA Translocation through Synthetic Nanopores. Biophysical Journal, 2009, 96, 593-608.	0.5	84
21	Jamming prokaryotic cell-to-cell communications in a model biofilm. Lab on A Chip, 2009, 9, 925-934.	6.0	31
22	Detection of DNA Sequences Using an Alternating Electric Field in a Nanopore Capacitor. Nano Letters, 2008, 8, 56-63.	9.1	162
23	Live cell lithography: Using optical tweezers to create synthetic tissue. Lab on A Chip, 2008, 8, 2174.	6.0	89
24	Simulation of the electric response of DNA translocation through a semiconductor nanopore–capacitor. Nanotechnology, 2006, 17, 622-633.	2.6	157
25	Beyond the gene chip. Bell Labs Technical Journal, 2005, 10, 5-22.	0.7	44
26	Electrolytic transport through a synthetic nanometer-diameter pore. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10445-10450.	7.1	220
27	Stretching DNA Using the Electric Field in a Synthetic Nanopore. Nano Letters, 2005, 5, 1883-1888.	9.1	166
28	Sizing DNA Using a Nanometer-Diameter Pore. Biophysical Journal, 2004, 87, 2905-2911.	0.5	285
29	Microscopic Kinetics of DNA Translocation through Synthetic Nanopores. Biophysical Journal, 2004, 87, 2086-2097.	0.5	323
30	High-contrast, high-resolution focusing of neutral atoms using light forces. Physical Review A, 1996, 53, 4381-4385.	2.5	23