Grace Pold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9297040/publications.pdf

Version: 2024-02-01

933447 794594 1,422 21 10 19 citations h-index g-index papers 28 28 28 2532 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science, 2017, 358, 101-105.	12.6	548
2	Long-term forest soil warming alters microbial communities in temperate forest soils. Frontiers in Microbiology, 2015, 6, 104.	3.5	270
3	Microbial diversity drives carbon use efficiency in a model soil. Nature Communications, 2020, 11, 3684.	12.8	217
4	Two decades of warming increases diversity of a potentially lignolytic bacterial community. Frontiers in Microbiology, 2015, 6, 480.	3.5	73
5	Changes in substrate availability drive carbon cycle response to chronic warming. Soil Biology and Biochemistry, 2017, 110, 68-78.	8.8	73
6	Long-Term Warming Alters Carbohydrate Degradation Potential in Temperate Forest Soils. Applied and Environmental Microbiology, 2016, 82, 6518-6530.	3.1	68
7	Carbon Use Efficiency and Its Temperature Sensitivity Covary in Soil Bacteria. MBio, 2020, 11, .	4.1	52
8	Up Against The Wall: The Effects of Climate Warming on Soil Microbial Diversity and The Potential for Feedbacks to The Carbon Cycle. Diversity, 2013, 5, 409-425.	1.7	31
9	Soil aggregate-mediated microbial responses to long-term warming. Soil Biology and Biochemistry, 2021, 152, 108055.	8.8	30
10	Draft Genome Sequence of Acidobacteria Group 1 Acidipila sp. Strain EB88, Isolated from Forest Soil. Microbiology Resource Announcements, 2019, 8, .	0.6	10
11	Warming effects on arctic tundra biogeochemistry are limited but habitatâ€dependent: a metaâ€analysis. Ecosphere, 2021, 12, e03777.	2.2	10
12	Characterizing the drivers of seedling leaf gas exchange responses to warming and altered precipitation: indirect and direct effects. AoB PLANTS, 2016, 8, .	2.3	7
13	Sporadic P limitation constrains microbial growth and facilitates SOM accumulation in the stoichiometrically coupled, acclimating microbe–plant–soil model. Soil Biology and Biochemistry, 2022, 165, 108489.	8.8	7
14	Genome Sequence of <i>Verrucomicrobium</i> sp. Strain GAS474, a Novel Bacterium Isolated from Soil. Genome Announcements, 2018, 6, .	0.8	6
15	Soil bacterial communities vary more by season than with over two decades of experimental warming in Arctic tussock tundra. Elementa, 2021, 9, .	3.2	5
16	Heavy and wet: The consequences of violating assumptions of measuring soil microbial growth efficiency using the 180 water method. Elementa, 2020 , 8 , .	3.2	5
17	Metabolic tradeoffs and heterogeneity in microbial responses to temperature determine the fate of litter carbon in simulations of a warmer world. Biogeosciences, 2019, 16, 4875-4888.	3.3	4
18	Draft Genome Sequences of Three Strains of a Novel Rhizobiales Species Isolated from Forest Soil. Genome Announcements, 2018, 6, .	0.8	2

#	Article	IF	CITATIONS
19	Draft Genome Sequence of a Terrestrial Planctomycete, <i>Singulisphaera</i> sp. Strain GP187, Isolated from Forest Soil. Microbiology Resource Announcements, 2020, 9, .	0.6	2
20	Microbial responses to experimental soil warming: Five testable hypotheses. , 2019, , 141-156.		1
21	Genome Sequences of Frankineae sp. Strain MT45 and Jatrophihabitans sp. Strain GAS493, Two Actinobacteria Isolated from Forest Soil. Microbiology Resource Announcements, 2020, 9, .	0.6	1