Stephen P H Alexander

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9296577/publications.pdf

Version: 2024-02-01

207 papers

24,582 citations

70 h-index 153 g-index

215 all docs

215 docs citations

215 times ranked 23092 citing authors

#	Article	IF	Citations
1	The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY. Nucleic Acids Research, 2018, 46, D1091-D1106.	14.5	1,584
2	International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid Receptors and Their Ligands: Beyond CB ₁ and CB ₂ . Pharmacological Reviews, 2010, 62, 588-631.	16.0	1,425
3	Experimental design and analysis and their reporting II: updated and simplified guidance for authors and peer reviewers. British Journal of Pharmacology, 2018, 175, 987-993.	5 . 4	1,122
4	The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. Nucleic Acids Research, 2016, 44, D1054-D1068.	14.5	1,075
5	Experimental design and analysis and their reporting: new guidance for publication in <scp>BJP</scp> . British Journal of Pharmacology, 2015, 172, 3461-3471.	5 . 4	981
6	Guide to Receptors and Channels (GRAC), 5th edition. British Journal of Pharmacology, 2011, 164, S1-324.	5 . 4	827
7	The IUPHAR/BPS Guide to PHARMACOLOGY: an expert-driven knowledgebase of drug targets and their ligands. Nucleic Acids Research, 2014, 42, D1098-D1106.	14.5	826
8	Guide to Receptors and Channels (GRAC), 3rd edition. British Journal of Pharmacology, 2008, 153, S1-209.	5 . 4	616
9	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Enzymes. British Journal of Pharmacology, 2017, 174, S272-S359.	5. 4	597
10	ARRIVE 2.0 and the British Journal of Pharmacology: Updated guidance for 2020. British Journal of Pharmacology, 2020, 177, 3611-3616.	5.4	580
11	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: G proteinâ€coupled receptors. British Journal of Pharmacology, 2017, 174, S17-S129.	5.4	557
12	The Concise Guide to PHARMACOLOGY 2013/14: G Proteinâ€Coupled Receptors. British Journal of Pharmacology, 2013, 170, 1459-1581.	5.4	528
13	The Concise Guide to PHARMACOLOGY 2015/16: Enzymes. British Journal of Pharmacology, 2015, 172, 6024-6109.	5.4	521
14	Goals and practicalities of immunoblotting and immunohistochemistry: A guide for submission to the British Journal of Pharmacology, 2018, 175, 407-411.	5.4	519
15	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G proteinâ€coupled receptors. British Journal of Pharmacology, 2019, 176, S21-S141.	5.4	519
16	The Concise Guide to PHARMACOLOGY 2015/16: G proteinâ€coupled receptors. British Journal of Pharmacology, 2015, 172, 5744-5869.	5.4	507
17	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Enzymes. British Journal of Pharmacology, 2019, 176, S297-S396.	5.4	423
18	The Concise Guide to <scp>PHARMACOLOGY</scp> 2013/14: Enzymes. British Journal of Pharmacology, 2013, 170, 1797-1867.	5.4	416

#	Article	IF	Citations
19	Guide to Receptors and Channels (GRAC), 4th edition. British Journal of Pharmacology, 2009, 158, S1-254.	5.4	410
20	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G proteinâ€coupled receptors. British Journal of Pharmacology, 2021, 178, S27-S156.	5.4	337
21	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Enzymes. British Journal of Pharmacology, 2021, 178, S313-S411.	5.4	320
22	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Introduction and Other Protein Targets. British Journal of Pharmacology, 2019, 176, S1-S20.	5.4	295
23	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Overview. British Journal of Pharmacology, 2017, 174, S1-S16.	5.4	269
24	International Union of Basic and Clinical Pharmacology. LXXXVIII. G Protein-Coupled Receptor List: Recommendations for New Pairings with Cognate Ligands. Pharmacological Reviews, 2013, 65, 967-986.	16.0	250
25	An Endogenous Cannabinoid as an Endothelium-Derived Vasorelaxant. Biochemical and Biophysical Research Communications, 1996, 229, 114-120.	2.1	246
26	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology, 2019, 176, S142-S228.	5.4	242
27	The Concise Guide to PHARMACOLOGY 2013/14: Ion Channels. British Journal of Pharmacology, 2013, 170, 1607-1651.	5.4	226
28	The Concise Guide to PHARMACOLOGY 2015/16: Overview. British Journal of Pharmacology, 2015, 172, 5729-5743.	5.4	220
29	Cannabinoid activation of PPARα; a novel neuroprotective mechanism. British Journal of Pharmacology, 2007, 152, 734-743.	5.4	211
30	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Transporters. British Journal of Pharmacology, 2017, 174, S360-S446.	5.4	193
31	The Concise Guide to PHARMACOLOGY 2015/16: Transporters. British Journal of Pharmacology, 2015, 172, 6110-6202.	5.4	190
32	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Ion channels. British Journal of Pharmacology, 2021, 178, S157-S245.	5.4	187
33	Agonistâ€occupied A ₃ adenosine receptors exist within heterogeneous complexes in membrane microdomains of individual living cells. FASEB Journal, 2008, 22, 850-860.	0.5	183
34	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Introduction and Other Protein Targets. British Journal of Pharmacology, 2021, 178, S1-S26.	5.4	183
35	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Voltageâ€gated ion channels. British Journal of Pharmacology, 2017, 174, S160-S194.	5.4	178
36	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Catalytic receptors. British Journal of Pharmacology, 2017, 174, S225-S271.	5.4	177

#	Article	IF	Citations
37	A practical guide for transparent reporting of research on natural products in the <i>British Journal of Pharmacology</i> : Reproducibility of natural product research. British Journal of Pharmacology, 2020, 177, 2169-2178.	5.4	177
38	The Concise Guide to PHARMACOLOGY 2015/16: Voltageâ€gated ion channels. British Journal of Pharmacology, 2015, 172, 5904-5941.	5.4	176
39	Planning experiments: Updated guidance on experimental design and analysis and their reporting III. British Journal of Pharmacology, 2022, 179, 3907-3913.	5.4	167
40	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters. British Journal of Pharmacology, 2019, 176, S397-S493.	5.4	166
41	The Concise Guide to PHARMACOLOGY 2015/16: Catalytic receptors. British Journal of Pharmacology, 2015, 172, 5979-6023.	5.4	158
42	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Catalytic receptors. British Journal of Pharmacology, 2019, 176, S247-S296.	5.4	156
43	The Concise Guide to PHARMACOLOGY 2013/14: Overview. British Journal of Pharmacology, 2013, 170, 1449-1458.	5.4	153
44	The Concise Guide to PHARMACOLOGY 2013/14: Catalytic Receptors. British Journal of Pharmacology, 2013, 170, 1676-1705.	5.4	148
45	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Catalytic receptors. British Journal of Pharmacology, 2021, 178, S264-S312.	5.4	148
46	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Ligandâ€gated ion channels. British Journal of Pharmacology, 2017, 174, S130-S159.	5.4	144
47	The Concise Guide to PHARMACOLOGY 2015/16: Ligandâ€gated ion channels. British Journal of Pharmacology, 2015, 172, 5870-5903.	5.4	133
48	Guide to Receptors and Channels, 2nd edition (2007 Revision). British Journal of Pharmacology, 2007, 150, S1-S1.	5.4	132
49	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Nuclear hormone receptors. British Journal of Pharmacology, 2017, 174, S208-S224.	5.4	131
50	The IUPHAR/BPS Guide to PHARMACOLOGY in 2020: extending immunopharmacology content and introducing the IUPHAR/MMV Guide to MALARIA PHARMACOLOGY. Nucleic Acids Research, 2020, 48, D1006-D1021.	14.5	131
51	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Nuclear hormone receptors. British Journal of Pharmacology, 2019, 176, S229-S246.	5.4	127
52	The Concise Guide to <scp>PHARMACOLOGY</scp> 2013/14: Transporters. British Journal of Pharmacology, 2013, 170, 1706-1796.	5.4	121
53	The cellular localization of adenosine receptors in rat neostriatum. Neuroscience, 1989, 28, 645-651.	2.3	120
54	Cannabinoid receptor agonists are mitochondrial inhibitors: A unified hypothesis of how cannabinoids modulate mitochondrial function and induce cell death. Biochemical and Biophysical Research Communications, 2007, 364, 131-137.	2.1	119

#	Article	IF	Citations
55	The Concise Guide to PHARMACOLOGY 2015/16: Nuclear hormone receptors. British Journal of Pharmacology, 2015, 172, 5956-5978.	5.4	119
56	Minocycline Treatment Inhibits Microglial Activation and Alters Spinal Levels of Endocannabinoids in a Rat Model of Neuropathic Pain. Molecular Pain, 2009, 5, 1744-8069-5-35.	2.1	116
57	Inhibition of fatty acid amide hydrolase and cyclooxygenase-2 increases levels of endocannabinoid related molecules and produces analgesia via peroxisome proliferator-activated receptor-alpha in a model of inflammatory pain. Neuropharmacology, 2008, 55, 85-93.	4.1	115
58	The Concise Guide to <scp>PHARMACOLOGY</scp> 2013/14: Ligandâ€Gated Ion Channels. British Journal of Pharmacology, 2013, 170, 1582-1606.	5.4	115
59	The complications of promiscuity: endocannabinoid action and metabolism. British Journal of Pharmacology, 2007, 152, 602-623.	5.4	114
60	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Transporters. British Journal of Pharmacology, 2021, 178, S412-S513.	5.4	114
61	Cannabidiol enhances microglial phagocytosis via transient receptor potential (<scp>TRP</scp>) channel activation. British Journal of Pharmacology, 2014, 171, 2426-2439.	5.4	110
62	Tonic modulation of spinal hyperexcitability by the endocannabinoid receptor system in a rat model of osteoarthritis pain. Arthritis and Rheumatism, 2010, 62, 3666-3676.	6.7	106
63	Influence of Cannabinoids on Electrically Evoked Dopamine Release and Cyclic AMP Generation in the Rat Striatum. Journal of Neurochemistry, 1997, 69, 1131-1137.	3.9	105
64	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Nuclear hormone receptors. British Journal of Pharmacology, 2021, 178, S246-S263.	5.4	100
65	The IUPHAR/BPS guide to PHARMACOLOGY in 2022: curating pharmacology for COVID-19, malaria and antibacterials. Nucleic Acids Research, 2022, 50, D1282-D1294.	14.5	99
66	Cannabinoids and PPARα signalling. Biochemical Society Transactions, 2006, 34, 1095-1097.	3.4	97
67	Effects of proâ€inflammatory cytokines on cannabinoid <scp>CB</scp> ₁ and <scp>CB</scp> ₂ receptors in immune cells. Acta Physiologica, 2015, 214, 63-74.	3.8	95
68	Therapeutic potential of cannabis-related drugs. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 64, 157-166.	4.8	95
69	The Concise Guide to <scp>PHARMACOLOGY</scp> 2013/14: Nuclear Hormone Receptors. British Journal of Pharmacology, 2013, 170, 1652-1675.	5.4	90
70	Vanilloid receptor agonists and antagonists are mitochondrial inhibitors: How vanilloids cause non-vanilloid receptor mediated cell death. Biochemical and Biophysical Research Communications, 2007, 354, 50-55.	2.1	88
71	Community guidelines for GPCR ligand bias: IUPHAR review 32. British Journal of Pharmacology, 2022, 179, 3651-3674.	5.4	84
72	Comparison of amine modifiers used to reduce peak tailing of 2-phenylethylamine drugs in reversed-phase high-performance liquid chromatography. Journal of Chromatography A, 1982, 247, 39-45.	3.7	78

#	Article	IF	Citations
73	Flavonoids as antagonists at A1 adenosine receptors. Phytotherapy Research, 2006, 20, 1009-1012.	5.8	71
74	A rational roadmap for SARSâ€CoVâ€2/COVIDâ€19 pharmacotherapeutic research and development: IUPHAR Review 29. British Journal of Pharmacology, 2020, 177, 4942-4966.	5.4	61
75	Distribution and function of monoacylglycerol lipase in the gastrointestinal tract. American Journal of Physiology - Renal Physiology, 2008, 295, G1255-G1265.	3.4	59
76	Cannabinoid Receptor-Related Orphan G Protein-Coupled Receptors. Advances in Pharmacology, 2017, 80, 223-247.	2.0	58
77	Differences in the adenosine receptors modulating inositol phosphates and cyclic AMP accumulation in mammalian cerebral cortex. British Journal of Pharmacology, 1989, 98, 1241-1248.	5.4	56
78	Sex: A change in our guidelines to authors to ensure that this is no longer an ignored experimental variable. British Journal of Pharmacology, 2019, 176, 4081-4086.	5.4	56
79	An endogenous A2B adenosine receptor coupled to cyclic AMP generation in human embryonic kidney (HEK 293) cells. British Journal of Pharmacology, 1997, 122, 546-550.	5.4	54
80	Guide to Receptors and Channels, 2nd edition. British Journal of Pharmacology, 2006, 147, S1-S1.	5.4	53
81	Lack of effect of chronic preâ€treatment with the FAAH inhibitor URB597 on inflammatory pain behaviour: evidence for plastic changes in the endocannabinoid system. British Journal of Pharmacology, 2012, 167, 627-640.	5.4	51
82	[3H]ZM241385â€"an antagonist radioligand for adenosine A2A receptors in rat brain. European Journal of Pharmacology, 2001, 411, 205-210.	3.5	49
83	Spinal administration of the monoacylglycerol lipase inhibitor $<$ scp $>$ JZL $<$ /scp $>$ 184 produces robust inhibitory effects on nociceptive processing and the development of central sensitization in the rat. British Journal of Pharmacology, 2012, 167, 1609-1619.	5.4	46
84	Characterization of the human brain putative A _{2B} adenosine receptor expressed in Chinese hamster ovary (CHO.A _{2B4}) cells. British Journal of Pharmacology, 1996, 119, 1286-1290.	5.4	43
85	Coupling of a transfected human brain A ₁ adenosine receptor in CHOâ€K1 cells to calcium mobilisation via a pertussis toxinâ€sensitive mechanism. British Journal of Pharmacology, 1994, 111, 1252-1256.	5.4	41
86	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Other ion channels. British Journal of Pharmacology, 2017, 174, S195-S207.	5.4	41
87	Updating the guidelines for data transparency in the British Journal of Pharmacology – data sharing and the use of scatter plots instead of bar charts. British Journal of Pharmacology, 2017, 174, 2801-2804.	5.4	41
88	Adenosine A ₁ â€receptor stimulation of inositol phospholipid hydrolysis and calcium mobilisation in DDT ₁ MFâ€2 cells. British Journal of Pharmacology, 1992, 106, 215-221.	5.4	40
89	Inhibition of Forskolin-Stimulated Cyclic AMP Formation by 1-Aminocyclopentane-trans-1,3-Dicarboxylate in Guinea-Pig Cerebral Cortical Slices. Journal of Neurochemistry, 1992, 58, 1964-1966.	3.9	40
90	The Concise Guide to PHARMACOLOGY 2015/16: Other ion channels. British Journal of Pharmacology, 2015, 172, 5942-5955.	5.4	40

#	Article	IF	Citations
91	Neonatal phencyclidine administration and post-weaning social isolation as a dual-hit model of â€~schizophrenia-like' behaviour in the rat. Psychopharmacology, 2014, 231, 2533-2545.	3.1	39
92	Effects of hydrogen sulphide in smooth muscle. , 2016, 158, 101-113.		37
93	Adenosine receptor―nduced cyclic AMP generation and inhibition of 5―hydroxytryptamine release in human platelets British Journal of Clinical Pharmacology, 1995, 40, 43-50.	2.4	36
94	The endocannabinoid system is altered in the postâ€mortem prefrontal cortex of alcoholic subjects. Addiction Biology, 2015, 20, 773-783.	2.6	34
95	A potential role for cannabinoid receptors in the therapeutic action of fenofibrate. FASEB Journal, 2015, 29, 1446-1455.	0.5	34
96	Hydrogen sulphideâ€induced relaxation of porcine peripheral bronchioles. British Journal of Pharmacology, 2013, 168, 1902-1910.	5 . 4	33
97	Guide to Receptors and Channels, 1st Edition. British Journal of Pharmacology, 2004, 141, S1-S3.	5.4	32
98	Subtypes of metabotropic excitatory amino acid receptor distinguished by stereoisomers of the rigid glutamate analogue, 1-aminocyclopentane-1,3-dicarâ ylate. Neuroscience Letters, 1993, 153, 107-110.	2.1	31
99	Functional expression of adenosine A2A and A3 receptors in the mouse dendritic cell line XS-106. European Journal of Pharmacology, 2003, 474, 43-51.	3 . 5	30
100	The activity of the endocannabinoid metabolising enzyme fatty acid amide hydrolase in subcutaneous adipocytes correlates with BMI in metabolically healthy humans. Lipids in Health and Disease, 2011, 10, 129.	3.0	30
101	TiPS Receptor and Ion Channel Nomenclature Supplement 1999. Trends in Pharmacological Sciences, 1999, 19, 1.	8.7	29
102	Evidence for the Expression of Multiple Uracil Nucleotide-Stimulated P2 Receptors Coupled to Smooth Muscle Contraction in Porcine Isolated Arteries. British Journal of Pharmacology, 2007, 150, 604-612.	5.4	28
103	Differential effects of elevated calcium ion concentrations on inositol phospholipid responses in mouse and rat cerebral cortical slices. Biochemical Pharmacology, 1990, 40, 1793-1799.	4.4	27
104	Activation of a metabotropic excitatory amino acid receptor potentiates A2b adenosine receptor-stimulated cyclic AMP accumulation. Neuroscience Letters, 1992, 146, 231-233.	2.1	27
105	So what do we call GPR18 now?. British Journal of Pharmacology, 2012, 165, 2411-2413.	5.4	27
106	Down-Regulation of Hippocampal Genes Regulating Dopaminergic, GABAergic, and Glutamatergic Function Following Combined Neonatal Phencyclidine and Post-Weaning Social Isolation of Rats as a Neurodevelopmental Model for Schizophrenia. International Journal of Neuropsychopharmacology, 2016, 19, pyw062.	2.1	27
107	Modulation of cyclic AMP formation by putative metabotropic receptor agonists. British Journal of Pharmacology, 1994, 111, 364-369.	5.4	26
108	Cannabinoid ligands, receptors and enzymes: Pharmacological tools and therapeutic potential. Brain and Neuroscience Advances, 2018, 2, 239821281878390.	3.4	26

#	Article	IF	CITATIONS
109	Excitatory Amino Acid-Induced Formation of Inositol Phosphates in Guinea-Pig Cerebral Cortical Slices: Involvement of Ionotropic or Metabotropic Receptors?. Journal of Neurochemistry, 1990, 55, 1439-1441.	3.9	24
110	A comparison of A ₂ adenosine receptorâ€induced cyclic AMP generation in cerebral cortex and relaxation of preâ€contracted aorta. British Journal of Pharmacology, 1994, 111, 185-190.	5.4	24
111	Effects of the A2A adenosine receptor antagonist KW6002 in the nucleus accumbens in vitro and in vivo. Pharmacology Biochemistry and Behavior, 2006, 83, 114-121.	2.9	24
112	A novel mechanism of vasoregulation: ADPâ€induced relaxation of the porcine isolated coronary artery is mediated via adenosine release. FASEB Journal, 2007, 21, 577-585.	0.5	24
113	Endocannabinoid Turnover. Advances in Pharmacology, 2017, 80, 31-66.	2.0	24
114	Distinct mechanisms of relaxation to bioactive components from chamomile species in porcine isolated blood vessels. Toxicology and Applied Pharmacology, 2013, 272, 797-805.	2.8	22
115	Vasorelaxation to <i>N</i> à€oleoylethanolamine in rat isolated arteries: mechanisms of action and modulation via cyclooxygenase activity. British Journal of Pharmacology, 2010, 160, 701-711.	5.4	21
116	Effects of the cannabinoid CB 1 agonist ACEA on salicylate ototoxicity, hyperacusis and tinnitus in guinea pigs. Hearing Research, 2017, 356, 51-62.	2.0	21
117	Endocannabinoid system imbalance in the postmortem prefrontal cortex of subjects with schizophrenia. Journal of Psychopharmacology, 2019, 33, 1132-1140.	4.0	21
118	Oleamide activates peroxisome proliferator-activated receptor gamma (PPARγ) in vitro. Lipids in Health and Disease, 2012, 11, 51.	3.0	20
119	nâ~3 polyunsaturated N-acylethanolamines are CB2 cannabinoid receptor-preferring endocannabinoids. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 1433-1440.	2.4	20
120	A Biophysical Model of Endocannabinoid-Mediated Short Term Depression in Hippocampal Inhibition. PLoS ONE, 2013, 8, e58926.	2.5	20
121	Inositol 1,4,5â€trisphosphate generation and calcium mobilisation via activation of an atypical P ₂ receptor in the neuronal cell line, N1Eâ€115. British Journal of Pharmacology, 1992, 107, 1083-1087.	5.4	19
122	Novel phomactin analogues as PAF receptor ligands. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 3263-3266.	2.2	18
123	A spectrophotometric assay for fatty acid amide hydrolase suitable for high-throughput screening. Biochemical Pharmacology, 2005, 69, 1187-1193.	4.4	18
124	The effects of obesity, diabetes and metabolic syndrome on the hydrolytic enzymes of the endocannabinoid system in animal and human adipocytes. Lipids in Health and Disease, 2014, 13, 43.	3.0	18
125	Endogenous Adenosine Regulates the Apparent Efficacy of 1-Aminocyclopentyl-1S,3R-Dicarboxylate Inhibition of Forskolin-Stimulated Cyclic AMP Accumulation in Rat Cerebral Cortical Slices. Journal of Neurochemistry, 1993, 60, 780-782.	3.9	17
126	A ₁ adenosine receptor inhibition of cyclic AMP formation and radioligand binding in the guineaâ€pig cerebral cortex. British Journal of Pharmacology, 1994, 113, 1501-1507.	5.4	17

#	Article	IF	CITATIONS
127	Adenosine receptorâ€mediated relaxation of guineaâ€pig precontracted, isolated trachea. British Journal of Pharmacology, 1995, 116, 2425-2428.	5.4	17
128	Guide to Receptors and Channels, 1st Edition (2005 revision). British Journal of Pharmacology, 2005, 144, S1-S2.	5.4	17
129	Coronary artery hypoxic vasorelaxation is augmented by perivascular adipose tissue through a mechanism involving hydrogen sulphide and cystathionineâ€Î²â€synthase. Acta Physiologica, 2018, 224, e13126.	3.8	17
130	Adenosine receptorâ€induced second messenger production in adult guineaâ€pig cerebellum. British Journal of Pharmacology, 1993, 110, 1085-1090.	5.4	16
131	Forskolin and 3â€Isobutylâ€Iâ€Methylxanthine Increase Basal and Sodium Nitroprussideâ€Elevated Cyclic GMP Levels in Adult Guineaâ€Pig Cerebellar Slices. Journal of Neurochemistry, 1994, 62, 2212-2218.	3.9	15
132	A critical role for cystathionine- \hat{l}^2 -synthase in hydrogen sulfide-mediated hypoxic relaxation of the coronary artery. Vascular Pharmacology, 2017, 93-95, 20-32.	2.1	15
133	Barriers to the wider adoption of medicinal <i>Cannabis </i> British Journal of Pain, 2020, 14, 122-132.	1.5	14
134	The Measurement of Cyclic AMP Levels in Biological Preparations. , 1995, 41, 79-90.		13
135	A1 adenosine receptor modulation of electrically-evoked contractions in the bisected vas deferens and cauda epididymis of the guinea-pig. British Journal of Pharmacology, 1998, 124, 964-970.	5.4	11
136	A role for the sodium pump in H2O2-induced vasorelaxation in porcine isolated coronary arteries. Pharmacological Research, 2014, 90, 25-35.	7.1	11
137	Effects of NAD at purine receptors in isolated blood vessels. Purinergic Signalling, 2015, 11, 47-57.	2.2	11
138	Carnitine palmitoyltransferase 1C negatively regulates the endocannabinoid hydrolase ABHD6 in mice, depending on nutritional status. British Journal of Pharmacology, 2021, 178, 1507-1523.	5.4	11
139	Is the Adenosine Receptor Modulation of Histamine-Induced Accumulation of Inositol Phosphates in Cerebral Cortical Slices Mediated by Effects on Calcium Ion Fluxes?. Journal of Neurochemistry, 1990, 55, 1138-1141.	3.9	10
140	A1 and A2 adenosine receptor modulation of contractility in the cauda epididymis of the guinea-pig. British Journal of Pharmacology, 1998, 125, 570-576.	5.4	10
141	New updated GRAC Fifth Edition with searchable online version Launch of new portal Guide to Pharmacology in association with NC-IUPHAR Transporter-Themed Issue. British Journal of Pharmacology, 2011, 164, 1749-1750.	5.4	10
142	Hydrogen peroxide as a mediator of vasorelaxation evoked by N-oleoylethanolamine and anandamide in rat small mesenteric arteries. European Journal of Pharmacology, 2012, 674, 384-390.	3.5	10
143	Ligand discrimination during virtual screening of the CB1 cannabinoid receptor crystal structures following cross-docking and microsecond molecular dynamics simulations. RSC Advances, 2019, 9, 15949-15956.	3.6	10
144	Qualitative differences in [Ca2+]i increases and InsP3 generation following stimulation of N1E-115 cells with micromolar and millimolar ATP. Biochemical Pharmacology, 1992, 44, 1479-1487.	4.4	9

#	Article	IF	Citations
145	BJP is linking its articles to the IUPHAR/BPS Guide to PHARMACOLOGY. British Journal of Pharmacology, 2015, 172, 2929-2932.	5.4	8
146	Guiding principles for the use of knowledge bases and real-world data in clinical decision support systems: report by an international expert workshop at Karolinska Institutet. Expert Review of Clinical Pharmacology, 2020, 13, 925-934.	3.1	8
147	Cannabinoid receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	8
148	Class A Orphans (version 2019.5) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	8
149	Natriuretic peptideâ€induced cyclic GMP accumulation in adult guineaâ€pig cerebellar slices. British Journal of Pharmacology, 1994, 113, 216-220.	5.4	7
150	Effect of inhibition of extracellular signalâ€regulated kinase on relaxations to βâ€adrenoceptor agonists in porcine isolated blood vessels. British Journal of Pharmacology, 2009, 158, 1713-1719.	5.4	7
151	The IUPHAR Guide to Immunopharmacology: connecting immunology and pharmacology. Immunology, 2020, 160, 10-23.	4.4	7
152	Class A Orphans (version 2020.5) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2020, 2020, .	0.2	7
153	DHPMP: a novel group I specific metabotropic glutamate receptor agonist. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 2137-2140.	2.2	6
154	Simvastatin evokes an unpredicted inhibition of \hat{l}^2 -adrenoceptor-mediated vasodilatation in porcine coronary artery. European Journal of Pharmacology, 2012, 690, 158-163.	3.5	6
155	Antagonism of <scp>P2Y₁</scp> â€induced vasorelaxation by acyl <scp>CoA</scp> : a critical role for palmitate and 3′â€phosphate. British Journal of Pharmacology, 2013, 168, 1911-1922.	5.4	5
156	2012 cannabinoid themed section. British Journal of Pharmacology, 2012, 167, 1573-1574.	5.4	4
157	Neuromolecular Mechanisms of Cannabis Action. Advances in Experimental Medicine and Biology, 2021, 1264, 15-28.	1.6	4
158	SARS-CoV-2 proteins (version 2020.2) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2020, 2020, .	0.2	4
159	Excitatory Amino Acid-Induced Phosphoinositide Turnover in Guinea Pig Cerebral Cortical Slices: Selective Enhancement by Spermine of the Response to DL-1-Aminocyclopentane- trans-1, 3-Dicarboxylate. Journal of Neurochemistry, 1992, 59, 610-615.	3.9	3
160	Coupling of metabotropic glutamate receptors to phosphoinositide mobilisation and inhibition of cyclic AMP generation in the guineaâ€pig cerebellum. British Journal of Pharmacology, 1996, 118, 311-316.	5.4	3
161	Heterogeneity of Î ² -Adrenoceptors in Guinea-Pig Brain: Radioligand Binding and Cyclic Nucleotide Generation. Journal of Neurochemistry, 2002, 68, 2610-2617.	3.9	3
162	Cannabinoids and their actions. British Journal of Pharmacology, 2007, 152, 557-558.	5.4	3

#	Article	IF	CITATIONS
163	EDITORIAL. British Journal of Pharmacology, 2010, 160, 421-422.	5.4	3
164	Transporters are an underâ€developed therapeutic target. Discuss. British Journal of Pharmacology, 2011, 164, 1751-1752.	5.4	3
165	GuideToPharmacology.org – an update. British Journal of Pharmacology, 2012, 167, 697-698.	5.4	3
166	Class A Orphans in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	3
167	The Life Cycle of the Endocannabinoids: Formation and Inactivation. Current Topics in Behavioral Neurosciences, 2009, 1, 3-35.	1.7	3
168	Cannabinoid research in the 2010s. British Journal of Pharmacology, 2012, 165, 2409-2410.	5.4	2
169	Common Receptors for Endocannabinoid-Like Mediators and Plant Cannabinoids. , 2015, , 153-175.		2
170	The BJP expects authors to share data. British Journal of Pharmacology, 2019, 176, 4595-4598.	5.4	2
171	Editorial policy regarding the citation of preprints in the <i>British Journal of Pharmacology</i> (<i>BJP</i>). British Journal of Pharmacology, 2021, 178, 3605-3610.	5.4	2
172	Do polyamines regulate the NMDA inhibition of muscarinic receptor-induced phosphoinositide turnover in guinea pig brain?. Neuroscience Letters, 1991, 131, 167-170.	2.1	1
173	Adenosine Receptor Modulation of Inositol Phospholipid Turnover in the Central Nervous System. Nucleosides & Nucleotides, 1991, 10, 1113-1116.	0.5	1
174	Spermine enhances calcium- and GTP analogue-stimulated particulate phosphoinositidase. Biochemical Society Transactions, 1992, 20, 20S-20S.	3.4	1
175	Assay of Receptorâ€Stimulated Phosphoinositide Turnover. Current Protocols in Pharmacology, 2005, 30, Unit2.7.	4.0	1
176	Fatty Acid Amide Hydrolase (FAAH)., 2009,, 1-7.		1
177	Depolarizing and calcium-mobilizing stimuli fail to enhance synthesis and release of endocannabinoids from rat brain cerebral cortex slices. Journal of Neurochemistry, 2011, 117, no-no.	3.9	1
178	Second annual UK Purine Club Symposium report 2010. Purinergic Signalling, 2011, 7, 141-141.	2.2	1
179	The endocannabinoid system as a nexus of signalling complexity. Pharmacological Reports, 2015, 67, 3.	3.3	1
180	Preface. Advances in Pharmacology, 2017, 80, xv-xvi.	2.0	1

#	Article	IF	Citations
181	Cannabinoids and their actions: An update. British Journal of Pharmacology, 2019, 176, 1359-1360.	5.4	1
182	Hydrolases (version 2019.5) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	1
183	Coronavirus (CoV) proteins (version 2020.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2020, 2020, .	0.2	1
184	Assay of Receptor‧timulated Phosphoinositide Turnover. Current Protocols in Pharmacology, 1999, 7, 2.7.1.	4.0	0
185	Response to: "Relative importance of mechanisms needs clarification― FASEB Journal, 2007, 21, 1953-1953.	0.5	0
186	ENDOCANNABINOID TOXICITY IN A CELL CULTURE MODEL OF PARKINSON'S DISEASE. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, A13.4-A14.	1.9	0
187	SP0147â€ETHICAL ISSUES IN MEDICAL CANNABIS USE. , 2019, , .		0
188	Endocannabinoid turnover in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	0
189	Coronavirus (CoV) proteins in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	0
190	A-2A Adenosine Receptor. , 2007, , 1-18.		0
191	A-2B Adenosine Receptor. , 2007, , 1-18.		0
192	A-1 Adenosine Receptor., 2007,, 1-26.		0
193	SB-366791., 2008, , 1-2.		0
194	Monoacylglycerol Lipase (MAG Lipase). , 2009, , 1-5.		0
195	N-Oleoylethanolamine., 2009,, 1-4.		0
196	N-Acylphosphatidylethanolamine Phospholipase D (NAPE-PLD). , 2009, , 1-6.		0
197	The IUPHAR/BPS Guide to PHARMACOLOGY database (GtoPdb) in 2018: new features and updates. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-8-11.	0.0	0
198	The International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR): Relevance to pharmacology today and challenges for the future. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-8-10.	0.0	0

#	Article	IF	CITATIONS
199	Class A Orphans (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	O
200	Hydrolases (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	0
201	S33: Prolyl aminopeptidase (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	0
202	GPR18, GPR55 and GPR119 (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	0
203	Endocannabinoid turnover (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	0
204	Endocannabinoid hydrolases are differentially distributed in human blood fractions and differentially influenced by thrombin. FASEB Journal, 2020, 34, 1-1.	0.5	0
205	The Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology: Achieving Consensus in Nomenclature and Championing Reproducible Pharmacology., 2021,,.		0
206	The (concise) guides to pharmacology and what they provide for physiologists. , 2022, , 28-31.		0
207	Coronavirus (CoV) proteins in GtoPdb v.2022.2. IUPHAR/BPS Guide To Pharmacology CITE, 2022, 2022, .	0.2	O