
Tim G A M Wolfs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9296526/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation. Journal of Clinical Investigation, 1999, 104, 541-549.	3.9	499
2	In Vivo Expression of Toll-Like Receptor 2 and 4 by Renal Epithelial Cells: IFN-Î ³ and TNF-α Mediated Up-Regulation During Inflammation. Journal of Immunology, 2002, 168, 1286-1293.	0.4	406
3	Complement Factor C5a Mediates Renal Ischemia-Reperfusion Injury Independent from Neutrophils. Journal of Immunology, 2003, 170, 3883-3889.	0.4	224
4	Mesenchymal Stromal Cell-Derived Extracellular Vesicles Protect the Fetal Brain After Hypoxia-Ischemia. Stem Cells Translational Medicine, 2016, 5, 754-763.	1.6	223
5	Chorioamnionitis as a Risk Factor for Necrotizing Enterocolitis: AÂSystematic Review and Meta-Analysis. Journal of Pediatrics, 2013, 162, 236-242.e2.	0.9	187
6	The Mannose-Binding Lectin-Pathway Is Involved in Complement Activation in the Course of Renal Ischemia-Reperfusion Injury. American Journal of Pathology, 2004, 165, 1677-1688.	1.9	175
7	Functional Protection by Acute Phase Proteins α ₁ -Acid Glycoprotein and α ₁ -Antitrypsin Against Ischemia/Reperfusion Injury by Preventing Apoptosis and Inflammation. Circulation, 2000, 102, 1420-1426.	1.6	167
8	Inhibition of complement factor C5 protects against renal ischemia-reperfusion injury: inhibition of late apoptosis and inflammation1. Transplantation, 2003, 75, 375-382.	0.5	156
9	Toll-Like Receptor 4 Ligation on Intrinsic Renal Cells Contributes to the Induction of Antibody-Mediated Glomerulonephritis via CXCL1 and CXCL2. Journal of the American Society of Nephrology: JASN, 2007, 18, 1732-1739.	3.0	97
10	Reduction of circulating redox-active iron by apotransferrin protects against renal ischemia-reperfusion injury1. Transplantation, 2004, 77, 669-675.	0.5	87
11	Endotoxin Induced Chorioamnionitis Prevents Intestinal Development during Gestation in Fetal Sheep. PLoS ONE, 2009, 4, e5837.	1.1	85
12	Mesenchymal Stem Cells Induce T-Cell Tolerance and Protect the Preterm Brain after Global Hypoxia-Ischemia. PLoS ONE, 2013, 8, e73031.	1.1	78
13	Cerebral inflammation and mobilization of the peripheral immune system following global hypoxia-ischemia in preterm sheep. Journal of Neuroinflammation, 2013, 10, 13.	3.1	74
14	APOPTOSIS AND CHEMOKINE INDUCTION AFTER RENAL ISCHEMIA-REPERFUSION1. Transplantation, 2001, 71, 1007-1011.	0.5	63
15	Chorioamnionitis, neuroinflammation, and injury: timing is key in the preterm ovine fetus. Journal of Neuroinflammation, 2018, 15, 113.	3.1	63
16	Human perinatal immunity in physiological conditions and during infection. Molecular and Cellular Pediatrics, 2017, 4, 4.	1.0	58
17	Preterm Brain Injury, Antenatal Triggers, and Therapeutics: Timing Is Key. Cells, 2020, 9, 1871.	1.8	58
18	Localization of the lipopolysaccharide recognition complex in the human healthy and inflamed premature and adult gut. Inflammatory Bowel Diseases, 2010, 16, 68-75.	0.9	54

#	Article	IF	CITATIONS
19	Chorioamnionitis-induced fetal gut injury is mediated by direct gut exposure of inflammatory mediators or by lung inflammation. American Journal of Physiology - Renal Physiology, 2014, 306, G382-G393.	1.6	51
20	IL-1α Mediated Chorioamnionitis Induces Depletion of FoxP3+ Cells and Ileal Inflammation in the Ovine Fetal Gut. PLoS ONE, 2011, 6, e18355.	1.1	48
21	Lysophosphatidic Acid Prevents Renal Ischemia-Reperfusion Injury by Inhibition of Apoptosis and Complement Activation. American Journal of Pathology, 2003, 163, 47-56.	1.9	47
22	Annexin A1 as Neuroprotective Determinant for Blood-Brain Barrier Integrity in Neonatal Hypoxic-Ischemic Encephalopathy. Journal of Clinical Medicine, 2019, 8, 137.	1.0	47
23	Inflammation-induced immune suppression of the fetus: a potential link between chorioamnionitis and postnatal early onset sepsis. Journal of Maternal-Fetal and Neonatal Medicine, 2012, 25, 8-11.	0.7	46
24	Apoptotic Cell Death Is Initiated During Normothermic Ischemia in Human Kidneys. American Journal of Transplantation, 2005, 5, 68-75.	2.6	45
25	Exogenous alpha-1-Acid Glycoprotein Protects against Renal Ischemia-Reperfusion Injury by Inhibition of Inflammation and Apoptosis. Transplantation, 2004, 78, 1116-1124.	0.5	38
26	Effects of Intra-Amniotic Lipopolysaccharide and Maternal Betamethasone on Brain Inflammation in Fetal Sheep. PLoS ONE, 2013, 8, e81644.	1.1	37
27	Acute LPS sensitization and continuous infusion exacerbates hypoxic brain injury in a piglet model of neonatal encephalopathy. Scientific Reports, 2019, 9, 10184.	1.6	36
28	Noninvasive measurement of intestinal epithelial damage at time of refeeding can predict clinical outcome after necrotizing enterocolitis. Pediatric Research, 2013, 73, 209-213.	1.1	31
29	Intraamniotic Lipopolysaccharide Exposure Changes Cell Populations and Structure of the Ovine Fetal Thymus. Reproductive Sciences, 2013, 20, 946-956.	1.1	31
30	Multipotent adult progenitor cells for hypoxic-ischemic injury in the preterm brain. Journal of Neuroinflammation, 2015, 12, 241.	3.1	29
31	Ovine Fetal Thymus Response to Lipopolysaccharide-Induced Chorioamnionitis and Antenatal Corticosteroids. PLoS ONE, 2012, 7, e38257.	1.1	28
32	Increased release of sMD-2 during human endotoxemia and sepsis: A role for endothelial cells. Molecular Immunology, 2008, 45, 3268-3277.	1.0	26
33	ACTIVATED CASPASE-1 IS NOT A CENTRAL MEDIATOR OF INFLAMMATION IN THE COURSE OF ISCHEMIA-REPERFUSION1. Transplantation, 2001, 71, 778-784.	0.5	25
34	Systemic G-CSF attenuates cerebral inflammation and hypomyelination but does not reduce seizure burden in preterm sheep exposed to global hypoxia–ischemia. Experimental Neurology, 2013, 250, 293-303.	2.0	25
35	Breastâ€Feeding Improves Gut Maturation Compared With Formula Feeding in Preterm Babies. Journal of Pediatric Gastroenterology and Nutrition, 2014, 59, 720-724.	0.9	24
36	RAPID PULMONARY EXPRESSION OF ACUTE-PHASE REACTANTS AFTER LOCAL LIPOPOLYSACCHARIDE EXPOSURE IN MICE IS FOLLOWED BY AN INTERLEUKIN-6 MEDIATED SYSTEMIC ACUTE-PHASE RESPONSE. Experimental Lung Research, 2005, 31, 855-871.	0.5	22

#	Article	IF	CITATIONS
37	Selective IL-1α exposure to the fetal gut, lung, and chorioamnion/skin causes intestinal inflammatory and developmental changes in fetal sheep. Laboratory Investigation, 2016, 96, 69-80.	1.7	22
38	The Paradoxical Effects of Chronic Intra-Amniotic <i>Ureaplasma parvum</i> Exposure on Ovine Fetal Brain Development. Developmental Neuroscience, 2017, 39, 472-486.	1.0	22
39	Intra-amniotic Candida albicans infection induces mucosal injury and inflammation in the ovine fetal intestine. Scientific Reports, 2016, 6, 29806.	1.6	21
40	Neuroinflammation and structural injury of the fetal ovine brain following intra-amniotic Candida albicans exposure. Journal of Neuroinflammation, 2016, 13, 29.	3.1	20
41	Intestinal fatty acid–binding protein: a possible marker for gut maturation. Pediatric Research, 2014, 76, 261-268.	1.1	19
42	An acute intake of plant stanol esters alters immune-related pathways in the jejunum of healthy volunteers. British Journal of Nutrition, 2015, 113, 794-802.	1.2	19
43	Electrical stimulation promotes the angiogenic potential of adipose-derived stem cells. Scientific Reports, 2019, 9, 12076.	1.6	19
44	Prematurity, perinatal inflammatory stress, and the predisposition to develop chronic kidney disease beyond oligonephropathy. Pediatric Nephrology, 2021, 36, 1673-1681.	0.9	18
45	Prophylactic Interleukin-2 Treatment Prevents Fetal Gut Inflammation and Injury in an Ovine Model of Chorioamnionitis. Inflammatory Bowel Diseases, 2015, 21, 2026-2038.	0.9	17
46	Responses of the spleen to intraamniotic lipopolysaccharide exposure in fetal sheep. Pediatric Research, 2015, 77, 29-35.	1.1	15
47	Mesenchymal stem/stromal cells—a key mediator for regeneration after perinatal morbidity?. Molecular and Cellular Pediatrics, 2016, 3, 6.	1.0	15
48	Loss of enteric neuronal <i>Ndrg4</i> promotes colorectal cancer via increased release of Nid1 and Fbln2. EMBO Reports, 2021, 22, e51913.	2.0	14
49	Can the preterm lung recover from perinatal stress?. Molecular and Cellular Pediatrics, 2016, 3, 15.	1.0	13
50	Chronic Intra-Uterine Ureaplasma parvum Infection Induces Injury of the Enteric Nervous System in Ovine Fetuses. Frontiers in Immunology, 2020, 11, 189.	2.2	13
51	Pulmonary vascular changes in extremely preterm sheep after intra-amniotic exposure to Ureaplasma parvum and lipopolysaccharide. PLoS ONE, 2017, 12, e0180114.	1.1	13
52	Increased levels of deleted in malignant brain tumours 1 (DMBT1) in active bacteriaâ€related appendicitis. Histopathology, 2012, 60, 561-569.	1.6	12
53	Systemic interleukin-2 administration improves lung function and modulates chorioamnionitis-induced pulmonary inflammation in the ovine fetus. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L1-L7.	1.3	12
54	Altered canonical Wingless-Int signaling in the ovine fetal lung after exposure to intra-amniotic lipopolysaccharide and antenatal betamethasone. Pediatric Research, 2014, 75, 281-287.	1.1	10

#	Article	IF	CITATIONS
55	Enteral Feeding Interventions in the Prevention of Necrotizing Enterocolitis: A Systematic Review of Experimental and Clinical Studies. Nutrients, 2021, 13, 1726.	1.7	10
56	Global Hypoxia-Ischemia Induced Inflammation and Structural Changes in the Preterm Ovine Gut Which Were Not Ameliorated by Mesenchymal Stem Cell Treatment. Molecular Medicine, 2016, 22, 244-257.	1.9	9
57	Protection of the Ovine Fetal Gut against Ureaplasma-Induced Chorioamnionitis: A Potential Role for Plant Sterols. Nutrients, 2019, 11, 968.	1.7	9
58	Chorioamnionitis induces enteric nervous system injury: effects of timing and inflammation in the ovine fetus. Molecular Medicine, 2020, 26, 82.	1.9	9
59	Hypothermia is not therapeutic in a neonatal piglet model of inflammation-sensitized hypoxia–ischemia. Pediatric Research, 2022, 91, 1416-1427.	1.1	9
60	The Effects of Dexamethasone and Oxygen in Ventilated Adult Sheep with Early Phase Acute Respiratory Distress Syndrome. Lung, 2015, 193, 97-103.	1.4	7
61	Comparison of ECG-based physiological markers for hypoxia in a preterm ovine model. Pediatric Research, 2016, 79, 907-915.	1.1	6
62	Intestinal Goblet Cell Loss during Chorioamnionitis in Fetal Lambs: Mechanistic Insights and Postnatal Implications. International Journal of Molecular Sciences, 2021, 22, 1946.	1.8	6
63	Using trend templates in a neonatal seizure algorithm improves detection of short seizures in a foetal ovine model. Physiological Measurement, 2015, 36, 369-384.	1.2	5
64	ST waveform analysis for monitoring hypoxic distress in fetal sheep after prolonged umbilical cord occlusion. PLoS ONE, 2018, 13, e0195978.	1.1	5
65	Systemic multipotent adult progenitor cells protect the cerebellum after asphyxia in fetal sheep. Stem Cells Translational Medicine, 2021, 10, 57-67.	1.6	5
66	Screening of Chorioamnionitis Using Volatile Organic Compound Detection in Exhaled Breath: A Pre-clinical Proof of Concept Study. Frontiers in Pediatrics, 2021, 9, 617906.	0.9	5
67	Prophylactic Intra-Uterine β-Cyclodextrin Administration during Intra-Uterine Ureaplasma parvum Infection Partly Prevents Liver Inflammation without Interfering with the Enterohepatic Circulation of the Fetal Sheep. Nutrients, 2020, 12, 1312.	1.7	4
68	Serial blood cytokine and chemokine mRNA and microRNA over 48 h are insult specific in a piglet model of inflammation-sensitized hypoxia–ischaemia. Pediatric Research, 2021, 89, 464-475.	1.1	4
69	Detection of Volatile Organic Compounds as Potential Novel Biomarkers for Chorioamnionitis – Proof of Experimental Models. Frontiers in Pediatrics, 2021, 9, 698489.	0.9	4
70	Sequential Exposure to Antenatal Microbial Triggers Attenuates Alveolar Growth and Pulmonary Vascular Development and Impacts Pulmonary Epithelial Stem/Progenitor Cells. Frontiers in Medicine, 2021, 8, 614239.	1.2	2
71	Chorioamnionitis induces changes in ovine pulmonary endogenous epithelial stem/progenitor cells in utero. Pediatric Research, 2021, 90, 549-558.	1.1	2
72	Electrospun Scaffolds Functionalized with a Hydrogen Sulfide Donor Stimulate Angiogenesis. ACS Applied Materials & Interfaces, 0, , .	4.0	2

#	Article	IF	CITATIONS
73	Chorioamnionitis induces hepatic inflammation and time-dependent changes of the enterohepatic circulation in the ovine fetus. Scientific Reports, 2021, 11, 10331.	1.6	1
74	Chorioamnionitis Causes Kidney Inflammation, Podocyte Damage, and Pro-fibrotic Changes in Fetal Lambs. Frontiers in Pediatrics, 2022, 10, 796702.	0.9	1
75	Sildenafil Postconditioning in a Rat Model of Ventricular Fibrillation/ Resuscitation. Journal of Clinical & Experimental Cardiology, 2017, 08, .	0.0	0
76	Why -aVF can be used in STAN as a proxy for scalp electrode-derived signal; reply to comments by Kjellmer et al PLoS ONE, 2019, 14, e0221220.	1.1	0
77	Prenatal administration of multipotent adult progenitor cells modulates the systemic and cerebral immune response in an ovine model of chorioamnionitis. Brain, Behavior, & Immunity - Health, 2022, , 100458.	1.3	0