Yuya Ogawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9296211/publications.pdf

Version: 2024-02-01

471509 752698 2,550 20 17 20 citations h-index g-index papers 21 21 21 3833 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genome-wide Identification of Polycomb-Associated RNAs by RIP-seq. Molecular Cell, 2010, 40, 939-953.	9.7	914
2	N6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications. Nature Neuroscience, 2018, 21, 195-206.	14.8	317
3	Jpx RNA Activates Xist by Evicting CTCF. Cell, 2013, 153, 1537-1551.	28.9	264
4	Intersection of the RNA Interference and X-Inactivation Pathways. Science, 2008, 320, 1336-1341.	12.6	263
5	Xite, X-Inactivation Intergenic Transcription Elements that Regulate the Probability of Choice. Molecular Cell, 2003, 11, 731-743.	9.7	214
6	Association of Fission Yeast Orp1 and Mcm6 Proteins with Chromosomal Replication Origins. Molecular and Cellular Biology, 1999, 19, 7228-7236.	2.3	100
7	Chromatin assembly factor 1 ensures the stable maintenance of silent chromatin states in Arabidopsis. Genes To Cells, 2006, 11, 153-162.	1.2	81
8	Lactoferrin-iCre: A New Mouse Line to Study Uterine Epithelial Gene Function. Endocrinology, 2014, 155, 2718-2724.	2.8	78
9	Xist Exon 7 Contributes to the Stable Localization of Xist RNA on the Inactive X-Chromosome. PLoS Genetics, 2015, 11, e1005430.	3.5	55
10	Differential Methylation of <i>Xite</i> and CTCF Sites in <i>Tsix</i> Mirrors the Pattern of X-Inactivation Choice in Mice. Molecular and Cellular Biology, 2006, 26, 2109-2117.	2.3	52
11	Telomeric RNAs Mark Sex Chromosomes in Stem Cells. Genetics, 2009, 182, 685-698.	2.9	45
12	CCAAT/Enhancer-Binding Protein- \hat{l}_{\pm} Suppresses Lung Tumor Development in Mice through the p38 \hat{l}_{\pm} MAP Kinase Pathway. PLoS ONE, 2013, 8, e57013.	2.5	31
13	Dynamic interplay and function of multiple noncoding genes governing X chromosome inactivation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 112-120.	1.9	29
14	Xist RNA repeat E is essential for ASH2L recruitment to the inactive X and regulates histone modifications and escape gene expression. PLoS Genetics, 2017, 13, e1006890.	3.5	25
15	CRISPR/Cas9-mediated modulation of splicing efficiency reveals short splicing isoform of Xist RNA is sufficient to induce X-chromosome inactivation. Nucleic Acids Research, 2018, 46, e26-e26.	14.5	21
16	The uterine epithelial loss of Pten is inefficient to induce endometrial cancer with intact stromal Pten. PLoS Genetics, 2018, 14, e1007630.	3.5	21
17	Quick Fluorescent In Situ Hybridization Protocol for Xist RNA Combined with Immunofluorescence of Histone Modification in X-chromosome Inactivation. Journal of Visualized Experiments, 2014, , e52053.	0.3	17
18	Understanding the Complex Circuitry of IncRNAs at the X-inactivation Center and Its Implications in Disease Conditions. Current Topics in Microbiology and Immunology, 2015, 394, 1-27.	1.1	10

Yuya Ogawa

#	Article	IF	CITATIONS
19	Association of Autonomous Replication Activity with Replication Origins in a Human Chromosome. Experimental Cell Research, 1998, 243, 50-58.	2.6	2
20	A Quick Immuno-FISH Protocol for Detecting RNAs, Proteins, and Chromatin Modifications. Methods in Molecular Biology, 2021, 2254, 251-257.	0.9	2