
## George Cosner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/92961/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | How Habitat Edges Change Species Interactions. American Naturalist, 1999, 153, 165-182.                                                                                                         | 2.1 | 503       |
| 2  | Effects of Spatial Grouping on the Functional Response of Predators. Theoretical Population Biology, 1999, 56, 65-75.                                                                           | 1.1 | 414       |
| 3  | On the Dynamics of Predator–Prey Models with the Beddington–DeAngelis Functional Response.<br>Journal of Mathematical Analysis and Applications, 2001, 257, 206-222.                            | 1.0 | 312       |
| 4  | Diffusive logistic equations with indefinite weights: population models in disrupted environments.<br>Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 1989, 112, 293-318. | 1.2 | 183       |
| 5  | Stable Coexistence States in the Volterra–Lotka Competition Model with Diffusion. SIAM Journal on<br>Applied Mathematics, 1984, 44, 1112-1132.                                                  | 1.8 | 150       |
| 6  | Threshold behavior and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons. Quarterly of Applied Mathematics, 1984, 42, 1-14.                      | 0.7 | 143       |
| 7  | Diffusive Logistic Equations with Indefinite Weights: Population Models in Disrupted Environments II.<br>SIAM Journal on Mathematical Analysis, 1991, 22, 1043-1064.                            | 1.9 | 137       |
| 8  | Movement toward better environments and the evolution of rapid diffusion. Mathematical Biosciences, 2006, 204, 199-214.                                                                         | 1.9 | 115       |
| 9  | Advection-mediated coexistence of competing species. Proceedings of the Royal Society of Edinburgh<br>Section A: Mathematics, 2007, 137, 497-518.                                               | 1.2 | 110       |
| 10 | Evolution of dispersal and the ideal free distribution. Mathematical Biosciences and Engineering, 2010, 7, 17-36.                                                                               | 1.9 | 105       |
| 11 | Reaction-diffusion-advection models for the effects and evolution of dispersal. Discrete and Continuous Dynamical Systems, 2014, 34, 1701-1745.                                                 | 0.9 | 103       |
| 12 | On the effects of spatial heterogeneity on the persistence of interacting species. Journal of Mathematical Biology, 1998, 37, 103-145.                                                          | 1.9 | 91        |
| 13 | Does movement toward better environments always benefit a population?. Journal of Mathematical<br>Analysis and Applications, 2003, 277, 489-503.                                                | 1.0 | 90        |
| 14 | The ideal free distribution as an evolutionarily stable strategy. Journal of Biological Dynamics, 2007, 1, 249-271.                                                                             | 1.7 | 75        |
| 15 | How climate extremes—not means—define a species' geographic range boundary via a demographic<br>tipping point. Ecological Monographs, 2014, 84, 131-149.                                        | 5.4 | 67        |
| 16 | Perceptual Ranges, Information Gathering, and Foraging Success in Dynamic Landscapes. American<br>Naturalist, 2017, 189, 474-489.                                                               | 2.1 | 67        |
| 17 | Approximating the ideal free distribution via reaction–diffusion–advection equations. Journal of<br>Differential Equations, 2008, 245, 3687-3703.                                               | 2.2 | 66        |
| 18 | A dynamic model for the ideal-free distribution as a partial differential equation. Theoretical<br>Population Biology, 2005, 67, 101-108.                                                       | 1.1 | 62        |

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Evolutionary stability of ideal free dispersal strategies in patchy environments. Journal of<br>Mathematical Biology, 2012, 65, 943-965.                                                        | 1.9 | 57        |
| 20 | Competitive reversals inside ecological reserves: the role of external habitat degradation. Journal of Mathematical Biology, 1998, 37, 491-533.                                                 | 1.9 | 56        |
| 21 | Should a Park Be an Island?. SIAM Journal on Applied Mathematics, 1993, 53, 219-252.                                                                                                            | 1.8 | 52        |
| 22 | Fish population dynamics in a seasonally varying wetland. Ecological Modelling, 2010, 221, 1131-1137.                                                                                           | 2.5 | 48        |
| 23 | Variability, vagueness and comparison methods for ecological models. Bulletin of Mathematical<br>Biology, 1996, 58, 207-246.                                                                    | 1.9 | 45        |
| 24 | Evolutionary stability of ideal free nonlocal dispersal. Journal of Biological Dynamics, 2012, 6, 395-405.                                                                                      | 1.7 | 42        |
| 25 | Global Bifurcation of Solutions for Crime Modeling Equations. SIAM Journal on Mathematical Analysis, 2012, 44, 1340-1358.                                                                       | 1.9 | 42        |
| 26 | Spatial Heterogeneity and Critical Patch Size: Area Effects via Diffusion in Closed Environments.<br>Journal of Theoretical Biology, 2001, 209, 161-171.                                        | 1.7 | 41        |
| 27 | How Resource Phenology Affects Consumer Population Dynamics. American Naturalist, 2016, 187, 151-166.                                                                                           | 2.1 | 39        |
| 28 | Density Dependent Behavior at Habitat Boundaries and the Allee Effect. Bulletin of Mathematical<br>Biology, 2007, 69, 2339-2360.                                                                | 1.9 | 38        |
| 29 | Practical persistence in ecological models via comparison methods. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 1996, 126, 247-272.                                    | 1.2 | 37        |
| 30 | Control of invasive hosts by generalist parasitoids. Mathematical Medicine and Biology, 2008, 25, 1-20.                                                                                         | 1.2 | 37        |
| 31 | Rapid changes in seed dispersal traits may modify plant responses to global change. AoB PLANTS, 2019, 11, plz020.                                                                               | 2.3 | 32        |
| 32 | On the effects of nonlinear boundary conditions in diffusive logistic equations on bounded domains.<br>Journal of Differential Equations, 2006, 231, 768-804.                                   | 2.2 | 31        |
| 33 | Modeling the Spatial Spread of Rift Valley Fever in Egypt. Bulletin of Mathematical Biology, 2013, 75, 523-542.                                                                                 | 1.9 | 30        |
| 34 | Positive solutions for superlinear elliptic systems without variational structure. Nonlinear Analysis:<br>Theory, Methods & Applications, 1984, 8, 1427-1436.                                   | 1.1 | 29        |
| 35 | Leadership, social learning, and the maintenance (or collapse) of migratory populations. Theoretical Ecology, 2012, 5, 253-264.                                                                 | 1.0 | 27        |
| 36 | Reproductive Asynchrony in Spatial Population Models: How Mating Behavior Can Modulate Allee<br>Effects Arising from Isolation in Both Space and Time. American Naturalist, 2010, 175, 362-373. | 2.1 | 26        |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Modelling the Effects of Seasonality and Socioeconomic Impact on the Transmission of Rift Valley<br>Fever Virus. PLoS Neglected Tropical Diseases, 2015, 9, e3388.                                                         | 3.0 | 26        |
| 38 | Habitat edges and predator–prey interactions: effects on critical patch size. Mathematical<br>Biosciences, 2002, 175, 31-55.                                                                                               | 1.9 | 25        |
| 39 | Random dispersal versus fitness-dependent dispersal. Journal of Differential Equations, 2013, 254, 2905-2941.                                                                                                              | 2.2 | 24        |
| 40 | A Modeling Approach to Investigate Epizootic Outbreaks and Enzootic Maintenance of Rift Valley Fever<br>Virus. Bulletin of Mathematical Biology, 2014, 76, 2052-2072.                                                      | 1.9 | 24        |
| 41 | Modeling and control of local outbreaks of West Nile virus in the United States. Discrete and Continuous Dynamical Systems - Series B, 2016, 21, 2423-2449.                                                                | 0.9 | 24        |
| 42 | Phenologically explicit models for studying plant–pollinator interactions under climate change.<br>Theoretical Ecology, 2014, 7, 289-297.                                                                                  | 1.0 | 23        |
| 43 | Models for the effects of host movement in vector-borne disease systems. Mathematical Biosciences, 2015, 270, 192-197.                                                                                                     | 1.9 | 21        |
| 44 | Brucellosis, botflies, and brainworms: the impact of edge habitats on pathogen transmission and species extinction. Journal of Mathematical Biology, 2001, 42, 95-119.                                                     | 1.9 | 20        |
| 45 | Interspecific interactions and range limits: contrasts among interaction types. Theoretical Ecology, 2017, 10, 167-179.                                                                                                    | 1.0 | 20        |
| 46 | Well-posedness and qualitative properties of a dynamical model for the ideal free distribution.<br>Journal of Mathematical Biology, 2014, 69, 1343-1382.                                                                   | 1.9 | 19        |
| 47 | Interspecific Variation in Critical Patch Size and Gapâ€Crossing Ability as Determinants of Geographic Range Size Distributions. American Naturalist, 2009, 173, 363-375.                                                  | 2.1 | 18        |
| 48 | Conditional persistence in logistic models via nonlinear diffusion. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2002, 132, 267-281.                                                              | 1.2 | 17        |
| 49 | A Continuum Formulation of the Ideal Free Distribution and Its Implications for Population Dynamics.<br>Theoretical Population Biology, 2002, 61, 277-284.                                                                 | 1.1 | 17        |
| 50 | Multiple Reversals of Competitive Dominance in Ecological Reserves via External Habitat Degradation.<br>Journal of Dynamics and Differential Equations, 2004, 16, 973-1010.                                                | 1.9 | 17        |
| 51 | Global bifurcation of solutions to diffusive logistic equations on bounded domains subject to<br>nonlinear boundary conditions. Proceedings of the Royal Society of Edinburgh Section A:<br>Mathematics, 2009, 139, 45-56. | 1.2 | 17        |
| 52 | Habitat fragmentation promotes malaria persistence. Journal of Mathematical Biology, 2019, 79, 2255-2280.                                                                                                                  | 1.9 | 17        |
| 53 | Improved foraging by switching between diffusion and advection: benefits from movement that depends on spatial context. Theoretical Ecology, 2020, 13, 127-136.                                                            | 1.0 | 17        |
| 54 | Evolution of natal dispersal in spatially heterogenous environments. Mathematical Biosciences, 2017, 283, 136-144.                                                                                                         | 1.9 | 16        |

| #  | Article                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Bifurcation from higher eigenvalues in nonlinear elliptic equations: Continua that meet infinity.<br>Nonlinear Analysis: Theory, Methods & Applications, 1988, 12, 271-277.  | 1.1 | 15        |
| 56 | Challenges in modeling biological invasions and population distributions in a changing climate.<br>Ecological Complexity, 2014, 20, 258-263.                                 | 2.9 | 15        |
| 57 | Dynamics of populations with individual variation in dispersal on bounded domains. Journal of<br>Biological Dynamics, 2018, 12, 288-317.                                     | 1.7 | 15        |
| 58 | Evolutionary stability of ideal free dispersal under spatial heterogeneity and time periodicity.<br>Mathematical Biosciences, 2018, 305, 71-76.                              | 1.9 | 15        |
| 59 | Title is missing!. Indiana University Mathematics Journal, 1981, 30, 607.                                                                                                    | 0.9 | 15        |
| 60 | Ideal Free Dispersal under General Spatial Heterogeneity and Time Periodicity. SIAM Journal on Applied<br>Mathematics, 2021, 81, 789-813.                                    | 1.8 | 14        |
| 61 | Resident-invader dynamics in infinite dimensional systems. Journal of Differential Equations, 2017, 263, 4565-4616.                                                          | 2.2 | 13        |
| 62 | Modeling the importation and local transmission of vector-borne diseases in Florida: The case of Zika outbreak in 2016. Journal of Theoretical Biology, 2018, 455, 342-356.  | 1.7 | 12        |
| 63 | Evolution of dispersal in spatial population models with multiple timescales. Journal of Mathematical<br>Biology, 2020, 80, 3-37.                                            | 1.9 | 12        |
| 64 | Two-patch model for the spread of West Nile virus. Bulletin of Mathematical Biology, 2018, 80, 840-863.                                                                      | 1.9 | 11        |
| 65 | On a competitive system with ideal free dispersal. Journal of Differential Equations, 2018, 265, 3464-3493.                                                                  | 2.2 | 11        |
| 66 | Asymptotic behavior of solutions of second order parabolic partial differential equations with unbounded coefficients. Journal of Differential Equations, 1980, 35, 407-428. | 2.2 | 10        |
| 67 | A priori bounds for positive solutions of a semilinear elliptic equation. Proceedings of the American<br>Mathematical Society, 1985, 95, 47-47.                              | 0.8 | 10        |
| 68 | On the development of functionals which satisfy a maximum principle. Applicable Analysis, 1987, 26,<br>45-60.                                                                | 1.3 | 10        |
| 69 | Variability, vagueness and comparison methods for ecological models. Bulletin of Mathematical<br>Biology, 1996, 58, 207-246.                                                 | 1.9 | 10        |
| 70 | Title is missing!. Indiana University Mathematics Journal, 1985, 34, 517.                                                                                                    | 0.9 | 10        |
| 71 | A comparison principle for a class of fourth-order elliptic operators. Journal of Mathematical<br>Analysis and Applications, 1987, 128, 488-494.                             | 1.0 | 9         |
| 72 | On the definition of ellipticity for systems of partial differential equations. Journal of Mathematical<br>Analysis and Applications, 1991, 158, 80-93.                      | 1.0 | 9         |

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Transmission Dynamics of Rift Valley Fever Virus: Effects of Live and Killed Vaccines on Epizootic<br>Outbreaks and Enzootic Maintenance. Frontiers in Microbiology, 2016, 6, 1568.         | 3.5 | 9         |
| 74 | Systems of second order equations with nonnegative characteristic form. Communications in Partial Differential Equations, 1979, 4, 701-737.                                                 | 2.2 | 8         |
| 75 | Optimization of the First Eigenvalue of Equations with Indefinite Weights. Advanced Nonlinear Studies, 2013, 13, 79-95.                                                                     | 1.7 | 8         |
| 76 | A model for the coupling of the Greater Bairam and local environmental factors in promoting<br>Rift-Valley Fever epizootics in Egypt. Public Health, 2016, 130, 64-71.                      | 2.9 | 8         |
| 77 | Evolutionarily stable movement strategies in reaction–diffusion models with edge behavior. Journal of Mathematical Biology, 2020, 80, 61-92.                                                | 1.9 | 8         |
| 78 | Populations with individual variation in dispersal in heterogeneous environments: Dynamics and competition with simply diffusing populations. Science China Mathematics, 2020, 63, 441-464. | 1.7 | 8         |
| 79 | Persistence for a Two-Stage Reaction-Diffusion System. Mathematics, 2020, 8, 396.                                                                                                           | 2.2 | 8         |
| 80 | Stability properties of a model of parallel nerve fibers. Journal of Differential Equations, 1981, 40, 303-315.                                                                             | 2.2 | 7         |
| 81 | Sign-definite solutions in some linear elliptic systems. Proceedings of the Royal Society of Edinburgh<br>Section A: Mathematics, 1989, 111, 347-358.                                       | 1.2 | 7         |
| 82 | A comparison of foraging strategies in a patchy environment. Mathematical Biosciences, 1999, 160, 25-46.                                                                                    | 1.9 | 6         |
| 83 | The Effect of Directed Movement on the Strong Allee Effect. SIAM Journal on Applied Mathematics, 2021, 81, 407-433.                                                                         | 1.8 | 6         |
| 84 | Solutions for a Flux-Dependent Diffusion Model. SIAM Journal on Mathematical Analysis, 1982, 13,<br>758-769.                                                                                | 1.9 | 5         |
| 85 | Existence of Global Solutions to a Model of a Myelinated Nerve Axon. SIAM Journal on Mathematical<br>Analysis, 1987, 18, 703-710.                                                           | 1.9 | 5         |
| 86 | PRACTICAL PERSISTENCE IN DIFFUSIVE FOOD CHAIN MODELS. Natural Resource Modelling, 1998, 11, 21-34.                                                                                          | 2.0 | 5         |
| 87 | On the generalized spectrum for second-order elliptic systems. Transactions of the American<br>Mathematical Society, 1987, 303, 345-345.                                                    | 0.9 | 5         |
| 88 | Pointwise Bounds for Strongly Coupled Time Dependent Systems of Reaction-Diffusion Equations.<br>SIAM Journal on Mathematical Analysis, 1984, 15, 350-356.                                  | 1.9 | 4         |
| 89 | Threshold Conditions for Two Diffusion Models Suggested By Nerve Impulse Conduction. SIAM<br>Journal on Applied Mathematics, 1986, 46, 844-855.                                             | 1.8 | 4         |
| 90 | Wave-Like Solutions to Reaction-Diffusion Equations on a Cylinder: Dependence on Cylinder Width.<br>SIAM Journal on Applied Mathematics, 1987, 47, 534-543.                                 | 1.8 | 4         |

0

| #   | Article                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Estimates for eigenfunctions and eigenvalues of nonlinear elliptic problems. Transactions of the<br>American Mathematical Society, 1984, 282, 59-59. | 0.9 | 4         |
| 92  | Early detection of declining populations using floor and ceiling models. Journal of Animal Ecology, 2001, 70, 906-914.                               | 2.8 | 3         |
| 93  | On the convex case in the positone problem for elliptic systems. Nonlinear Analysis: Theory, Methods<br>& Applications, 1988, 12, 827-853.           | 1.1 | 2         |
| 94  | Transport Equations with Second-Order Differential Collision Operators. SIAM Journal on<br>Mathematical Analysis, 1988, 19, 797-813.                 | 1.9 | 2         |
| 95  | Ideal free dispersal in integrodifference models. Journal of Mathematical Biology, 2022, 85, .                                                       | 1.9 | 2         |
| 96  | Some estimates of the norm of solutions of nonlinear elliptic eigenvalue problems. Applicable<br>Analysis, 1984, 18, 101-109.                        | 1.3 | 1         |
| 97  | Linear Growth Models for a Single Species: Averaging Spatial Effects via Eigenvalues. , 2003, , 89-139.                                              |     | 1         |
| 98  | Spatial Heterogeneity in Reaction-Diffusion Models for Two Competing Species. , 2003, , 295-349.                                                     |     | 1         |
| 99  | Beyond Diffusion: Conditional Dispersal in Ecological Models. Fields Institute Communications, 2013, , 305-317.                                      | 1.3 | 1         |
| 100 | A Priori Estimates in Nonlinear Eigenvalue Problems for Elliptic Systems. North-Holland Mathematics<br>Studies, 1984, 92, 123-129.                   | 0.2 | 0         |
| 101 | Density Dependent Single-Species Models. , 2003, , 141-198.                                                                                          |     | 0         |
| 102 | Permanence. , 2003, , 199-244.                                                                                                                       |     | 0         |
| 103 | Beyond Permanence: More Persistence Theory. , 2003, , 245-294.                                                                                       |     | 0         |
|     |                                                                                                                                                      |     |           |

104 Nonmonotone Systems. , 2003, , 351-394.