Lei Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/929567/publications.pdf

Version: 2024-02-01

61857 64668 6,420 89 43 79 citations h-index g-index papers 90 90 90 5782 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Mn ²⁺ and Mn ⁴⁺ red phosphors: synthesis, luminescence and applications in WLEDs. A review. Journal of Materials Chemistry C, 2018, 6, 2652-2671.	2.7	511
2	Synthesis and Photocatalytic Application of Stable Leadâ€Free Cs ₂ AgBiBr ₆ Perovskite Nanocrystals. Small, 2018, 14, e1703762.	5.2	443
3	A Highly Redâ€Emissive Leadâ€Free Indiumâ€Based Perovskite Single Crystal for Sensitive Water Detection. Angewandte Chemie - International Edition, 2019, 58, 5277-5281.	7.2	310
4	In Situ Construction of a Cs ₂ Snl ₆ Perovskite Nanocrystal/SnS ₂ Nanosheet Heterojunction with Boosted Interfacial Charge Transfer. Journal of the American Chemical Society, 2019, 141, 13434-13441.	6.6	303
5	Intrinsic Selfâ€Trapped Emission in 0D Leadâ€Free (C ₄ H ₁₄ N ₂) ₂ In ₂ Br ₁₀ Single Crystal. Angewandte Chemie - International Edition, 2019, 58, 15435-15440.	7.2	244
6	Pd-Catalyzed Three-Component Coupling of $\langle i \rangle N \langle i \rangle$ -Tosylhydrazone, Terminal Alkyne, and Aryl Halide. Journal of the American Chemical Society, 2010, 132, 13590-13591.	6.6	200
7	Intrinsic Selfâ€Trapped Emission in 0D Leadâ€Free (C ₄ H ₁₄ N ₂) ₂ In ₂ Br ₁₀ Single Crystal. Angewandte Chemie, 2019, 131, 15581-15586.	1.6	190
8	Synthesis of Functionalized <i>gem</i> -Difluoroalkenes via a Photocatalytic Decarboxylative/Defluorinative Reaction. Journal of Organic Chemistry, 2016, 81, 7908-7916.	1.7	182
9	Synthesis of 6-substituted phenanthridines by metal-free, visible-light induced aerobic oxidative cyclization of 2-isocyanobiphenyls with hydrazines. Green Chemistry, 2014, 16, 2418-2421.	4.6	167
10	Palladiumâ€Catalyzed Oxidative Crossâ€Coupling of <i>N</i> à€Tosylhydrazones or Diazoesters with Terminal Alkynes: A Route to Conjugated Enynes. Angewandte Chemie - International Edition, 2011, 50, 3510-3514.	7.2	157
11	CuBr-Catalyzed Coupling of <i>N-</i> Tosylhydrazones and Terminal Alkynes: Synthesis of Benzofurans and Indoles. Organic Letters, 2011, 13, 968-971.	2.4	153
12	Visible-light promoted \hat{I}^3 -cyanoalkyl radical generation: three-component cyanopropylation/etherification of unactivated alkenes. Chemical Communications, 2017, 53, 11544-11547.	2.2	148
13	All-Inorganic Lead-Free Cs $<$ sub $>$ 2 $<$ /sub $>$ PdX $<$ sub $>$ 6 $<$ /sub $>$ (X = Br, I) Perovskite Nanocrystals with Single Unit Cell Thickness and High Stability. ACS Energy Letters, 2018, 3, 2613-2619.	8.8	143
14	Phenanthrene Synthesis by Eosin Yâ€Catalyzed, Visible Lightâ€Induced [4+2] Benzannulation of Biaryldiazonium Salts with Alkynes. Advanced Synthesis and Catalysis, 2012, 354, 3195-3199.	2.1	132
15	Blue light-promoted cross-coupling of aryldiazoacetates and diazocarbonyl compounds. Chemical Communications, 2018, 54, 8865-8868.	2.2	129
16	Misconceptions in electronic energy transfer: bridging the gap between chemistry and physics. Chemical Society Reviews, 2018, 47, 5234-5265.	18.7	126
17	Highly efficient synthesis of cyclic carbonates from epoxides catalyzed by salen aluminum complexes with built-in "CO ₂ capture―capability under mild conditions. Green Chemistry, 2014, 16, 1496-1506.	4.6	125
18	Visible-Light-Promoted Redox Neutral γ,γ-Difluoroallylation of Cycloketone Oxime Ethers with Trifluoromethyl Alkenes via C–C and C–F Bond Cleavage. Organic Letters, 2019, 21, 3769-3773.	2.4	115

#	Article	IF	CITATIONS
19	Efficient Sensitization of Eu ³⁺ Emission by Tb ³⁺ in Ba ₃ La(PO ₄) ₃ under VUV-UV Excitation: Energy Transfer and Tunable Emission. Journal of Physical Chemistry C, 2012, 116, 15932-15937.	1.5	104
20	Metal-Free Visible-Light Induced Cross-Dehydrogenative Coupling of Tertiary Amines with Diazo Compounds. Organic Letters, 2014, 16, 4232-4235.	2.4	104
21	Site Occupancies, Luminescence, and Thermometric Properties of LiY ₉ (SiO ₄) ₆ O ₂ :Ce ³⁺ Phosphors. Inorganic Chemistry, 2016, 55, 10415-10424.	1.9	100
22	Energy Transfer and Tunable Luminescence of NaLa(PO ₃) ₄ :Tb ^{3+/Eu³⁺ under VUV and Low-Voltage Electron Beam Excitation. Journal of Physical Chemistry C, 2014, 118, 3220-3229.}	1.5	96
23	Palladium-Catalyzed C–H Functionalization of Acyldiazomethane and Tandem Cross-Coupling Reactions. Journal of the American Chemical Society, 2015, 137, 4435-4444.	6.6	94
24	Synthesis of 3-Acylindoles by Visible-Light Induced Intramolecular Oxidative Cyclization of <i>o</i> -Alkynylated <i><i>N,N</i>-Dialkylamines. Organic Letters, 2014, 16, 3264-3267.</i>	2.4	92
25	Visibleâ€Lightâ€Mediated Twoâ€Fold Unsymmetrical C(sp ³)â^'H Functionalization and Double Câ^'F Substitution. Chemistry - A European Journal, 2017, 23, 2249-2254.	1.7	85
26	Single phase white LED phosphor Ca3YAl3B4O15:Ce3+,Tb3+,Sm3+ with superior performance: Color-tunable and energy transfer study. Chemical Engineering Journal, 2021, 410, 128455.	6.6	80
27	Iminyl-Radical-Triggered C–C Bond Cleavage of Cycloketone Oxime Derivatives: Generation of Distal Cyano-Substituted Alkyl Radicals and Their Functionalization. Synthesis, 2020, 52, 1585-1601.	1.2	77
28	Synthesis of $\langle i \rangle N \langle i \rangle$ -Containing Heterocyclic Compounds Using Visible-light Photoredox Catalysis. Chemical Record, 2016, 16, 319-334.	2.9	68
29	Visible-Light-Mediated β-C–H <i>gem</i> -Difluoroallylation of Aldehydes and Cyclic Ketones through C–F Bond Cleavage of 1-Trifluoromethyl Alkenes. Organic Letters, 2020, 22, 2371-2375.	2.4	68
30	Synthesis of Quinolines by Visible‣ight Induced Radical Reaction of Vinyl Azides and αâ€Carbonyl Benzyl Bromides. Advanced Synthesis and Catalysis, 2015, 357, 2479-2484.	2.1	67
31	Concentration-Driven Selectivity of Energy Transfer Channels and Color Tunability in Ba ₃ La(PO ₄) ₃ :Tb ³⁺ , Sm ³⁺ for Warm White LEDs. Inorganic Chemistry, 2017, 56, 7433-7442.	1.9	65
32	Luminescence enhancement and energy transfers of Ce ³⁺ and Sm ³⁺ in CaSrSiO ₄ phosphor. Journal of Materials Chemistry C, 2018, 6, 7612-7618.	2.7	65
33	Excitation Wavelength Dependent Luminescence of LuNbO ₄ :Pr ³⁺ â€"Influences of Intervalence Charge Transfer and Host Sensitization. Journal of Physical Chemistry C, 2016, 120, 26044-26053.	1.5	60
34	A Highly Redâ€Emissive Leadâ€Free Indiumâ€Based Perovskite Single Crystal for Sensitive Water Detection. Angewandte Chemie, 2019, 131, 5331-5335.	1.6	57
35	Visibleâ€Lightâ€Induced Radical Cyclization of Trifluoroacetimidoyl Chlorides with Alkynes: Catalytic Synthesis of 2â€Trifluoromethyl Quinolines. Chemistry - A European Journal, 2013, 19, 16928-16933.	1.7	54
36	Spectral Properties and Energy Transfer of a Potential Solar Energy Converter. Chemistry of Materials, 2016, 28, 2834-2843.	3.2	50

#	Article	IF	Citations
37	Continuous-wave near-infrared stimulated-emission depletion microscopy using downshifting lanthanide nanoparticles. Nature Nanotechnology, 2021, 16, 975-980.	15.6	50
38	Cyclopropylmethyl Palladium Species from Carbene Migratory Insertion: New Routes to 1,3-Butadienes. Organic Letters, 2012, 14, 922-925.	2.4	49
39	A photocatalytic sp ³ C–S, C–Se and C–B bond formation through C–C bond cleavage of cycloketone oxime esters. Organic and Biomolecular Chemistry, 2019, 17, 533-540.	1.5	49
40	Copper-catalyzed synthesis of benzazoles via aerobic oxidative condensation of o-amino/mercaptan/hydroxyanilines with benzylamines. RSC Advances, 2013, 3, 15592.	1.7	48
41	Synthesis of Fluorinated Benzo[a]quinolizidines <i>via</i> Visible Lightâ€induced Tandem Substitution of Two Fluorine Atoms in a CF ₃ Group. Advanced Synthesis and Catalysis, 2017, 359, 3642-3647.	2.1	48
42	Luminescence, cathodoluminescence and Ce3+ → Eu2+ energy transfer and emission enhancement in the Sr5(PO4)3Cl:Ce3+,Eu2+ phosphor. Journal of Materials Chemistry C, 2013, 1, 7155.	2.7	46
43	Singleâ€Crystal Red Phosphors and Their Core–Shell Structure for Improved Waterâ€Resistance for Laser Diodes Applications. Angewandte Chemie - International Edition, 2021, 60, 3940-3945.	7.2	46
44	Ag(I)-Catalyzed Three-Component Reaction of 2-Alkynylbenzaldehydes, Amines, and Diazo Compounds. Organic Letters, 2015, 17, 4332-4335.	2.4	44
45	A photocatalytic decarboxylative/defluorinative $[4+3]$ annulation of $o-hydroxyphenylacetic acids and trifluoromethyl alkenes: synthesis of fluorinated dihydrobenzoxepines. Organic Chemistry Frontiers, 2018, 5, 3240-3244.$	2.3	44
46	Photoredox Defluorinative Alkylation of 1â€Trifluoromethyl Alkenes and 1,3â€Butadienes with 1,4â€Dihydropyridines as Alkylation Reagents. Asian Journal of Organic Chemistry, 2019, 8, 661-664.	1.3	44
47	Synthesis of <i>Gem</i> -Difluorinated Fused Quinolines via Visible Light-Mediated Cascade Radical Cyclization. Organic Letters, 2016, 18, 1004-1007.	2.4	38
48	Recent Advances in C-F Bond Cleavage Enabled by Visible Light Photoredox Catalysis. Molecules, 2021, 26, 7051.	1.7	34
49	Photoluminescence and Fluorescence Quenching of Graphene Oxide: A Review. Nanomaterials, 2022, 12, 2444.	1.9	34
50	Regiospecific Synthesis of Benzoxepines through Pd-Catalyzed Carbene Migratory Insertion and C–C Bond Cleavage. Journal of Organic Chemistry, 2016, 81, 2128-2134.	1.7	33
51	Sequential Au(I)-catalyzed reaction of water with $\langle i \rangle 0 \langle i \rangle$ -acetylenyl-substituted phenyldiazoacetates. Beilstein Journal of Organic Chemistry, 2011, 7, 631-637.	1.3	32
52	Recent Advances in Developing Lanthanide Metal–Organic Frameworks for Ratiometric Fluorescent Sensing. Frontiers in Chemistry, 2020, 8, 624592.	1.8	32
53	Combined Experimental and ab Initio Study of Site Preference of Ce ³⁺ in SrAl ₂ O ₄ . Journal of Physical Chemistry C, 2015, 119, 19326-19332.	1.5	31
54	Synthesis of 2-trifluoromethyl indoles via visible-light induced intramolecular radical cyclization. RSC Advances, 2015, 5, 39625-39629.	1.7	29

#	Article	IF	Citations
55	Ca ₃ Lu(AlO) ₃ (BO ₃) ₄ : Sm ³⁺ : a novel red-emitting phosphor with high colour purity for NUV-based warm white LEDs. RSC Advances, 2018, 8, 40693-40700.	1.7	29
56	Unique Spectral Overlap and Resonant Energy Transfer between Europium(II) and Ytterbium(III) Cations: No Quantum Cutting. Angewandte Chemie - International Edition, 2017, 56, 10357-10361.	7.2	26
57	Bright Green Emitting CaYAlO ₄ :Tb ³⁺ ,Ce ³⁺ Phosphor: Energy Transfer and 3Dâ€Printing Artwork. Advanced Optical Materials, 2020, 8, 2000523.	3.6	26
58	Efficient Luminescence Enhancement of Mg ₂ TiO ₄ :Mn ⁴⁺ Red Phosphor by Incorporating Plasmonic Ag@SiO ₂ Nanoparticles. ACS Applied Materials & Amp; Interfaces, 2019, 11, 21004-21009.	4.0	25
59	Divergent Conversion of $\langle i \rangle N \langle i \rangle$ -Acyl-isoxazol-5(2 $\langle i \rangle H \langle i \rangle$)-ones to Oxazoles and 1,3-Oxazin-6-ones Using Photoredox Catalysis. Organic Letters, 2019, 21, 3548-3553.	2.4	25
60	Pd-catalyzed coupling of \hat{l}^2 -hydroxy \hat{l}_{\pm} -diazocarbonyl compounds with aryl iodides: a migratory insertion/ \hat{l}^2 -hydroxy elimination sequence. Chemical Communications, 2011, 47, 3622.	2.2	24
61	Visible-light-driven radical 1,3-addition of selenosulfonates to vinyldiazo compounds. Green Chemistry, 2021, 23, 6652-6658.	4.6	24
62	Energy Transfer between Tb ³⁺ and Eu ³⁺ in LaPO ₄ : Pulsed versus Switchedâ€off Continuous Wave Excitation. Advanced Science, 2019, 6, 1900487.	5.6	20
63	Synthesis of 5-Fluoro-dihydroindolizines from Pyrrole-2-acetic Acids and Trifluoromethyl Alkenes via Dual C–F Bond Cleavage in a CF ₃ Group. Journal of Organic Chemistry, 2022, 87, 4801-4812.	1.7	19
64	Synthesis of aziridines by visible-light induced decarboxylative cyclization of N-aryl glycines and diazo compounds. Science China Chemistry, 2016, 59, 199-202.	4.2	18
65	Silver-catalyzed geminal aminofluorination of diazoketones with anilines and N-fluorobenzenesulphonimide. Organic Chemistry Frontiers, 2017, 4, 529-533.	2.3	17
66	Redoxâ€Neutral C1 Functionalization of Unprotected Tetrahydroisoquinolines with Diazo Carbonyl Compounds. Asian Journal of Organic Chemistry, 2016, 5, 1204-1207.	1.3	16
67	Spectral Properties and Energy Transfer between Ce ³⁺ and Yb ³⁺ in the Ca ₃ Sc ₂ Si ₃ O ₁₂ Host: Is It an Electron Transfer Mechanism?. Journal of Physical Chemistry A, 2016, 120, 5539-5548.	1.1	16
68	Molecular characterization, tissue distribution, and expression regulation from fasting and re-feeding of two growth hormone receptors in mandarin fish Siniperca chuatsi. Fisheries Science, 2016, 82, 155-169.	0.7	15
69	Structural modulation induced intensity enhancement of full color spectra: a case of Ba ₃ ZnTa _{2â^'x} Nb _x O ₉ :Eu ³⁺ phosphors. Journal of Materials Chemistry C, 2020, 8, 6715-6723.	2.7	15
70	Vinyldiazo Compounds as 3-Carbon Radical Acceptors: Synthesis of 4-Fluoroacridines via Visible-Light-Promoted Cascade Radical Cyclization. Organic Letters, 2021, 23, 4279-4283.	2.4	15
71	Emissionâ€Color‶unable Pbâ~Sn Alloyed Single Crystals with High Luminescent Efficiency and Stability. Advanced Optical Materials, 2022, 10, .	3.6	15
72	Singleâ€Crystal Red Phosphors and Their Core–Shell Structure for Improved Waterâ€Resistance for Laser Diodes Applications. Angewandte Chemie, 2021, 133, 3986-3991.	1.6	14

#	Article	IF	CITATIONS
73	Synthesis of Tetrasubstituted Allenes via Visible-Light-Promoted Radical 1,3-Difunctionalization of Alkynyl Diazo Compounds. Organic Letters, 2022, 24, 3976-3981.	2.4	14
74	External Photocatalyst-Free Visible Light-Promoted 1,3-Addition of Perfluoroalkyl Iodides to Vinyldiazoacetates. CCS Chemistry, 2022, 4, 638-649.	4.6	12
75	Synthesis of 3-Aryl-2-pyrones by Palladium-Catalyzed Cross-Coupling of Aryl Iodides with Cyclic Vinyldiazo Ester. Journal of Organic Chemistry, 2017, 82, 9204-9209.	1.7	11
76	Broad-band emission of A ₃ Bâ \in 2Bâ \in 2â \in 2 ₂ O ₉ complex perovskites (A = Backet Chemistry C, 2018, 6, 12566-12574.	a, Sr;) Tj E 2.7	ГQq0 0 0 rgB 11
77	Identification and expression analysis of two HSP70 isoforms in mandarin fish Siniperca chuatsi. Fisheries Science, 2014, 80, 803-817.	0.7	10
78	Relay Photocatalytic Reaction of <i>N</i> -Aryl Amino Acids and 2-Bromo-3,3,3-trifluoropropene: Synthesis of 4-(Difluoromethylidene)-tetrahydroquinolines. Organic Letters, 2022, 24, 3265-3269.	2.4	10
79	Unique Spectral Overlap and Resonant Energy Transfer between Europium(II) and Ytterbium(III) Cations: No Quantum Cutting. Angewandte Chemie, 2017, 129, 10493-10497.	1.6	9
80	Visible Light–Mediated C–F Bond Activation. , 2019, , 159-181.		8
81	Luminescence and energy transfer of Ce 3+ and Pr 3+ in LaBSiO 5. Journal of Luminescence, 2016, 177, 178-183.	1.5	7
82	Au/SiO2 nanoparticles in TiO2:Sm3+ films for improved fluorescence sensing of oxygen. Journal of Materials Chemistry C, 2017, 5, 11958-11964.	2.7	7
83	Dual-mode chromatic electrophoretic display: A prospective technology based on fluorescent electrophoretic particles. Chemical Engineering Journal, 2022, 439, 135726.	6.6	6
84	Magnetooptics of the luminescent transitions in Tb3+:Gd3Ga5O12. Optical Materials, 2015, 46, 282-291.	1.7	4
85	Low-voltage cathodoluminescence and Eu/Tb L3-edge XANES of Na1+yCa1â^'xâ^'2yEuxTbyPO4. Optical Materials, 2014, 36, 839-844.	1.7	3
86	Visible-light-promoted defluorinative ring-opening <i>gem</i> -difluoroallylation of cycloalkanols using 1-trifluoromethyl alkenes. New Journal of Chemistry, 2022, 46, 8545-8550.	1.4	3
87	Energy Transfer: Energy Transfer between Tb 3+ and Eu 3+ in LaPO 4 : Pulsed versus Switchedâ€off Continuous Wave Excitation (Adv. Sci. 10/2019). Advanced Science, 2019, 6, 1970060.	5.6	2
88	Frontispiece: Visibleâ€Lightâ€Mediated Twoâ€Fold Unsymmetrical C(sp ³)â^'H Functionalization and Double Câ^'F Substitution. Chemistry - A European Journal, 2017, 23, .	1.7	0
89	Acid-Catalyzed Oxidative Cross-Coupling of Acridans with Silyl Diazoenolates and Rh-Catalyzed Rearrangement: Two-step Synthesis of 1^3 -(9-Acridanylidene)- 1^2 -keto Esters. Organic and Biomolecular Chemistry, 2021, 19, 5649-5657.	1.5	0