List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/929561/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neuromodulation for Pain: A Comprehensive Survey and Systematic Review of Clinical Trials and Connectomic Analysis of Brain Targets. Stereotactic and Functional Neurosurgery, 2022, 100, 14-25.	1.5	5
2	Axial Impairment Following Deep Brain Stimulation in Parkinson's Disease: A Surgicogenomic Approach. Journal of Parkinson's Disease, 2022, 12, 117-128.	2.8	5
3	Normative connectomes and their use in DBS. , 2022, , 245-274.		5
4	Structuro-functional surrogates of response to subcallosal cingulate deep brain stimulation for depression. Brain, 2022, 145, 362-377.	7.6	17
5	<scp>Singleâ€Trajectory Multipleâ€Target</scp> Deep Brain Stimulation for Parkinsonian Mobility and Cognition. Movement Disorders, 2022, 37, 635-640.	3.9	10
6	3T MRI of rapid brain activity changes driven by subcallosal cingulate deep brain stimulation. Brain, 2022, 145, 2214-2226.	7.6	16
7	Deep brain stimulation for extreme behaviors associated with autism spectrum disorder converges on a common pathway: a systematic review and connectomic analysis. Journal of Neurosurgery, 2022, , 1-10.	1.6	10
8	Untapped Neuroimaging Tools for Neuro-Oncology: Connectomics and Spatial Transcriptomics. Cancers, 2022, 14, 464.	3.7	9
9	Deep brain stimulation targets in epilepsy: Systematic review and metaâ€analysis of anterior and centromedian thalamic nuclei and hippocampus. Epilepsia, 2022, 63, 513-524.	5.1	54
10	Dysgeusia induced and resolved by focused ultrasound thalamotomy: case report. Journal of Neurosurgery, 2022, 136, 215-220.	1.6	1
11	Habenular Involvement in Response to Subcallosal Cingulate Deep Brain Stimulation for Depression. Frontiers in Psychiatry, 2022, 13, 810777.	2.6	7
12	Lateralized Subthalamic Stimulation for Axial Dysfunction in Parkinson's Disease: A Randomized Trial. Movement Disorders, 2022, , .	3.9	5
13	Letter: Unforeseen Hurdles Associated With Magnetic Resonance Imaging in Patients With Deep Brain Stimulation Devices. Neurosurgery, 2022, Publish Ahead of Print, .	1.1	1
14	Brain Structures and Networks Underlying Treatment Response to Deep Brain Stimulation Targeting the Inferior Thalamic Peduncle in Obsessive-Compulsive Disorder. Stereotactic and Functional Neurosurgery, 2022, 100, 236-243.	1.5	5
15	Identifying the neural network for neuromodulation in epilepsy through connectomics and graphs. Brain Communications, 2022, 4, .	3.3	10
16	Probing responses to deep brain stimulation with functional magnetic resonance imaging. Brain Stimulation, 2022, 15, 683-694.	1.6	22
17	Response: Deep brain stimulation targets in epilepsy: Systematic review and metaâ€analysis of anterior and centromedian thalamic nuclei and hippocampus. Epilepsia, 2022, 63, 1885-1886.	5.1	4
18	A Cautionary Tale of Magnetic Resonanceâ€Guided Focused Ultrasound Thalamotomyâ€Induced White Matter Lesions. Movement Disorders, 2022, 37, 1953-1955.	3.9	0

#	Article	IF	CITATIONS
19	Probabilistic Mapping of Deep Brain Stimulation: Insights from 15 Years of Therapy. Annals of Neurology, 2021, 89, 426-443.	5.3	68
20	Technology of deep brain stimulation: current status and future directions. Nature Reviews Neurology, 2021, 17, 75-87.	10.1	341
21	Theta Burst Deep Brain Stimulation in Movement Disorders. Movement Disorders Clinical Practice, 2021, 8, 282-285.	1.5	8
22	Deep brain stimulation of the brainstem. Brain, 2021, 144, 712-723.	7.6	27
23	Brain structures and networks responsible for stimulationâ€induced memory flashbacks during forniceal deep brain stimulation for Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, 777-787.	0.8	23
24	An exploratory study into the influence of laterality and location of hippocampal sclerosis on seizure prognosis and global cortical thinning. Scientific Reports, 2021, 11, 4686.	3.3	2
25	Probabilistic characterisation of deep brain stimulation in patients with tardive syndromes. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 909-911.	1.9	1
26	Surgical targeting of large hypothalamic hamartomas and seizure-freedom following MR-guided laser interstitial thermal therapy. Epilepsy and Behavior, 2021, 116, 107774.	1.7	6
27	Sign-specific stimulation â€~hot' and â€~cold' spots in Parkinson's disease validated with machine lear Brain Communications, 2021, 3, fcab027.	ning. 3.3	20
28	Lesions causing self-injurious behavior engage putative networks modulated by deep brain stimulation. Brain Stimulation, 2021, 14, 273-276.	1.6	3
29	Long-term follow-up of deep brain stimulation for anorexia nervosa. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 1135-1136.	1.9	9
30	Mapping efficacious deep brain stimulation for pediatric dystonia. Journal of Neurosurgery: Pediatrics, 2021, 27, 346-356.	1.3	10
31	Lateralizing magnetic resonance imaging findings in mesial temporal sclerosis and correlation with seizure and neurocognitive outcome after temporal lobectomy. Epilepsy Research, 2021, 171, 106562.	1.6	1
32	A literature review of magnetic resonance imaging sequence advancements in visualizing functional neurosurgery targets. Journal of Neurosurgery, 2021, 135, 1445-1458.	1.6	14
33	Mapping autonomic, mood and cognitive effects of hypothalamic region deep brain stimulation. Brain, 2021, 144, 2837-2851.	7.6	14
34	Evolution of the Neurosurgeon's Role in Clinical Trials for Glioblastoma: A Systematic Overview of the Clinicaltrials.Gov Database. Neurosurgery, 2021, 89, 196-203.	1.1	2
35	Self-adjustment of deep brain stimulation delays optimization in Parkinson's disease. Brain Stimulation, 2021, 14, 676-681.	1.6	6
36	Predicting optimal deep brain stimulation parameters for Parkinson's disease using functional MRI and machine learning. Nature Communications, 2021, 12, 3043.	12.8	130

#	Article	IF	CITATIONS
37	Kilohertz-frequency stimulation of the nervous system: A review of underlying mechanisms. Brain Stimulation, 2021, 14, 513-530.	1.6	37
38	Potential optimization of focused ultrasound capsulotomy for obsessive compulsive disorder. Brain, 2021, 144, 3529-3540.	7.6	23
39	Acute low frequency dorsal subthalamic nucleus stimulation improves verbal fluency in Parkinson's disease. Brain Stimulation, 2021, 14, 754-760.	1.6	12
40	Bilateral Focused Ultrasound Thalamotomy for Essential Tremor (<scp>BESTâ€FUS</scp> Phase 2 Trial). Movement Disorders, 2021, 36, 2653-2662.	3.9	51
41	Flexible vs. standard subthalamic stimulation in Parkinson disease: A double-blind proof-of-concept cross-over trial. Parkinsonism and Related Disorders, 2021, 89, 93-97.	2.2	6
42	Deep Brain Stimulation of the Habenula: Systematic Review of the Literature and Clinical Trial Registries. Frontiers in Psychiatry, 2021, 12, 730931.	2.6	20
43	Impact of Mesial Temporal Lobe Resection on Brain Structure in Medically Refractory Epilepsy. World Neurosurgery, 2021, 152, e652-e665.	1.3	3
44	Blood oxygen level-dependent (BOLD) response patterns with thalamic deep brain stimulation in patients with medically refractory epilepsy. Epilepsy and Behavior, 2021, 122, 108153.	1.7	13
45	Neuromodulatory treatments for psychiatric disease: A comprehensive survey of the clinical trial landscape. Brain Stimulation, 2021, 14, 1393-1403.	1.6	14
46	Modulation of CNS Functions by Deep Brain Stimulation: Insights Provided byÂMolecular Imaging. , 2021, , 1177-1244.		3
47	Trends in Clinical Trials for Spinal Cord Stimulation. Stereotactic and Functional Neurosurgery, 2021, 99, 123-134.	1.5	13
48	Global trends in chronic thromboembolic pulmonary hypertension clinical trials and dissemination of results. Pulmonary Circulation, 2021, 11, 1-8.	1.7	0
49	Focused Ultrasound Thalamotomy Sensory Side Effects Follow the Thalamic Structural Homunculus. Neurology: Clinical Practice, 2021, 11, e497-e503.	1.6	0
50	Focused Ultrasound Thalamotomy Sensory Side Effects Follow the Thalamic Structural Homunculus. Neurology: Clinical Practice, 2021, 11, e497-e503.	1.6	1
51	The relevance of skull density ratio in selecting candidates for transcranial MR-guided focused ultrasound. Journal of Neurosurgery, 2020, 132, 1785-1791.	1.6	62
52	Probing the circuitry of panic with deep brain stimulation: Connectomic analysis and review of the literature. Brain Stimulation, 2020, 13, 10-14.	1.6	26
53	Lesion Network Mapping Analysis Identifies Potential Cause of Postoperative Depression in a Case of Cingulate Low-Grade Glioma. World Neurosurgery, 2020, 133, 278-282.	1.3	6
54	Aggressiveness after centromedian nucleus stimulation engages prefrontal thalamocortical circuitry. Brain Stimulation, 2020, 13, 357-359.	1.6	11

#	Article	IF	CITATIONS
55	Clinical trials for deep brain stimulation: Current state of affairs. Brain Stimulation, 2020, 13, 378-385.	1.6	61
56	Multimodal MRI for MRgFUS in essential tremor: post-treatment radiological markers of clinical outcome. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 921-927.	1.9	34
57	Identification of neural networks preferentially engaged by epileptogenic mass lesions through lesion network mapping analysis. Scientific Reports, 2020, 10, 10989.	3.3	16
58	Endovascular deep brain stimulation: Investigating the relationship between vascular structures and deep brain stimulation targets. Brain Stimulation, 2020, 13, 1668-1677.	1.6	12
59	A high-resolution in vivo magnetic resonance imaging atlas of the human hypothalamic region. Scientific Data, 2020, 7, 305.	5.3	87
60	Improving Safety of MRI in Patients with Deep Brain Stimulation Devices. Radiology, 2020, 296, 250-262.	7.3	40
61	A unified connectomic target for deep brain stimulation in obsessive-compulsive disorder. Nature Communications, 2020, 11, 3364.	12.8	199
62	Magnetic Resonance-Guided Focused Ultrasound Thalamotomy to Treat Essential Tremor in Nonagenarians. Stereotactic and Functional Neurosurgery, 2020, 98, 182-186.	1.5	14
63	Mapping the network underpinnings of central poststroke pain and analgesic neuromodulation. Pain, 2020, 161, 2805-2819.	4.2	21
64	3-Tesla MRI of deep brain stimulation patients: safety assessment of coils and pulse sequences. Journal of Neurosurgery, 2020, 132, 586-594.	1.6	39
65	Tractography-based targeting of the ventral intermediate nucleus: accuracy and clinical utility in MRgFUS thalamotomy. Journal of Neurosurgery, 2020, 133, 1002-1009.	1.6	20
66	Safety assessment of spine MRI in deep brain stimulation patients. Journal of Neurosurgery: Spine, 2020, 32, 973-983.	1.7	6
67	Imaging alone versus microelectrode recording–guided targeting of the STN in patients with Parkinson's disease. Journal of Neurosurgery, 2019, 130, 1847-1852.	1.6	41
68	Functional MRI Safety and Artifacts during Deep Brain Stimulation: Experience in 102 Patients. Radiology, 2019, 293, 174-183.	7.3	51
69	Neuroanatomical Correlates of Response to Focused Ultrasound Thalamotomy in Essential Tremor. Neurosurgery, 2019, 66, 310-362.	1.1	0
70	Neuromodulation beyond neurostimulation for epilepsy: scope for focused ultrasound. Expert Review of Neurotherapeutics, 2019, 19, 937-943.	2.8	23
71	Network Basis of Seizures Induced by Deep Brain Stimulation: Literature Review and Connectivity Analysis. World Neurosurgery, 2019, 132, 314-320.	1.3	23
72	Scanning Contraindicated Deep Brain Stimulator Patients on 3 Tesla MRI – A Single Centre Experience. Journal of Medical Imaging and Radiation Sciences, 2019, 50, S4.	0.3	0

#	Article	IF	CITATIONS
73	Neuroimaging Technological Advancements for Targeting in Functional Neurosurgery. Current Neurology and Neuroscience Reports, 2019, 19, 42.	4.2	29
74	ACTR-28. A CALL FOR INCREASED ROLE OF NEUROSURGEONS IN SURGICAL TRIALS FOR NON-GLIOMATOUS PRIMARY CNS TUMORS: A SYSTEMATIC REVIEW OF THE CLINICALTRIALS.GOV DATABASE. Neuro-Oncology, 2019, 21, vi19-vi19.	1.2	0
75	ACTR-27. EVOLUTION OF THE NEUROSURGEON'S ROLE IN CLINICAL TRIALS FOR GBM: A SYSTEMATIC OVERVIEW OF THE CLINICALTRIALS.GOV DATABASE. Neuro-Oncology, 2019, 21, vi18-vi19.	1.2	0
76	NIMG-25. LESION-NETWORK ANALYSIS TO IDENTIFY PREFERENTIALLY-ENGAGED NETWORKS IN EPILEPTOGENIC TUMORS. Neuro-Oncology, 2019, 21, vi166-vi167.	1.2	0
77	Lesion Network Localization of Seizure Freedom following MR-guided Laser Interstitial Thermal Ablation. Scientific Reports, 2019, 9, 18598.	3.3	21
78	On the (Nonâ€)equivalency of monopolar and bipolar settings for deep brain stimulation fMRI studies of Parkinson's disease patients. Journal of Magnetic Resonance Imaging, 2019, 49, 1736-1749.	3.4	40
79	A Deep Learning–Based Approach to Reduce Rescan and Recall Rates in Clinical MRI Examinations. American Journal of Neuroradiology, 2019, 40, 217-223.	2.4	25
80	Inferior thalamic peduncle deep brain stimulation for treatment-refractory obsessive-compulsive disorder: A phase 1 pilot trial. Brain Stimulation, 2019, 12, 344-352.	1.6	43
81	Magnetic resonance–guided focused ultrasound thalamotomy for treatment of essential tremor: A 2â€year outcome study. Movement Disorders, 2018, 33, 1647-1650.	3.9	36
82	Focused ultrasound thalamotomy location determines clinical benefits in patients with essential tremor. Brain, 2018, 141, 3405-3414.	7.6	129
83	Subthalamic Nucleus Visualization on Routine Clinical Preoperative MRI Scans: A Retrospective Study of Clinical and Image Characteristics Predicting Its Visualization. Stereotactic and Functional Neurosurgery, 2018, 96, 120-126.	1.5	12
84	Blood–brain barrier opening in Alzheimer's disease using MR-guided focused ultrasound. Nature Communications, 2018, 9, 2336.	12.8	618
85	Management of Pisa syndrome with lateralized subthalamic stimulation. Journal of Neurology, 2018, 265, 2442-2444.	3.6	8
86	Behcet Disease Presenting With Cardiac and Pulmonary Masses. Canadian Journal of Cardiology, 2015, 31, 1204.e5-1204.e7.	1.7	4
87	Progressive Disorganization of Paranodal Junctions and Compact Myelin Due to Loss of DCC Expression by Oligodendrocytes. Journal of Neuroscience, 2014, 34, 9768-9778.	3.6	12
88	Relationship between <scp>BDNF</scp> expression in major striatal afferents, striatum morphology and motor behavior in the <scp>R6/2</scp> mouse model of Huntington's disease. Genes, Brain and Behavior, 2013, 12, 108-124.	2.2	43
89	A Functional Connectome of Parkinson's Disease Patients Prior to Deep Brain Stimulation: A Tool for Disease-Specific Connectivity Analyses. Frontiers in Neuroscience, 0, 16, .	2.8	3