
M Carmen RodrÃ-guez-Argüelles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9295522/publications.pdf

Version: 2024-02-01

M CARMEN

#	Article	IF	CITATIONS
1	Immunomodulatory and Antitumoral Activity of Gold Nanoparticles Synthesized by Red Algae Aqueous Extracts. Marine Drugs, 2022, 20, 182.	2.2	10
2	Flower, stem, and leaf extracts from Hypericum perforatum L. to synthesize gold nanoparticles: Effectiveness and antioxidant activity. Surfaces and Interfaces, 2022, 32, 102181.	1.5	5
3	Evaluation of the Antioxidant Capacities of Antarctic Macroalgae and Their Use for Nanoparticles Production. Molecules, 2021, 26, 1182.	1.7	13
4	Wealth from by-products: an attempt to synthesize valuable gold nanoparticles from Brassica oleracea var. acephala cv. Galega stems. Journal of Nanostructure in Chemistry, 2021, 11, 635-644.	5.3	7
5	Saccorhiza polyschides used to synthesize gold and silver nanoparticles with enhanced antiproliferative and immunostimulant activity. Materials Science and Engineering C, 2021, 123, 111960.	3.8	20
6	Eco-friendly extraction of Mastocarpus stellatus carrageenan for the synthesis of gold nanoparticles with improved biological activity. International Journal of Biological Macromolecules, 2021, 183, 1436-1449.	3.6	17
7	Toxicity in vitro and in Zebrafish Embryonic Development of Gold Nanoparticles Biosynthesized Using Cystoseira Macroalgae Extracts. International Journal of Nanomedicine, 2021, Volume 16, 5017-5036.	3.3	16
8	Synthesis, process optimization and characterization of gold nanoparticles using crude fucoidan from the invasive brown seaweed Sargassum muticum. Algal Research, 2021, 58, 102377.	2.4	10
9	Synthesis of silver and gold nanoparticles by Sargassum muticum biomolecules and evaluation of their antioxidant activity and antibacterial properties. Journal of Nanostructure in Chemistry, 2020, 10, 317-330.	5.3	46
10	Seaweeds: A promising bionanofactory for ecofriendly synthesis of gold and silver nanoparticles. , 2020, , 507-541.		12
11	Immunostimulant and biocompatible gold and silver nanoparticles synthesized using the <i>Ulva intestinalis</i> L. aqueous extract. Journal of Materials Chemistry B, 2019, 7, 4677-4691.	2.9	37
12	Macroalgae to nanoparticles: Study of Ulva lactuca L. role in biosynthesis of gold and silver nanoparticles and of their cytotoxicity on colon cancer cell lines. Materials Science and Engineering C, 2019, 97, 498-509.	3.8	57
13	New application of two Antarctic macroalgae Palmaria decipiens and Desmarestia menziesii in the synthesis of gold and silver nanoparticles. Polar Science, 2018, 15, 49-54.	0.5	25
14	Harnessing the wine dregs: An approach towards a more sustainable synthesis of gold and silver nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 2018, 178, 302-309.	1.7	16
15	Comparison of the effectiveness of several commercial products and two new copper complexes to control Pseudomonas syringae pv. actinidiae. Acta Horticulturae, 2018, , 247-252.	0.1	6
16	Nanometals in Cancer Diagnosis and Therapy. , 2018, , 407-428.		1
17	Synthesis, structural and spectroscopic studies of 2-oxoacenaphthylen-1(2H)-ylidene nicotinohydrazide. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 172, 189-198.	2.0	1
18	Green synthesis of gold nanoparticles using brown algae Cystoseira baccata: Its activity in colon cancer cells. Colloids and Surfaces B: Biointerfaces, 2017, 153, 190-198.	2.5	204

M CARMEN

ARTICLE IF CITATIONS Synthesis, spectral characterization and X-ray crystallographic study of new copper(I) complexes. Antitumor activity in colon cancer. Polyhedron, 2016, 119, 112-119. Coated nickel foam electrode for the implementation of continuous electroâ€Fenton treatment. 20 15 1.6 Journal of Chemical Technology and Biotechnology, 2016, 91, 685-692. Copper(I) complexes of methyl 4-aryl-6-methyl-3,4-dihydropyrimidine-2(1H)-thione-5-carboxylates. Synthesis, characterization and activity in human breast cancer cells. Inorganica Chimica Acta, 2015, 1.2 438, 160-167. Gold Nanoparticles Enhancing Dismutation of Superoxide Radical by Its Bis(dithiocarbamato)copper(II) 22 1.9 10 Shell. Inorganic Chemistry, 2011, 50, 4705-4712. Chitosan and silver nanoparticles as pudding with raisins with antimicrobial properties. Journal of Colloid and Interface Science, 2011, 364, 80-84. 5.0 44 A copper(II) thiosemicarbazone complex built on gold for the immobilization of lipase and laccase. 24 5.0 11 Journal of Colloid and Interface Science, 2010, 348, 96-100. Evaluation of the antimicrobial activity of some chloro complexes of imidazole-2-carbaldehyde 1.0 28 semicarbazone: X-ray crystal structure of cis-NiCl2(H2L)(H2O). Polyhedron, 2010, 29, 864-870. Complexes of 2-acetyl-^{î3}-butyrolactone and 2-furancarbaldehyde thiosemicarbazones: Antibacterial and 26 1.5 84 antifungal activity. Journal of Inorganic Biochemistry, 2009, 103, 35-42. Antibacterial and antifungal activity of metal(II) complexes of acylhydrazones of 3-isatin and 1.0 3-(N-methyl)isatin. Polyhedron, 2009, 28, 2187-2195. Building Layer-by-Layer a Bis(dithiocarbamato)copper(II) Complex on Au{111} Surfaces. Journal of the 28 6.6 26 American Chemical Society, 2007, 129, 6927-6930. Complexes of 2-thiophenecarbonyl and isonicotinoyl hydrazones of 3-(N-methyl)isatin. A study of their 1.5 antimicrobial activity. Journal of Inorganic Biochemistry, 2007, 101, 138-147. Sodium 2-oxo-3-semicarbazono-2,3-dihydro-1H-indole-5-sulfonate dihydrate. Acta Crystallographica 30 0.4 5 Section C: Crystal Structure Communications, 2006, 62, m241-m242. Antimicrobial and mutagenic properties of organotin(IV) complexes with isatin and N-alkylisatin 1.5 84 bisthiocarbonohydrazones. Journal of Inorganic Biochemistry, 2005, 99, 397-408. Copper complexes of imidazole-2-, pyrrole-2- and indol-3-carbaldehyde thiosemicarbazones: Inhibitory 32 1.5 134 activity against fungi and bacteria. Journal of Inorganic Biochemistry, 2005, 99, 2231-2239. Isatin 3-semicarbazone and 1-methylisatin 3-semicarbazone. Acta Crystallographica Section C: Crystal Structure Communications, 2005, 61, o589-o592. Cobalt and nickel complexes of versatile imidazole- and pyrrole-2-carbaldehyde thiosemicarbazones. 34 1.2 53 Synthesis, characterisation and antimicrobial activity. Inorganica Chimica Acta, 2004, 357, 2543-2552. Synthesis, characterization and biological activity of Ni, Cu and Zn complexes of isatin hydrazones. 1.5 193 Journal of Inorganic Biochemistry, 2004, 98, 313-321. Transition-metal complexes of isatin-Î²-thiosemicarbazone. X-ray crystal structure of two nickel 36 1.5 61 complexes. Journal of Inorganic Biochemistry, 1999, 73, 7-15.

M CARMEN

#	Article	IF	CITATIONS
37	Synthesis, structure, spectroscopic properties and biological activity of mixed diorganotin(IV) complexes containing pyridine-2-carbaldehyde thiosemicarbazonato and diphenyldithiophosphinato ligands. Journal of Inorganic Biochemistry, 1999, 76, 277-284.	1.5	32
38	Diorganotin(IV) complexes of pyridoxal thiosemicarbazone: Synthesis, spectroscopic properties and biological activity. Journal of Inorganic Biochemistry, 1998, 69, 283-292.	1.5	42
39	Acenaphthenequinone thiosemicarbazone and its transition metal complexes: Synthesis, structure, and biological activity. Journal of Inorganic Biochemistry, 1997, 66, 7-17.	1.5	54
40	Synthesis, structure, and spectroscopic properties of acetato (dimethyl) (pyridine-2-carbaldehydethiosemicarbazonato)tin(IV) acetic acid solvate, [SnMe2 (PyTSC)(OAc)].HOAc. Comparison of its biological activity with that of some structurally related diorganotin(IV) bis(thiosemicarbazonates). Journal of Inorganic Biochemistry, 1996, 62, 41-55.	1.5	43
41	2,6-Diacetylpyridine bis(thiosemicarbazones) zinc complexes: Synthesis, structure, and biological activity. Journal of Inorganic Biochemistry, 1995, 58, 157-175.	1.5	61
42	Cobalt(III) complexes with thiosemicarbazones as co-ordinating agents. Spontaneous resolution by crystallization and absolute configuration. Journal of the Chemical Society Dalton Transactions, 1995, , 3035-3040.	1.1	39
43	Transition-metal complexes of cyclohexane-1,2-dione bis(thiosemicarbazone)(H2L). Crystal structures of [ZnL(OH2)]·dmf (dmf = dimethylformamide) and [Zn(H2L)Cl]Cl·2H2O. Journal of the Chemical Society Dalton Transactions, 1995, , 2297-2303.	1.1	20
44	Diorganotin(IV) derivatives of salicylaldehydethiosemicarbazone. The crystal structure of dimethyl- and diphenyl- (salicylaldehydethiosemicarbazonato)tin(IV). Inorganica Chimica Acta, 1994, 216, 169-175.	1.2	61
45	Synthesis and spectroscopic properties of diorganotin(IV) derivatives of 2,6-diacetylpyridine bis(thiosemicarbazone). Crystal structure of diphenyl{2,6-diacetylpyridine bis(thiosemicarbazonato)}tin(IV) bis(dimethylformamide) solvate. Inorganica Chimica Acta, 1994, 221, 61-68.	1.2	46
46	(p-Anisaldehyde thiosemicarbazonato)dimethylthallium(III): an unusual structure for a co-ordinated thiosemicarbazone. Journal of the Chemical Society Dalton Transactions, 1993, , 353-354.	1.1	22
47	Dimethylthallium(III) and methylmercury(II) derivatives of pyridine-2-carbaldehyde thiosemicarbazone: synthesis and structure. Journal of the Chemical Society Dalton Transactions, 1993, , 1253-1259.	1.1	30
48	Synthesis, and spectral and X-ray characterization, of methylmercury(II) and dimethylthallium(III) complexes of 2-furanthiocarboxyhydrazide. Inorganica Chimica Acta, 1992, 197, 163-168.	1.2	5
49	The Crystal and Molecular Structure of Methyl(Cyclopentanone-Thiosemicarbazonato)Mercury(II). Journal of Coordination Chemistry, 1991, 24, 177-181.	0.8	17
50	Synthetic, spectroscopic, and X-ray studies on methylmercury(II) and dimethylthallium(III) complexes with cyclopentanone thiosemicarbazone. Journal of the Chemical Society Dalton Transactions, 1989, , 1787-1791.	1.1	28