
Alexey Y Sukhorukov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9294840/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Iron(<scp>iv</scp>) complexes with tetraazaadamantane-based ligands: synthesis, structure, applications in dioxygen activation and labeling of biomolecules. Dalton Transactions, 2022, 51, 4284-4296.	3.3	2
2	Deoxygenative Arylation of 5,6-Dihydro-4 <i>H</i> -1,2-oxazine- <i>N</i> -oxides with Arynes. Journal of Organic Chemistry, 2022, 87, 6838-6851.	3.2	3
3	Synthesis of Bis(βâ€Oximinoalkyl)malonates and Their Catalytic Reductive Cyclization to Piperidines. Advanced Synthesis and Catalysis, 2022, 364, 2557-2564.	4.3	6
4	Regio- and diastereoselective access to densely functionalized ketones <i>via</i> the Boekelheide rearrangement of isoxazoline <i>N</i> -oxides. Organic and Biomolecular Chemistry, 2022, 20, 5624-5637.	2.8	5
5	Spectacular Enhancement of the Thermal and Photochemical Stability of MAPbI3 Perovskite Films Using Functionalized Tetraazaadamantane as a Molecular Modifier. Energies, 2021, 14, 669.	3.1	7
6	Merging Boron with Nitrogen–Oxygen Bonds: A Review on BON Heterocycles. Topics in Current Chemistry, 2021, 379, 8.	5.8	9
7	Nucleophilic Halogenation of Heterocyclic <i>N</i> â€Oxides: Recent Progress and a Practical Guide. Advanced Synthesis and Catalysis, 2021, 363, 3170-3188.	4.3	15
8	Revealing the Structure of Transition Metal Complexes of Formaldoxime. Inorganic Chemistry, 2021, 60, 5523-5537.	4.0	5
9	Sequential Formal [4+1] ycloaddition, Câ^'H Functionalization and Suzuki–Miyaura Cross oupling for the Synthesis of Trisubstituted Isoxazolines. European Journal of Organic Chemistry, 2021, 2021, 2680-2693.	2.4	8
10	Sequential Acylation/Silylation/Heteroâ€Claisen Rearrangement of Nitroalkanes for the Synthesis of Protected Hydroxyoxime Derivatives. European Journal of Organic Chemistry, 2021, 2021, 3197-3213.	2.4	2
11	Addition of malonic esters to azoalkenes generated in situ from α-bromo- and α-chlorohydrazones. Tetrahedron Letters, 2021, , 153414.	1.4	1
12	Stereoselective approach to conjugated enone oximes from aliphatic nitro compounds and sulfur ylides. Mendeleev Communications, 2021, 31, 686-689.	1.6	1
13	Construction of Saturated Oxazolo[3,2-b][1,2]oxazines via Tandem [3+2]-Cycloaddition/[1,3]-Rearrangement of Cyclic Nitronates and Ketenes. Journal of Organic Chemistry, 2021, 86, 16337-16348.	3.2	5
14	Câ^'H Reactivity of the αâ€Position in Nitrones and Nitronates. Advanced Synthesis and Catalysis, 2020, 362, 724-754.	4.3	19
15	Umpolung of Enamines: An Overview on Strategies and Synthons. Synlett, 2020, 31, 439-449.	1.8	4
16	Asymmetric Synthesis of Merck's Potent hNK ₁ Antagonist and Its Stereoisomers via Tandem Acylation/[3,3]-Rearrangement of 1,2-Oxazine <i>N</i> -Oxides. Journal of Organic Chemistry, 2020, 85, 11060-11071.	3.2	8
17	2,4,9â€Triazaadamantanes with "Clickable―Groups: Synthesis, Structure and Applications as Tripodal Platforms. European Journal of Organic Chemistry, 2020, 2020, 6723-6735.	2.4	7
18	Editorial: Nitro Compounds as Versatile Building Blocks for the Synthesis of Pharmaceutically Relevant Substances. Frontiers in Chemistry, 2020, 8, 595246.	3.6	6

#	Article	IF	CITATIONS
19	The Cyclic Nitronate Route to Pharmaceutical Molecules: Synthesis of GSK's Potent PDE4 Inhibitor as a Case Study. Molecules, 2020, 25, 3613.	3.8	8
20	Identification of a novel 1,2 oxazine that can induce apoptosis by targeting NF-κB in hepatocellular carcinoma cells. Biotechnology Reports (Amsterdam, Netherlands), 2020, 25, e00438.	4.4	11
21	Catalytic Reductive Amination of Aldehydes and Ketones With Nitro Compounds: New Light on an Old Reaction. Frontiers in Chemistry, 2020, 8, 215.	3.6	28
22	Alexey Sukhorukov. European Journal of Organic Chemistry, 2020, 2020, 6675-6675.	2.4	0
23	Synthesis of Isoxazolines from Nitroalkanes <i>via</i> a [4+1]â€Annulation Strategy. Advanced Synthesis and Catalysis, 2019, 361, 5322-5327.	4.3	18
24	Nucleophilic Halogenation of Cyclic Nitronates: A General Access to 3-Halo-1,2-Oxazines. Journal of Organic Chemistry, 2019, 84, 13794-13806.	3.2	8
25	Tandem double acylation/[3,3]-rearrangement of aliphatic nitro compounds: a route to α-oxygenated oxime derivatives. Organic and Biomolecular Chemistry, 2019, 17, 5997-6006.	2.8	9
26	Michael Addition of P-Nucleophiles to Conjugated Nitrosoalkenes. Journal of Organic Chemistry, 2019, 84, 7244-7254.	3.2	7
27	Tandem Deoxygenation/Halogenation of <i>N</i> â€Oxides Under Acylation Conditions: Scope and In Situ IR Spectroscopic Study. European Journal of Organic Chemistry, 2019, 2019, 4139-4148.	2.4	5
28	Cyclization of β hlorovinyl Thiohydrazones into Pyridazines: A Mechanistic Study. European Journal of Organic Chemistry, 2019, 2019, 527-536.	2.4	5
29	In Situ Generated Magnesium Cyanide as an Efficient Reagent for Nucleophilic Cyanation of Nitrosoalkenes and Parent Nitronates. European Journal of Organic Chemistry, 2019, 2019, 1888-1892.	2.4	11
30	SYNTHESIS OF STABLE ATЕ-COMPLEXES OF HETEROAROMATIC BORONIC ACIDS AND 4,6,10-TRIHYDROXY-1,4,6,10-TETRAAZAADAMANTANE. ChemChemTech, 2019, 62, 60-67.	0.3	1
31	Synthesis of α-Thiooximes by Addition of Thiols to N,N-Bis(oxy)-enamines: A Comparative Study of S-, N-, and O-NucleoÂphiles in Michael Reaction with Nitrosoalkene Species. Synlett, 2018, 29, 1334-1339.	1.8	6
32	αâ€Electrophilic Reactivity of Nitronates. Chemical Record, 2018, 18, 1489-1500.	5.8	19
33	Exploiting Coupling of Boronic Acids with Triols for a pH-Dependent "Click-Declick―Chemistry. Journal of Organic Chemistry, 2018, 83, 9756-9773.	3.2	19
34	A Novel Entry to 3,4,5-Trisubstituted 2-Pyrrolidones from Isoxazoline-N-oxides. Synlett, 2018, 29, 1871-1874.	1.8	10
35	Acylation of Nitronates: [3,3]-Sigmatropic Rearrangement of <i>in Situ</i> Generated <i>N</i> -Acyloxy, <i>N</i> -oxyenamines. Journal of Organic Chemistry, 2018, 83, 11057-11066.	3.2	25
36	Diastereoselective synthesis and profiling of bicyclic imidazolidinone derivatives bearing a difluoromethylated catechol unit as potent phosphodiesterase 4 inhibitors. Organic and Biomolecular Chemistry, 2018, 16, 6900-6908.	2.8	13

ALEXEY Y SUKHORUKOV

#	Article	IF	CITATIONS
37	Divergent Reactivity of In Situ Generated Metal Azides: Reaction with N ,N -Bis(oxy)enamines as a Case Study. Chemistry - A European Journal, 2017, 23, 4466-4466.	3.3	0
38	Synthesis and Structure of <i>N</i> , <i>N</i> â€Ðinitroamidoborane Complexes. Chemistry - an Asian Journal, 2017, 12, 2237-2244.	3.3	8
39	Divergent Reactivity of In Situ Generated Metal Azides: Reaction with <i>N</i> , <i>N</i> â€Bis(oxy)enamines as a Case Study. Chemistry - A European Journal, 2017, 23, 4570-4578.	3.3	24
40	Organic and hybrid systems: from science to practice. Mendeleev Communications, 2017, 27, 425-438.	1.6	86
41	Addition of HOâ€Acids to <i>N</i> , <i>N</i> â€Bis(oxy)enamines: Mechanism, Scope and Application to the Synthesis of Pharmaceuticals. European Journal of Organic Chemistry, 2017, 2017, 6209-6227.	2.4	13
42	Recent Advances in the Synthesis and Chemistry of Nitronates. Synthesis, 2017, 49, 3255-3268.	2.3	34
43	Recent advances in synthesis of organic nitrogen–oxygen systems for medicine and materials science. Mendeleev Communications, 2017, 27, 535-546.	1.6	48
44	Conjugated nitrosoalkenes as Michael acceptors in carbon–carbon bond forming reactions: a review and perspective. Beilstein Journal of Organic Chemistry, 2017, 13, 2214-2234.	2.2	23
45	Urotropine: Sleeping History and Awakening. Vestnik RFFI, 2017, 4, 20-31.	0.1	1
46	Construction of bis-, tris- and tetrahydrazones by addition of azoalkenes to amines and ammonia. Beilstein Journal of Organic Chemistry, 2016, 12, 2471-2477.	2.2	6
47	Novel Synthetic Oxazines Target NF- $\hat{I}^{e}B$ in Colon Cancer In Vitro and Inflammatory Bowel Disease In Vivo. PLoS ONE, 2016, 11, e0163209.	2.5	39
48	Synthesis of 1,4,6,10-tetraazaadamantane quaternary derivatives. Russian Chemical Bulletin, 2016, 65, 2270-2277.	1.5	5
49	Metal-assisted addition of a nitrate anion to bis(oxy)enamines. A general approach to the synthesis of α-nitroxy-oxime derivatives from nitronates. Organic and Biomolecular Chemistry, 2016, 14, 3963-3974.	2.8	26
50	Stereoselective reactions of nitro compounds in the synthesis of natural compound analogs and active pharmaceutical ingredients. Tetrahedron, 2016, 72, 6191-6281.	1.9	112
51	Synthesis of B,O,N-Doped Adamantanes and Diamantanes by Condensation of Oximes with Boronic Acids. Journal of Organic Chemistry, 2015, 80, 6728-6736.	3.2	14
52	Synthesis and characterization of novel oxazines and demonstration that they specifically target cyclooxygenase 2. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2931-2936.	2.2	40
53	Advances in the synthesis of 7-(3-cyclopentyloxy-4-methoxyphenyl)-hexahydro-3H-pyrrolizin-3-one (Pyrromilast)–a promising agent for treatment of chronic obstructive pulmonary disease. Russian Chemical Bulletin, 2015, 64, 1240-1248.	1.5	4
54	Stereoselective synthesis of spirocyclic nitronates by SnCl4-promoted reaction of nitroalkenes with C-2 substituted 4-methylidene-1,3-dioxolane. Mendeleev Communications, 2015, 25, 449-451.	1.6	8

ALEXEY Y SUKHORUKOV

#	Article	IF	CITATIONS
55	Novel approaches to pharmacology-oriented and energy rich organic nitrogen–oxygen systems. Mendeleev Communications, 2015, 25, 399-409.	1.6	67
56	Synthesis of Tris(É£-oximinoalkyl)amines, New Tripodal N4 Ligands. Synthetic Communications, 2015, 45, 1362-1366.	2.1	2
57	Oximinoalkylamines as ligands for Cu-assisted azide–acetylene cycloaddition. Tetrahedron Letters, 2015, 56, 6335-6339.	1.4	25
58	Synthesis of 3-aminomethyl-4-hydroxycoumarins and their retro-Mannich reaction in dimethyl sulfoxide. Russian Chemical Bulletin, 2015, 64, 423-428.	1.5	1
59	A General Metalâ€Assisted Synthesis of αâ€Halo Oxime Ethers from Nitronates and Nitro Compounds. European Journal of Organic Chemistry, 2014, 2014, 8148-8159.	2.4	18
60	Synthesis, structure and dioxygen reactivity of Ni(II) complexes with mono-, bis-, tetra- and hexa-oxime ligands. Polyhedron, 2014, 71, 24-33.	2.2	8
61	Synthesis of tris(β,β,γ-oximinoalkyl)amines from aliphatic nitro compounds and methyl vinyl ketone. Tetrahedron Letters, 2014, 55, 1222-1225.	1.4	5
62	Urotropine Isomer (1,4,6,10-Tetraazaadamantane): Synthesis, Structure, and Chemistry. Journal of Organic Chemistry, 2014, 79, 6079-6086.	3.2	14
63	Synthesis and characterization of novel 1,2-oxazine-based small molecules that targets acetylcholinesterase. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3618-3621.	2.2	21
64	Synthesis of PDE IV inhibitors. First asymmetric synthesis of two of GlaxoSmithKline's highly potent Rolipram analogues. Organic and Biomolecular Chemistry, 2013, 11, 8082.	2.8	17
65	Synthesis of Unsymmetrically Substituted 4,6,10-Trihydroxy-1,4,6,10-tetraÂazaadamantanes via Intramolecular Cyclization of Tris(β-oximinoalkyl)amines. Synthesis, 2012, 44, 1095-1101.	2.3	1
66	Correction to Synthesis of PDE IVb Inhibitors. 3. Synthesis of (+)-, (â^')-, and (±)-7-[3-(Cyclopentyloxy)-4-methoxyphenyl]hexahydro-3H-pyrrolizin-3-one via Reductive Domino Transformations of 3-l²-Carbomethoxyethyl-Substituted Six-Membered Cyclic Nitronates. Journal of Organic Chemistry, 2012, 77, 7775-7775.	3.2	1
67	Synthesis of PDE IVb Inhibitors. 3. Synthesis of (+)-, (â [~])-, and (ű)-7-[3-(Cyclopentyloxy)-4-methoxyphenyl]hexahydro-3 <i>H </i> >rpyrrolizin-3-one via Reductive Domino Transformations of 3-Î2-Carbomethoxyethyl-Substituted Six-Membered Cyclic Nitronates. Journal of Organic Chemistry. 2012, 77, 5465-5469.	3.2	29
68	Six-membered cyclic nitronates in the stereoselective synthesis of natural and bioactive compounds. Chemistry of Heterocyclic Compounds, 2012, 48, 49-54.	1.2	13
69	Synthesis of PDE IVb Inhibitors. 1. Asymmetric Synthesis and Stereochemical Assignment of (+)- and (â~')-7-[3-(Cyclopentyloxy)-4-methoxyphenyl]hexahydro-3 <i>H</i> -pyrrolizin-3-one. Journal of Organic Chemistry, 2011, 76, 7893-7900.	3.2	24
70	Chemistry of Six-Membered Cyclic Oxime Ethers. Application in the Synthesis of Bioactive Compounds. Chemical Reviews, 2011, 111, 5004-5041.	47.7	141
71	Synthesis of phosphodiesterase IVb inhibitors 2. Stereoselective synthesis of hexahydro-3H-pyrrolo[1,2-c]imidazol-3-one and tetrahydro-1H-pyrrolo[1,2-c][1,3]oxazol-3-one derivatives. Russian Chemical Bulletin, 2011, 60, 2390-2395.	1.5	6
72	The first synthesis and molecular docking studies of diastereomerically pure substituted 4-amino-7-hydroxyheptanoic acids. Mendeleev Communications, 2011, 21, 183-185.	1.6	6

ALEXEY Y SUKHORUKOV

#	Article	IF	CITATIONS
73	A General Procedure for the Synthesis of Unsymmetrically Substituted Tris(β-oximinoalkyl)amines. Synthesis, 2011, 2011, 1403-1412.	2.3	3
74	Synthesis of a phthalocyanine–1,4,6,10-tetraazaadamantane conjugate and its activity against the human immunodeficiency virus. Mendeleev Communications, 2010, 20, 25-27.	1.6	7
75	Synthesis of Substituted 5-(3-Hydroxypropyl)pyrrolidin-2-ones and Pyrrolizidinones from Nitroethane via C3 Functionalized 5,6-Dihydro-4H-1,2-oxazines: A Novel Approach to Some Analogues of the Antidepressant Rolipram. Synthesis, 2009, 2009, 1999-2008.	2.3	0
76	Diastereoselective Synthesis of Î ³ -Amino Acids and Their Derivatives from Nitroethane via Intermediacy of 5,6-Dihydro-4H-1,2-oxazines Bearing the CH2CH(CO2Me)2 Substituent at C3. Synthesis, 2009, 2009, 741-754.	2.3	3
77	Stereoselective Synthesis of Unnatural β-Amino Acids from Nitroethane via 5,6-Dihydro-4H-1,2-oxazin-3-ylacetates. Synthesis, 2009, 2009, 2570-2578.	2.3	0
78	Unusual Intramolecular Cyclization of Tris(β-oximinoalkyl)amines. The First Synthesis of 1,4,6,10-Tetraazaadamantanes. Organic Letters, 2009, 11, 4072-4075.	4.6	20
79	Catalytic Hydrogenation of 5,6â€Dihydroâ€4 <i>H</i> â€1,2â€oxazines Bearing a Functionalized Methylene Group at Câ€3. European Journal of Organic Chemistry, 2008, 2008, 4025-4034.	2.4	14
80	5,6-Dihydro-4 <i>H</i> -1,2-oxazines in Organic Synthesis: Catalytic Hydrogenation of [(5,6-Dihydro-4 <i>H</i> -1,2-oxazin-3-yl)methyl]malonates to Methyl 7-Oxo-1-oxa-6-azaspiro[4.4]nonane-8-carboxylates. Synthesis, 2008, 2008, 1205-1220.	2.3	1
81	A Convenient Procedure for the Synthesis of 3-Substituted 5,6-Dihydro-4H-1,2-oxazines from Nitroethane. Synthesis, 2007, 2007, 97-107.	2.3	2
82	A Convenient Procedure for the Synthesis of <i>N</i> -Acetyl-5,6-dihydro-2 <i>H</i> -1,2-oxazines. Synthesis, 2007, 2007, 3461-3468.	2.3	3
83	A Convenient Method for the Synthesis of Poly(β-hydroxyiminoalkyl)amines from Aliphatic Nitro Compounds. Synthesis, 2007, 2007, 2862-2866.	2.3	6
84	A new course of reduction of substituted 5,6-dihydro-4H-1,2-oxazines to furan derivatives. Mendeleev Communications, 2007, 17, 122-124.	1.6	6
85	Syntheses based on α-azidooximes: I. Reduction of α-azidooximes. Russian Journal of Organic Chemistry, 2007, 43, 1106-1113.	0.8	4
86	Syntheses based on α-azidooximes: II. Preparation of 6,7-dihydrotriazolopyrazinones from aliphatic nitro compounds. Russian Journal of Organic Chemistry, 2007, 43, 1218-1222.	0.8	4
87	Coordination Polymers of Scandium Sulfate. Crystal Structures of (H2Bipy)[Sc(H2O)(SO4)2]2 · 2H2O and (H2Bipy)[HSO4]2. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2005, 31, 545-551.	1.0	19
88	The Chemistry ofN,N-Bis(siloxy)enamines. Part 8.A General Method for the Preparation of α-Azido Oximes from Aliphatic Nitro Compounds. Synthesis, 2005, 2005, 1077-1082.	2.3	3
89	Ring closure of nitroalkylmalonates for the synthesis of isoxazolines under the acylation conditions. Advanced Synthesis and Catalysis, 0, , .	4.3	6