Daan C Swarts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9294353/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Short prokaryotic Argonaute systems trigger cell death upon detection of invading DNA. Cell, 2022, 185, 1471-1486.e19.	13.5	85
2	Two-Component Nanoparticle Vaccine Displaying Glycosylated Spike S1 Domain Induces Neutralizing Antibody Response against SARS-CoV-2 Variants. MBio, 2021, 12, e0181321.	1.8	28
3	Prokaryotic Argonautes Function beyond Immunity by Unlinking Replicating Chromosomes. Cell, 2020, 182, 1381-1383.	13.5	7
4	Mechanistic Insights into the cis- and trans-Acting DNase Activities of Cas12a. Molecular Cell, 2019, 73, 589-600.e4.	4.5	298
5	Introducing gene deletions by mouse zygote electroporation of Cas12a/Cpf1. Transgenic Research, 2019, 28, 525-535.	1.3	20
6	DNA-guided DNA cleavage at moderate temperatures by Clostridium butyricum Argonaute. Nucleic Acids Research, 2019, 47, 5809-5821.	6.5	115
7	Stirring Up the Type V Alphabet Soup. CRISPR Journal, 2019, 2, 14-16.	1.4	5
8	Preparation and electroporation of Cas12a/Cpf1-guide RNA complexes for introducing large gene deletions in mouse embryonic stem cells. Methods in Enzymology, 2019, 616, 241-263.	0.4	16
9	Making the cut(s): how Cas12a cleaves target and non-target DNA. Biochemical Society Transactions, 2019, 47, 1499-1510.	1.6	35
10	Bacteriophage DNA glucosylation impairs target DNA binding by type I and II but not by type V CRISPR–Cas effector complexes. Nucleic Acids Research, 2018, 46, 873-885.	6.5	57
11	Prokaryotic Argonaute proteins: novel genome-editing tools?. Nature Reviews Microbiology, 2018, 16, 5-11.	13.6	134
12	Cover Image, Volume 9, Issue 5. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1505.	3.2	0
13	Cas9 versus Cas12a/Cpf1: Structure–function comparisons and implications for genome editing. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1481.	3.2	164
14	Heterologous Expression and Purification of the CRISPR-Cas12a/Cpf1 Protein. Bio-protocol, 2018, 8, e2842.	0.2	21
15	Autonomous Generation and Loading of DNA Guides by Bacterial Argonaute. Molecular Cell, 2017, 65, 985-998.e6.	4.5	103
16	Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a. Molecular Cell, 2017, 66, 221-233.e4.	4.5	408
17	Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA. Nucleic Acids Research, 2015, 43, 5120-5129.	6.5	202
18	Effects of Argonaute on Gene Expression in Thermus thermophilus. PLoS ONE, 2015, 10, e0124880.	1.1	44

DAAN C SWARTS

#	Article	IF	CITATIONS
19	DNA-guided DNA interference by a prokaryotic Argonaute. Nature, 2014, 507, 258-261.	13.7	373
20	Planting the seed: target recognition of short guide RNAs. Trends in Microbiology, 2014, 22, 74-83.	3.5	70
21	Structure-based cleavage mechanism of <i>Thermus thermophilus</i> Argonaute DNA guide strand-mediated DNA target cleavage. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 652-657.	3.3	194
22	The evolutionary journey of Argonaute proteins. Nature Structural and Molecular Biology, 2014, 21, 743-753.	3.6	400
23	Prokaryotic Argonautes – variations on the RNA interference theme. Microbial Cell, 2014, 1, 158-159.	1.4	5
24	Complete genome sequence of Syntrophobacter fumaroxidans strain (MPOBT). Standards in Genomic Sciences, 2012, 7, 91-106.	1.5	55
25	The CRISPRs, They Are A-Changin': How Prokaryotes Generate Adaptive Immunity. Annual Review of Genetics, 2012, 46, 311-339.	3.2	260
26	CRISPR Interference Directs Strand Specific Spacer Acquisition. PLoS ONE, 2012, 7, e35888.	1.1	335
27	An HflX-Type GTPase from Sulfolobus solfataricus Binds to the 50S Ribosomal Subunit in All Nucleotide-Bound States. Journal of Bacteriology, 2011, 193, 2861-2867.	1.0	19