
Sepand Rastegar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9293705/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zebrafish embryos as an alternative to animal experiments—A commentary on the definition of the onset of protected life stages in animal welfare regulations. Reproductive Toxicology, 2012, 33, 128-132.	2.9	491
2	Cleavage of the BMP-4 Antagonist Chordin by Zebrafish Tolloid. Science, 1997, 278, 1937-1940.	12.6	187
3	Regenerative response following stab injury in the adult zebrafish telencephalon. Developmental Dynamics, 2011, 240, 2221-2231.	1.8	169
4	Dynamic regulation of the transcription initiation landscape at single nucleotide resolution during vertebrate embryogenesis. Genome Research, 2013, 23, 1938-1950.	5.5	119
5	Distribution of cannabinoid receptor 1 in the CNS of zebrafish. Neuroscience, 2006, 138, 83-95.	2.3	93
6	Vertebrate floor-plate specification: variations on common themes. Trends in Genetics, 2004, 20, 155-162.	6.7	83
7	Monorail/Foxa2 regulates floorplate differentiation and specification of oligodendrocytes, serotonergic raphel•neurones and cranial motoneurones. Development (Cambridge), 2005, 132, 645-658.	2.5	81
8	Cooperation of sonic hedgehog enhancers in midline expression. Developmental Biology, 2007, 301, 578-589.	2.0	78
9	Transcriptional regulation of Xvent homeobox genes. Mechanisms of Development, 1999, 81, 139-149.	1.7	73
10	Smad1 and Smad4 Are Components of the Bone Morphogenetic Protein-4 (BMP-4)-induced Transcription Complex of the Xvent-2B Promoter. Journal of Biological Chemistry, 2000, 275, 21827-21835.	3.4	73
11	Gene Responses in the Central Nervous System of Zebrafish Embryos Exposed to the Neurotoxicant Methyl Mercury. Environmental Science & Technology, 2013, 47, 3316-3325.	10.0	69
12	The Helix-Loop-Helix Protein Id1 Controls Stem Cell Proliferation During Regenerative Neurogenesis in the Adult Zebrafish Telencephalon. Stem Cells, 2015, 33, 892-903.	3.2	69
13	Regulatory interactions specifying Kolmer-Agduhr interneurons. Development (Cambridge), 2010, 137, 2713-2722.	2.5	66
14	Her5 acts as a prepattern factor that blocks neurogenin1 and coe2 expression upstream of Notch to inhibit neurogenesis at the midbrain-hindbrain boundary. Development (Cambridge), 2004, 131, 1993-2006.	2.5	64
15	Dysferlin-mediated phosphatidylserine sorting engages macrophages in sarcolemma repair. Nature Communications, 2016, 7, 12875.	12.8	61
16	Conserved and acquired features of neurogenin1 regulation. Development (Cambridge), 2004, 131, 5627-5637.	2.5	59
17	Genome-wide, whole mount in situ analysis of transcriptional regulators in zebrafish embryos. Developmental Biology, 2013, 380, 351-362.	2.0	54
18	The words of the regulatory code are arranged in a variable manner in highly conserved enhancers. Developmental Biology, 2008, 318, 366-377.	2.0	52

SEPAND RASTEGAR

#	Article	IF	CITATIONS
19	Comprehensive expression map of transcription regulators in the adult zebrafish telencephalon reveals distinct neurogenic niches. Journal of Comparative Neurology, 2015, 523, 1202-1221.	1.6	50
20	Common and Distinct Features of Adult Neurogenesis and Regeneration in the Telencephalon of Zebrafish and Mammals. Frontiers in Neuroscience, 2020, 14, 568930.	2.8	49
21	Real-time in vivo monitoring of circadian E-box enhancer activity: A robust and sensitive zebrafish reporter line for developmental, chemical and neural biology of the circadian clock. Developmental Biology, 2013, 380, 259-273.	2.0	48
22	Xvent-1 mediates BMP-4-induced suppression of the dorsal-lip-specific early response gene XFD-1' in Xenopus embryos. EMBO Journal, 1998, 17, 2298-2307.	7.8	46
23	An ensemble-averaged, cell density-based digital model of zebrafish embryo development derived from light-sheet microscopy data with single-cell resolution. Scientific Reports, 2015, 5, 8601.	3.3	44
24	Characterization of zebrafish smad1, smad2 and smad5: the amino-terminus of Smad1 and Smad5 is required for specific function in the embryo. Mechanisms of Development, 1999, 88, 73-88.	1.7	43
25	A Floor Plate Enhancer of the Zebrafish netrin1 Gene Requires Cyclops (Nodal) Signalling and the Winged Helix Transcription Factor FoxA2. Developmental Biology, 2002, 252, 1-14.	2.0	42
26	Expression of the transcription factor Olig2 in proliferating cells in the adult zebrafish telencephalon. Developmental Dynamics, 2010, 239, 3336-3349.	1.8	41
27	Autoregulation of Xvent-2B; Direct Interaction and Functional Cooperation of Xvent-2 and Smad1. Journal of Biological Chemistry, 2002, 277, 2097-2103.	3.4	40
28	Parapineal specific expression of gfi1 in the zebrafish epithalamus. Gene Expression Patterns, 2004, 4, 53-57.	0.8	36
29	Stab Wound Injury of the Zebrafish Adult Telencephalon: A Method to Investigate Vertebrate Brain Neurogenesis and Regeneration. Journal of Visualized Experiments, 2014, , e51753.	0.3	35
30	Expression Profiling and Comparative Genomics Identify a Conserved Regulatory Region Controlling Midline Expression in the Zebrafish Embryo. Genome Research, 2004, 14, 228-238.	5.5	34
31	Sequential and cooperative action of Fgfs and Shh in the zebrafish retina. Developmental Biology, 2008, 314, 200-214.	2.0	33
32	Molecular Description of Eye Defects in the Zebrafish Pax6b Mutant, sunrise, Reveals a Pax6b-Dependent Genetic Network in the Developing Anterior Chamber. PLoS ONE, 2015, 10, e0117645.	2.5	32
33	Long-range evolutionary constraints reveal cis-regulatory interactions on the human X chromosome. Nature Communications, 2015, 6, 6904.	12.8	31
34	Differential expression of id genes and their potential regulator znf238 in zebrafish adult neural progenitor cells and neurons suggests distinct functions in adult neurogenesis. Gene Expression Patterns, 2015, 19, 1-13.	0.8	30
35	Pax6 organizes the anterior eye segment by guiding two distinct neural crest waves. PLoS Genetics, 2020, 16, e1008774.	3.5	29
36	DanTox—a novel joint research project using zebrafish (Danio rerio) to identify specific toxicity and molecular modes of action of sediment-bound pollutants. Journal of Soils and Sediments, 2010, 10, 714-717.	3.0	26

SEPAND RASTEGAR

#	Article	IF	CITATIONS
37	Multiomic atlas with functional stratification and developmental dynamics of zebrafish cis-regulatory elements. Nature Genetics, 2022, 54, 1037-1050.	21.4	26
38	Cellular Mechanisms Participating in Brain Repair of Adult Zebrafish and Mammals after Injury. Cells, 2021, 10, 391.	4.1	22
39	Expression of brain subtype creatine kinase in the zebrafish embryo. Mechanisms of Development, 2001, 109, 409-412.	1.7	21
40	Expression of adiponectin receptors in the brain of adult zebrafish and mouse: Links with neurogenic niches and brain repair. Journal of Comparative Neurology, 2019, 527, 2317-2333.	1.6	21
41	Zebrafish biosensor for toxicant induced muscle hyperactivity. Scientific Reports, 2016, 6, 23768.	3.3	20
42	The HMG box transcription factors Sox1a and b specify a new class of glycinergic interneurons in the spinal cord of zebrafish embryos. Development (Cambridge), 2019, 146, .	2.5	20
43	Expression of the helix-loop-helix gene id3 in the zebrafish embryo. Mechanisms of Development, 2002, 113, 99-102.	1.7	19
44	Conserved non-coding sequences and transcriptional regulation. Brain Research Bulletin, 2008, 75, 225-230.	3.0	19
45	Bone morphogenetic protein signaling regulates Id1-mediated neural stem cell quiescence in the adult zebrafish brain via a phylogenetically conserved enhancer module. Stem Cells, 2020, 38, 875-889.	3.2	15
46	Gene transcription in the zebrafish embryo: regulators and networks. Briefings in Functional Genomics, 2014, 13, 131-143.	2.7	14
47	Expression and activity profiling of the steroidogenic enzymes of glucocorticoid biosynthesis and the <i>fdx1</i> coâ€factors in zebrafish. Journal of Neuroendocrinology, 2018, 30, e12586.	2.6	14
48	Expression of the anti-dorsalizing morphogenetic protein gene in the zebrafish embryo. Development Genes and Evolution, 2001, 211, 568-572.	0.9	12
49	Neuron-Radial Clial Cell Communication via BMP/Id1 Signaling Is Key to Long-Term Maintenance of the Regenerative Capacity of the Adult Zebrafish Telencephalon. Cells, 2021, 10, 2794.	4.1	11
50	Surface functionalisation-dependent adverse effects of metal nanoparticles and nanoplastics in zebrafish embryos. Environmental Science: Nano, 2022, 9, 375-392.	4.3	10
51	Melanosomes in pigmented epithelia maintain eye lens transparency during zebrafish embryonic development. Scientific Reports, 2016, 6, 25046.	3.3	9
52	Protein-Functionalized DNA Nanostructures as Tools to Control Transcription in Zebrafish Embryos. ChemistryOpen, 2017, 6, 33-39.	1.9	9
53	Multi-Dimensional Transcriptome Analysis Reveals Modulation of Cholesterol Metabolism as Highly Integrated Response to Brain Injury. Frontiers in Neuroscience, 2021, 15, 671249.	2.8	8
54	Automated prior knowledge-based quantification of neuronal patterns in the spinal cord of zebrafish. Bioinformatics, 2014, 30, 726-733.	4.1	7

SEPAND RASTEGAR

#	Article	IF	CITATIONS
55	HDL biodistribution and brain receptors in zebrafish, using HDLs as vectors for targeting endothelial cells and neural progenitors. Scientific Reports, 2021, 11, 6439.	3.3	7
56	A Homozygous Missense Variant in <scp><i>PPP1R1B/DARPPâ€32</i></scp> Is Associated With Generalized Complex Dystonia. Movement Disorders, 2022, 37, 365-374.	3.9	7
57	In Vivo Behavior of the Antibacterial Peptide Cyclo[RRRWFW], Explored Using a 3-Hydroxychromone-Derived Fluorescent Amino Acid. Frontiers in Chemistry, 2021, 9, 688446.	3.6	6
58	Two plus one is almost three: A fast approximation for multi-view deconvolution. Biomedical Optics Express, 2022, 13, 147-158.	2.9	2
59	mdka Expression Is Associated with Quiescent Neural Stem Cells during Constitutive and Reactive Neurogenesis in the Adult Zebrafish Telencephalon. Brain Sciences, 2022, 12, 284.	2.3	2
60	The Zebrafish as Model for Deciphering the Regulatory Architecture of Vertebrate Genomes. Advances in Genetics, 2016, 95, 195-216.	1.8	1
61	HeRBi: Helmholtz Repository of Bioparts. Zebrafish, 2016, 13, 234-235.	1.1	1
62	Gene duplication and functional divergence of the zebrafish otospiralin genes. Development Genes and Evolution, 2020, 230, 27-36.	0.9	0
63	Monitoring glucocorticoid signaling and circadian clock function with transgenic zebrafish reporter lines. Endocrine Abstracts, 0, , 1-1.	0.0	Ο