Vladimir Kasyanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9293476/publications.pdf

Version: 2024-02-01

623574 940416 14 2,777 21 16 citations g-index h-index papers 21 21 21 3658 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Magnetic levitational bioassembly of 3D tissue construct in space. Science Advances, 2020, 6, eaba4174.	4.7	77
2	The Histomorphometry of Rabbit Bone Tissue with Experimental Osteoporosis after Implantation of Biphasic Calcium Phosphate Materials. Key Engineering Materials, 2020, 850, 249-253.	0.4	O
3	Biofabrication of a Functional Tubular Construct from Tissue Spheroids Using Magnetoacoustic Levitational Directed Assembly. Advanced Healthcare Materials, 2020, 9, e2000721.	3.9	19
4	Biomechanical Properties of Human Dilated Ascending Aorta. Proceedings of the Latvian Academy of Sciences, 2019, 73, 107-111.	0.0	0
5	General Influence of Biphasic Calcium Phosphate on Osteoporotic Bone Density. Proceedings of the Latvian Academy of Sciences, 2019, 73, 185-188.	0.0	0
6	Design and Implementation of Novel Multifunctional 3D Bioprinter. 3D Printing and Additive Manufacturing, 2016, 3, 64-68.	1.4	14
7	Delivery of Human Adipose Stem Cells Spheroids into Lockyballs. PLoS ONE, 2016, 11, e0166073.	1.1	36
8	Organ Printing as an Information Technology. Procedia Engineering, 2015, 110, 151-158.	1.2	21
9	Burr-like, laser-made 3D microscaffolds for tissue spheroid encagement. Biointerphases, 2015, 10, 021011.	0.6	43
10	The fusion of tissue spheroids attached to pre-stretched electrospun polyurethane scaffolds. Journal of Tissue Engineering, 2014, 5, 204173141455656.	2.3	32
11	Title is missing!. , 2014, , .		1
12	Third Strategy in Tissue Engineering: Tissue Spheroids Encaged into Microscaffolds. , 2014, , .		0
13	Age-related analysis of structural, biochemical and mechanical properties of the porcine mitral heart valve leaflets. Connective Tissue Research, 2013, 54, 394-402.	1.1	18
14	Virtual Biofabrication Line. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 289-294.	0.4	3
15	Design, physical prototyping and initial characterisation of †lockyballs'. Virtual and Physical Prototyping, 2012, 7, 287-301.	5. 3	32
16	Organ printing: from bioprinter to organ biofabrication line. Current Opinion in Biotechnology, 2011, 22, 667-673.	3.3	291
17	Towards organ printing: engineering an intra-organ branched vascular tree. Expert Opinion on Biological Therapy, 2010, 10, 409-420.	1.4	203
18	Organ printing: Tissue spheroids as building blocks. Biomaterials, 2009, 30, 2164-2174.	5 . 7	1,106

#	Article	IF	CITATIONS
19	Nanotechnology in vascular tissue engineering: from nanoscaffolding towards rapid vessel biofabrication. Trends in Biotechnology, 2008, 26, 338-344.	4.9	129
20	Organ printing: promises and challenges. Regenerative Medicine, 2008, 3, 93-103.	0.8	222
21	Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. Journal of Cellular Biochemistry, 2007, 101, 695-711.	1.2	530