Frédéric Gobeaux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9293068/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fibrillogenesis in Dense Collagen Solutions: A Physicochemical Study. Journal of Molecular Biology, 2008, 376, 1509-1522.	4.2	152
2	<i>In Vivo</i> Inspired Conditions to Synthesize Biomimetic Hydroxyapatite. Chemistry of Materials, 2010, 22, 3653-3663.	6.7	113
3	Self-Assembled Collagenâ^'Apatite Matrix with Bone-like Hierarchy. Chemistry of Materials, 2010, 22, 3307-3309.	6.7	81
4	Control of peptide nanotube diameter by chemical modifications of an aromatic residue involved in a single close contact. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7679-7684.	7.1	81
5	Cooperative Ordering of Collagen Triple Helices in the Dense State. Langmuir, 2007, 23, 6411-6417.	3.5	63
6	Possible transient liquid crystal phase during the laying out of connective tissues: α-chitin and collagen as models. Journal of Physics Condensed Matter, 2006, 18, S115-S129.	1.8	59
7	Power law rheology and strain-induced yielding in acidic solutions of type I-collagen. Soft Matter, 2010, 6, 3769.	2.7	46
8	Mapping and manipulating temperature–concentration phase diagrams using microfluidics. Lab on A Chip, 2010, 10, 1696.	6.0	45
9	Structural Role of Counterions Adsorbed on Self-Assembled Peptide Nanotubes. Journal of the American Chemical Society, 2012, 134, 723-733.	13.7	41
10	Translation of nanomedicines from lab to industrial scale synthesis: The case of squalene-adenosine nanoparticles. Journal of Controlled Release, 2019, 307, 302-314.	9.9	38
11	Liquid crystalline properties of type I collagen: Perspectives in tissue morphogenesis. Comptes Rendus Chimie, 2008, 11, 245-252.	0.5	34
12	Biocompatible Stimuli-Responsive W/O/W Multiple Emulsions Prepared by One-Step Mixing with a Single Diblock Copolymer Emulsifier. Langmuir, 2016, 32, 10912-10919.	3.5	28
13	Contribution to Accurate Spherical Gold Nanoparticle Size Determination by Single-Particle Inductively Coupled Mass Spectrometry: A Comparison with Small-Angle X-ray Scattering. Analytical Chemistry, 2018, 90, 9742-9750.	6.5	27
14	Exploring Hybrid Imogolite Nanotube Formation via Si/Al Stoichiometry Control. Langmuir, 2018, 34, 13225-13234.	3.5	19
15	Atomic structure of Lanreotide nanotubes revealed by cryo-EM. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	18
16	Dual internal functionalization of imogolite nanotubes as evidenced by optical properties of Nile red. Applied Clay Science, 2019, 178, 105133.	5.2	17
17	Experimental Observation of Double-Walled Peptide Nanotubes and Monodispersity Modeling of the Number of Walls. Langmuir, 2013, 29, 2739-2745.	3.5	16
18	Catalytically active peptides affected by self-assembly and residues order. Colloids and Surfaces B: Biointerfaces, 2021, 203, 111751.	5.0	16

Frédéric Gobeaux

#	Article	IF	CITATIONS
19	Reversible Assembly of a Drug Peptide into Amyloid Fibrils: A Dynamic Circular Dichroism Study. Langmuir, 2018, 34, 7180-7191.	3.5	13
20	Ligand-free synthesis of gold nanoparticles incorporated within cylindrical block copolymer films. Journal of Materials Chemistry C, 2018, 6, 8194-8204.	5.5	9
21	Albumin-driven disassembly of lipidic nanoparticles: the specific case of the squalene-adenosine nanodrug. Nanoscale, 2020, 12, 2793-2809.	5.6	9
22	Calibration and quality assurance procedures at the far UV linear and circular dichroism experimental station DISCO. Journal of Physics: Conference Series, 2013, 425, 122014.	0.4	8
23	Directing peptide crystallization through curvature control of nanotubes. Journal of Peptide Science, 2014, 20, 508-516.	1.4	7
24	New Nanoparticle Formulation for Cyclosporin A: In Vitro Assessment. Pharmaceutics, 2021, 13, 91.	4.5	6
25	Tailoring structure and surface chemistry of hollow allophane nanospheres for optimization of aggregation by facile methyl modification. Applied Surface Science, 2020, 510, 145453.	6.1	6
26	Reversible Morphological Control of Cholecystokinin Tetrapeptide Amyloid Assemblies as a Function of pH. Journal of Physical Chemistry B, 2017, 121, 3059-3069.	2.6	5
27	Towards a clinical application of freeze-dried squalene-based nanomedicines. Journal of Drug Targeting, 2019, 27, 699-708.	4.4	5
28	Partial Transformation of Imogolite by Decylphosphonic Acid Yields an Interface Active Composite Material. Langmuir, 2019, 35, 4068-4076.	3.5	3
29	Supramolecular organization and biological interaction of squalenoyl siRNA nanoparticles. International Journal of Pharmaceutics, 2021, 609, 121117.	5.2	3
30	Elaboration of Materials with Functionality Gradients by Assembly of Chitosan-Collagen Microspheres Produced by Microfluidics. Journal of Renewable Materials, 2018, , .	2.2	1
31	pH and ionic strength triggered destabilization of biocompatible stable water-in-oil-in-water (W/O/W) emulsions. Jcis Open, 2022, 5, 100039.	3.2	1