Rudy Gargano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9292939/publications.pdf

Version: 2024-02-01

46 1,242 21 34 papers citations h-index g-index

46 46 46 1132 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Machine Learning Algorithms for the Forecasting of Wastewater Quality Indicators. Water (Switzerland), 2017, 9, 105.	2.7	141
2	Support Vector Regression for Rainfall-Runoff Modeling in Urban Drainage: A Comparison with the EPA's Storm Water Management Model. Water (Switzerland), 2016, 8, 69.	2.7	111
3	Simultaneous nitrification, denitrification and phosphorus removal in a continuous-flow moving bed biofilm reactor alternating microaerobic and aerobic conditions. Bioresource Technology, 2020, 310, 123453.	9.6	93
4	Reliability as Tool for Hydraulic Network Planning. Journal of Hydraulic Engineering, 2000, 126, 354-364.	1.5	91
5	Shortcut nitrification-denitrification and biological phosphorus removal in acetate- and ethanol-fed moving bed biofilm reactors under microaerobic/aerobic conditions. Bioresource Technology, 2021, 330, 124958.	9.6	69
6	Artificial intelligence based approaches to evaluate actual evapotranspiration in wetlands. Science of the Total Environment, 2020, 703, 135653.	8.0	60
7	Hydraulics of Circular Drop Manholes. Journal of Irrigation and Drainage Engineering - ASCE, 2011, 137, 102-111.	1.0	59
8	Effect of carbon-to-nitrogen ratio on simultaneous nitrification denitrification and phosphorus removal in a microaerobic moving bed biofilm reactor. Journal of Environmental Management, 2019, 250, 109518.	7.8	54
9	Machine Learning Models for Spring Discharge Forecasting. Geofluids, 2018, 2018, 1-13.	0.7	38
10	A novel equation for determining the suction stress of unsaturated soils from the water retention curve based on wetted surface area in pores. Water Resources Research, 2015, 51, 6143-6155.	4.2	33
11	Air-water flows in circular drop manholes. Urban Water Journal, 2015, 12, 477-487.	2.1	31
12	Forecasting of Extreme Storm Tide Events Using NARX Neural Network-Based Models. Atmosphere, 2021, 12, 512.	2.3	31
13	Tide Prediction in the Venice Lagoon Using Nonlinear Autoregressive Exogenous (NARX) Neural Network. Water (Switzerland), 2021, 13, 1173.	2.7	31
14	Probabilistic Models for the Peak Residential Water Demand. Water (Switzerland), 2017, 9, 417.	2.7	29
15	Optimal energy recovery by means of pumps as turbines (PATs) for improved WDS management. Water Science and Technology: Water Supply, 2018, 18, 1365-1374.	2.1	26
16	A stochastic model for daily residential water demand. Water Science and Technology: Water Supply, 2016, 16, 1753-1767.	2.1	25
17	Supercritical Flow across Sewer Manholes. Journal of Hydraulic Engineering, 2002, 128, 1014-1017.	1.5	24
18	Flow-improving elements in circular drop manholes. Journal of Hydraulic Research/De Recherches Hydrauliques, 2014, 52, 347-355.	1.7	24

#	Article	IF	CITATIONS
19	Prediction of spring flows using nonlinear autoregressive exogenous (NARX) neural network models. Environmental Monitoring and Assessment, 2021, 193, 350.	2.7	24
20	A stochastic approach for the water demand of residential end users. Urban Water Journal, 2016, 13, 569-582.	2.1	22
21	Performance of partitioned water distribution networks under spatial-temporal variability of water demand. Environmental Modelling and Software, 2018, 101, 128-136.	4.5	22
22	Novel Approach for Side Weirs in Supercritical Flow. Journal of Irrigation and Drainage Engineering - ASCE, 2013, 139, 672-679.	1.0	21
23	Integrated Optimal Cost and Pressure Management for Water Distribution Systems. Procedia Engineering, 2014, 70, 1659-1668.	1.2	19
24	Equivalent Discharge Coefficient of Side Weirs in Circular Channelâ€"A Lazy Machine Learning Approach. Water (Switzerland), 2019, 11, 2406.	2.7	18
25	Undular Hydraulic Jumps in Circular Conduits. Journal of Hydraulic Engineering, 2002, 128, 1008-1013.	1.5	16
26	Burst Detection in Water Distribution Systems: The Issue of Dataset Collection. Applied Sciences (Switzerland), 2020, 10, 8219.	2.5	16
27	An Ensemble Neural Network Model to Forecast Drinking Water Consumption. Journal of Water Resources Planning and Management - ASCE, 2022, 148, .	2.6	16
28	Is there Predictive Power in Hydrological Catchment Information for Regional Landslide Hazard Assessment?. Procedia Earth and Planetary Science, 2016, 16, 195-203.	0.6	14
29	Deformation of Air Bubbles Near a Plunging Jet Using a Machine Learning Approach. Applied Sciences (Switzerland), 2020, 10, 3879.	2.5	12
30	Optimal Water Supply System Management by Leakage Reduction and Energy Recovery. Procedia Engineering, 2014, 89, 573-580.	1.2	11
31	Two-Phase PIV-LIF Measurements in a Submerged Bubbly Water Jet. Journal of Hydraulic Engineering, 2019, 145, .	1.5	11
32	Preliminary Estimate of Detention Basin Efficiency at Watershed Scale. Water Resources Management, 2014, 28, 897-913.	3.9	10
33	Microplastics in Combined Sewer Overflows: An Experimental Study. Journal of Marine Science and Engineering, 2021, 9, 1415.	2.6	9
34	A flow field characterization in a circular channel along a side weir. Flow Measurement and Instrumentation, 2016, 52, 92-100.	2.0	7
35	The influence of the existing network layout on water distribution system redesign analysis. Journal of Hydroinformatics, 2014, 16, 1375-1389.	2.4	4
36	The Overall Pulse Model for Water Demand of Aggregated Residential Users. Procedia Engineering, 2017, 186, 483-490.	1.2	4

3

#	Article	IF	CITATIONS
37	Generation of Water Demand Time Series through Spline Curves. Journal of Water Resources Planning and Management - ASCE, 2020, 146, .	2.6	4
38	The Overall Pulse Model to Predict the End User Water Demand. Procedia Engineering, 2014, 89, 942-949.	1.2	3
39	Stochastic Generation of District Heat Load. Energies, 2021, 14, 5344.	3.1	3
40	Discussion of "Hydraulic Characteristics of a Drop Square Manhole with a Downstream Control Gate―by Rita F. Carvalho and Jorge Leandro. Journal of Irrigation and Drainage Engineering - ASCE, 2013, 139, 593-594.	1.0	2
41	The Mixed Model for the Residential Flow Demand of a Small Number of Users. Procedia Engineering, 2014, 89, 975-981.	1.2	2
42	"Closure to Reliability as Tool for Hydraulic Network Planning―by Rudy Gargano and Domenico Pianese. Journal of Hydraulic Engineering, 2002, 128, 128-129.	1.5	1
43	Optimal Valve Operation for Restoring Functionality of WDN during Critical Events. Environmental Sciences Proceedings, 2020, 2, 32.	0.3	1
44	Discussion of "Drop in Combined Sewer Manhole for Supercritical Flow―by Flavio De Martino, Corrado Gisonni, and Willi H. Hager. Journal of Irrigation and Drainage Engineering - ASCE, 2004, 130, 171-172.	1.0	0
45	Closure to "Novel Approach for Side Weirs in Supercritical Flow―by Francesco Granata, Giovanni de Marinis, Rudy Gargano, and Carla Tricarico. Journal of Irrigation and Drainage Engineering - ASCE, 2014, 140, 07014026.	1.0	0
46	Discussion of "Peak Demand Assessment and Hydraulic Analysis in WDN Design―by E. Creaco, P. Signori, S. Papiri, and C. Ciaponi. Journal of Water Resources Planning and Management - ASCE, 2020, 146, 07019003.	2.6	0