Grzegorz Psuj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9292694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of Grain Oriented SiFe Steels Based on Imaging the Instantaneous Dynamics of Magnetic Barkhausen Noise Using Short-Time Fourier Transform and Deep Convolutional Neural Network. Materials, 2022, 15, 118.	1.3	4
2	Application of Selected Fractal Geometry Resonators in Microstrip Strain Sensors. IEEE Sensors Journal, 2022, 22, 12656-12663.	2.4	2
3	Qualitative evaluation of 3D printed materials' structure using active infrared thermography and signal analysis based on LSTM neural networks. International Journal of Applied Electromagnetics and Mechanics, 2022, 69, 359-373.	0.3	1
4	A System for Monitoring of Broadband FMR Phenomenon in Low-Carbon Steel Films Subjected to Deformations. Sensors, 2021, 21, 4301.	2.1	1
5	Analysis of the Possibility of Using Various Time-Frequency Transformation Methods to Barkhausen Noise Characterization for the Need of Magnetic Anisotropy Evaluation in Steels. Applied Sciences (Switzerland), 2021, 11, 6193.	1.3	2
6	Detection and Identification of Defects in 3D-Printed Dielectric Structures via Thermographic Inspection and Deep Neural Networks. Materials, 2021, 14, 4168.	1.3	16
7	Use of Time-Frequency Representation of Magnetic Barkhausen Noise for Evaluation of Easy Magnetization Axis of Grain-Oriented Steel. Materials, 2020, 13, 3390.	1.3	6
8	Glass–Adhesive–Steel Joint Inspection Using Mechanic and High Frequency Electromagnetic Waves. Materials, 2020, 13, 4648.	1.3	5
9	Time-Frequency Analysis of Barkhausen Noise for the Needs of Anisotropy Evaluation of Grain-Oriented Steels. Sensors, 2020, 20, 768.	2.1	15
10	Time-frequency representation of magnetic Barkhausen noise under various measurement conditions. , 2019, , .		1
11	Use of Time-Dependent Multispectral Representation of Magnetic Barkhausen Noise Signals for the Needs of Non-Destructive Evaluation of Steel Materials. Sensors, 2019, 19, 1443.	2.1	20
12	In-Line Inspection Tool with Eddy Current Instrumentation for Fatigue Crack Detection. Sensors, 2018, 18, 2161.	2.1	17
13	Analysis of time-frequency representation of Magnetic Barkhausen noise for the need of damage evaluation of steels elements. , 2018, , .		4
14	Multiple parameters fusion of electromagnetic nondestructive inspection data for evaluation of fatigue damage in steel elements. International Journal of Applied Electromagnetics and Mechanics, 2018, 57, 209-216.	0.3	3
15	Utilization of Multisensor Data Fusion for Magnetic Nondestructive Evaluation of Defects in Steel Elements under Various Operation Strategies. Sensors, 2018, 18, 2091.	2.1	12
16	Influence of measurement conditions on the Magnetic Barkhausen Noise properties. , 2018, , .		3
17	Multi-Sensor Data Integration Using Deep Learning for Characterization of Defects in Steel Elements. Sensors, 2018, 18, 292.	2.1	75
18	Magnetic Field Multi-sensor Transducer for Detection of Defects in Steel Components. IEEE Transactions on Magnetics, 2017, 53, 1-4.	1.2	9

Grzegorz Psuj

#	Article	IF	CITATIONS
19	Application of deep learning procedure to magnetic multi-sensor matrix transducer data for the need of defect characterization in steel elements. , 2017, , .		2
20	Multivariate fusion of nondestructive inspection data for assessment of fatigue damage in steel components. , 2017, , .		0
21	Nondestructive Inspection of Thin Basalt Fiber Reinforced Composites Using Combined Terahertz Imaging and Infrared Thermography. Advances in Materials Science and Engineering, 2016, 2016, 1-13.	1.0	15
22	Infrared and electromagnetic inspection of steel structures under load. Quantitative InfraRed Thermography Journal, 2016, 13, 232-241.	2.1	5
23	Wind Turbine Blades Inspection Techniques. Przeglad Elektrotechniczny, 2016, 1, 3-6.	0.1	10
24	EVALUATION OF STRESS IN STEEL STRUCTURES USING ELECTROMAGNETIC METHODS BASED ON UTILIZATION OF MICROSTRIP ANTENNA SENSOR AND MONITORING OF AC MAGNETIZATION PROCESS. Informatyka Automatyka Pomiary W Gospodarce I Ochronie Åšrodowiska, 2016, 6, 32-36.	0.2	14
25	Fatigue Monitoring of Steel Structures using Electromagnetic and Infrared Thermography Inspection Methods. Przeglad Elektrotechniczny, 2016, 1, 7-10.	0.1	2
26	Fusion of multiple parameters of signals obtained by vector magnetic flux observation for evaluation of stress loaded steel samples. International Journal of Applied Electromagnetics and Mechanics, 2015, 49, 1-7.	0.3	2
27	A study on the impact of DSS electromagnetic properties changes caused by a sigma phase on an eddy current transducer pick-up signal. International Journal of Applied Electromagnetics and Mechanics, 2014, 45, 527-534.	0.3	0
28	Stress evaluation in non-oriented electrical steel samples by observation of vector magnetic flux under static and rotating field conditions. International Journal of Applied Electromagnetics and Mechanics, 2014, 44, 339-347.	0.3	7
29	Eddy current system for inspection of train hollow axles. , 2014, , .		1
30	Electromagnetic system for nondestructive evaluation of train hollow axles. , 2013, , .		7
31	Detection and classification of weld defects in industrial radiography with use of advanced AI methods. , 2013, , .		5
32	The Sigma Phase Evaluation in Duplex Stainless Steel Using ECT Method. Materials Science Forum, 2012, 721, 65-70.	0.3	1
33	Eddy Current Transducer Dedicated for Sigma Phase Evaluation in Duplex Stainless Steel. Journal of Sensors, 2012, 2012, 1-6.	0.6	2
34	Intelligent System for Radiogram Analysis — Software application. , 2011, , .		0
35	Eddy Current Transducer for Evaluation of Inhomogeneity in Titanium Billets. IEEE Transactions on Magnetics, 2011, 47, 3967-3970.	1.2	2
36	INTELLIGENT SYSTEM FOR RADIOGRAM ANALYSIS. , 2011, , .		1

Grzegorz Psuj

#	Article	IF	CITATIONS
37	EVALUATION OF OUTER FLAWS IN TITANIUM ALLOYS USING EDDY CURRENT MEASURING SYSTEM. , 2011, , .		0
38	COMPARATIVE ANALYSIS OF SELECTED EDDY CURRENT TRANSDUCERS FOR TITANIUM ALLOY EVALUATION. , 2010, , .		1
39	Electromagnetic Transducer With Rotational Excitation Field for Evaluation of Fatigue and Stress Loaded Steel Samples. IEEE Transactions on Magnetics, 2009, 45, 3897-3900.	1.2	0
40	Data Fusion From Multidirectional Remanent Flux Leakage Transducers for Nondestructive Testing of Stress- and Fatigue-Loaded Steel Samples. IEEE Transactions on Magnetics, 2008, 44, 3285-3288.	1.2	6
41	DATA FUSION OF EDDY CURRENT NDT SIGNALS. AIP Conference Proceedings, 2008, , .	0.3	4
42	Evaluation of fatigue-loaded steel samples using fusion of electromagnetic methods. Journal of Magnetism and Magnetic Materials, 2007, 310, 2737-2739.	1.0	11
43	Fusion of electromagnetic inspection methods for evaluation of stress-loaded steel samples. IEEE Transactions on Magnetics, 2005, 41, 3721-3723.	1.2	12
44	Observation of Material Degradation under Fatigue and Static Loading Condition Using Selected Electromagnetic NDT Methods. Materials Science Forum, 0, 721, 120-126.	0.3	6