Takehiko Gotoh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9292648/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Removal of Acetic Acid from Bacterial Culture Media by Adsorption onto a Two-Component Composite Polymer Gel. Gels, 2022, 8, 154.	4.5	1
2	The Removal of Hydrophobic Matter from Thermosensitive Poly[oligo(ethylene glycol) Monomethyl Ether Acrylate] Gel Adsorbent in Alcohol–Water Mixtures. Gels, 2022, 8, 200.	4.5	2
3	Preparation of Metal Oxide Nano Particle in Hydrogel Reaction Field. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2022, 29, 23-29.	0.0	0
4	A Novel Strain of <i>Aurantiochytrium</i> sp. Strain L3W and Its Characteristics of Biomass and Lipid Production Including Valuable Fatty Acids. Journal of Water and Environment Technology, 2021, 19, 24-34.	0.7	5
5	Properties of Zwitterionic Sulfobetaine Gels Containing Different Numbers of Methylene Units. MATEC Web of Conferences, 2021, 333, 01002.	0.2	0
6	Simultaneous Removal of Arsenic and Manganese from Synthetic Aqueous Solutions Using Polymer Gel Composites. Nanomaterials, 2021, 11, 1032.	4.1	6
7	Increase in sedimentary organic carbon with a change from hypoxic to oxic conditions. Marine Pollution Bulletin, 2021, 168, 112397.	5.0	2
8	Recovery of Rare Earths using Anion-Supporting Polymer Gel. Kagaku Kogaku Ronbunshu, 2021, 47, 161-168.	0.3	0
9	Synthesis of Oxidant Functionalised Cationic Polymer Hydrogel for Enhanced Removal of Arsenic (III). Gels, 2021, 7, 197.	4.5	9
10	Novel Thermosensitive-co-Zwitterionic Sulfobetaine Gels for Metal Ion Removal: Synthesis and Characterization. Gels, 2021, 7, 273.	4.5	3
11	Correlating properties between sulfobetaine hydrogels and polymers with different carbon spacer lengths. Polymer, 2020, 186, 122013.	3.8	4
12	Application of Aurantiochytrium sp. L3W for food-processing wastewater treatment in combination with polyunsaturated fatty acids production for fish aquaculture. Science of the Total Environment, 2020, 743, 140735.	8.0	23
13	Degradation of secondary polyamide reverse osmosis membrane by hypochlorite in the presence of calcium ions. Polymer Degradation and Stability, 2020, 181, 109351.	5.8	7
14	Synthesis, Phase-Transition Behaviour, and Oil Adsorption Performance of Porous Poly(oligo(ethylene glycol) Alkyl Ether Acrylate) Gels. Polymers, 2020, 12, 1405.	4.5	4
15	The Effect of Synthesis Condition of the Ability of Swelling, Adsorption, and Desorption of Zwitterionic Sulfobetaine-Based Gel. International Journal of Technology, 2020, 11, 299.	0.8	1
16	Effect of Plastics on the Photodegradation Behavior of Chlorophenols. Journal of Chemical Engineering of Japan, 2020, 53, 660-666.	0.6	3
17	Removal of Manganese Using Polymer Gel Composites. Materials Proceedings, 2020, 4, .	0.2	1
18	Deterioration Mechanism of a Tertiary Polyamide Reverse Osmosis Membrane by Hypochlorite. Environmental Science & Technology, 2019, 53, 9109-9117.	10.0	31

Такеніко Сотон

#	Article	IF	CITATIONS
19	The effect of γ-FeOOH on enhancing arsenic adsorption from groundwater with DMAPAAQ + FeOOH g composite. Scientific Reports, 2019, 9, 11909.	el _{3.3}	22
20	Recovery of CO ₂ Using Temperatureâ€Responsive Amine Gel Slurry. Macromolecular Symposia, 2019, 385, 1800165.	0.7	1
21	Removal of Arsenic Using a Cationic Polymer Gel Impregnated with Iron Hydroxide. Journal of Visualized Experiments, 2019, , .	0.3	4
22	Selective Recovery of Metal Ion by Using Hydrogel With Different Inner pH. Macromolecular Symposia, 2019, 385, 1800163.	0.7	3
23	Influence of Hydrophobicity of Backbone Polymer in Thermo-Responsive Hydrogel with Immobilized Amine on Cycle Capacity for Absorption and Recovery of CO2. Polymers, 2019, 11, 1024.	4.5	5
24	Development and regeneration of composite of cationic gel and iron hydroxide for adsorbing arsenic from ground water. Chemosphere, 2019, 217, 808-815.	8.2	32
25	The Effect of Cation and Anion Species on the Transition and Adsorption Behaviors of Thermosensitive Sulfobetaine Gel-based Adsorbent. International Journal of Technology, 2019, 10, 443.	0.8	5
26	Novel Metal Ion Removal Method Using Protonated Hydrogel. Macromolecular Symposia, 2017, 372, 120-126.	0.7	1
27	Metal Hydroxide Formation in DMAPAA Hydrogel and Novel Metal Ion Removal Method. Kagaku Kogaku Ronbunshu, 2017, 43, 199-206.	0.3	4
28	Effects of specific anions on the relationship between the ion-adsorption properties of sulfobetaine gel and its swelling behavior. Polymer, 2015, 59, 144-154.	3.8	14
29	Investigation of ion adsorption properties of sulfobetaine gel and relationship with its swelling behavior. Polymer, 2014, 55, 5189-5197.	3.8	15
30	Consolidation of suspended particles by using dual ionic thermosensitive polymers with incorporated a hydrophobic component. Separation and Purification Technology, 2013, 106, 90-96.	7.9	14
31	Adsorption and desorption of calcium ions by temperature swing with copolymer of thermosensitive and chelating components grafted on porous ethylene vinyl acetate disk. Reactive and Functional Polymers, 2013, 73, 1632-1638.	4.1	5
32	Synthesis of porous poly[oligo(ethylene glycol) methyl ether methacrylate] gels that exhibit thermosensitivity in highly concentrated aqueous NaCl solution. Polymer, 2012, 53, 3417-3420.	3.8	10
33	A Novel Thermosensitive Gel Adsorbent for Phosphate Ions. Macromolecular Symposia, 2010, 295, 81-87.	0.7	6
34	Control of Transition Temperature of Thermosensitive Porous Gel and Its Application for Dewatering Organic Slurry. Kobunshi Ronbunshu, 2008, 65, 739-744.	0.2	1
35	Novel PH-Thermosensitive Gel Adsorbents for Phosphoric Acid. , 2008, , .		0
36	Synthesis of porous poly(N-isopropylacrylamide) gel beads by sedimentation polymerization and their morphology. Journal of Applied Polymer Science, 2007, 104, 842-850.	2.6	77

Такеніко Сотон

#	Article	IF	CITATIONS
37	Synthesis of Nonporous Poly(N-alkylacrylamide) Gel Beads by Nonaqueous Sedimentation Polymerization. Polymer Journal, 2007, 39, 18-20.	2.7	8
38	Dewatering of organic slurries using reinforced thermosensitive porous gels. Polymer Bulletin, 2007, 58, 213-223.	3.3	8
39	Characterization and Swelling Behavior of Thermosensitive Porous Gel. Journal of Chemical Engineering of Japan, 2004, 37, 597-603.	0.6	5
40	Preparation of Molecular Imprinted Thermosensitive Gel Adsorbents and Adsorption/Desorption Properties of Heavy Metal Ions by Temperature Swing. Journal of Chemical Engineering of Japan, 2004, 37, 59-66.	0.6	32
41	Measurements of Mechanical Properties on a Swollen Hydrogel by a Tension Test Method. Polymer Journal, 2004, 36, 59-63.	2.7	13
42	Synthesis of Porous Poly(N-isopropylacrylamide) Gel Beads by Sedimentation Polymerization. Polymer Journal, 2004, 36, 356-360.	2.7	10
43	Dewartering of Organic Slurry Using Thermosensitive Porous Gel. Journal of Chemical Engineering of Japan, 2004, 37, 347-352.	0.6	11
44	Effects of Synthesis Conditions on Formation of Thermosensitive Porous Gels and Swelling/Shrinking Properties Kobunshi Ronbunshu, 2002, 59, 44-50.	0.2	6
45	Structure Control of Thermosensitive Porous Gels with Hydrophobic Long Side Chains and Their Thermoresponsive Properties Kobunshi Ronbunshu, 2000, 57, 722-729.	0.2	3
46	Novel synthesis of thermosensitive porous hydrogels. Journal of Applied Polymer Science, 1998, 69, 895-906.	2.6	133
47	Synthesis of Porous Polymers Utilizing Crystallization of Hydrophobic Long Alkyl Side Chains Kobunshi Ronbunshu, 1998, 55, 137-144.	0.2	Ο
48	A new type porous carrier and its application to culture of suspension cells. Cytotechnology, 1993, 11, 35-40.	1.6	10
49	Forced breakup of a power-law fluid jet discharged from an orifice Journal of Chemical Engineering of Japan, 1991, 24, 799-801.	0.6	9
50	Poly(triethylene glycol methyl ether methacrylate) hydrogel as a carrier of phosphotungstic acid for acid catalytic reaction in water. Materials Advances, 0, , .	5.4	1
51	Utilization of saline and viscous food-processing liquid waste for cultivation of thraustochytrid for production of polyunsaturated fatty acids. Clean Technologies and Environmental Policy, 0, , .	4.1	3