
Julien Viaud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9291322/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural organization and dynamics of FCHo2 docking on membranes. ELife, 2022, 11, .	6.0	9
2	Megakaryocytes form linear podosomes devoid of digestive properties to remodel medullar matrix. Scientific Reports, 2022, 12, 6255.	3.3	3
3	PIKfyve-Dependent Phosphoinositide Dynamics in Megakaryocyte/Platelet Granule Integrity and Platelet Functions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 987-1004.	2.4	4
4	X-linked myotubular myopathy is associated with epigenetic alterations and is ameliorated by HDAC inhibition. Acta Neuropathologica, 2022, 144, 537-563.	7.7	8
5	Profiling of Phosphoinositide Molecular Species in Resting or Activated Human or Mouse Platelets by a LC-MS Method. Methods in Molecular Biology, 2021, 2251, 39-53.	0.9	1
6	PI3KC2β inactivation stabilizes VE adherin junctions and preserves vascular integrity. EMBO Reports, 2021, 22, e51299.	4.5	12
7	Liposome-Based Methods to Study Protein–Phosphoinositide Interaction. Methods in Molecular Biology, 2021, 2251, 177-184.	0.9	0
8	Liposome-Based Methods to Study GTPase Activation by Phosphoinositides. Methods in Molecular Biology, 2021, 2251, 185-194.	0.9	1
9	Phosphoinositide 3-kinases in platelets, thrombosis and therapeutics. Biochemical Journal, 2020, 477, 4327-4342.	3.7	11
10	Differences and similarities in the effects of ibrutinib and acalabrutinib on platelet functions. Haematologica, 2019, 104, 2292-2299.	3.5	39
11	The MTM1–UBQLN2–HSP complex mediates degradation of misfolded intermediate filaments in skeletal muscle. Nature Cell Biology, 2018, 20, 198-210.	10.3	37
12	Profilin 1–mediated cytoskeletal rearrangements regulate integrin function in mouse platelets. Blood Advances, 2018, 2, 1040-1045.	5.2	12
13	The lipid products of phosphoinositide 3-kinase isoforms in cancer and thrombosis. Cancer and Metastasis Reviews, 2018, 37, 477-489.	5.9	5
14	Profiling of phosphoinositide molecular species in human and mouse platelets identifies new species increasing following stimulation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 1121-1131.	2.4	26
15	A dual role for the class III PI3K, Vps34, in platelet production and thrombus growth. Blood, 2017, 130, 2032-2042.	1.4	35
16	Proteinâ€Lipid Interaction by Fluorescence (PLIF) to Characterize and Screen for Inhibitors of Proteinâ€Phosphoinositide Interactions. Current Protocols in Protein Science, 2017, 89, 19.31.1-19.31.10.	2.8	0
17	Mass Assays to Quantify Bioactive PtdIns3P and PtdIns5P During Autophagic Responses. Methods in Enzymology, 2017, 587, 293-310.	1.0	5
18	Cdc42â€dependent Fâ€actin dynamics drive structuration of the demarcation membrane system in megakaryocytes. Journal of Thrombosis and Haemostasis, 2016, 14, 1268-1284.	3.8	34

JULIEN VIAUD

#	Article	IF	CITATIONS
19	PLIF: A rapid, accurate method to detect and quantitatively assess protein-lipid interactions. Science Signaling, 2016, 9, rs2.	3.6	20
20	Phosphoinositides: Important lipids in the coordination of cell dynamics. Biochimie, 2016, 125, 250-258.	2.6	86
21	Phosphatidylinositol 5-phosphate regulates invasion through binding and activation of Tiam1. Nature Communications, 2014, 5, 4080.	12.8	60
22	BIN1/M-Amphiphysin2 induces clustering of phosphoinositides to recruit its downstream partner dynamin. Nature Communications, 2014, 5, 5647.	12.8	94
23	Phosphatidylinositol 5â€phosphate: A nuclear stress lipid and a tuner of membranes and cytoskeleton dynamics. BioEssays, 2014, 36, 260-272.	2.5	50
24	CIP4 Controls CCL19-Driven Cell Steering and Chemotaxis in Chronic Lymphocytic Leukemia. Cancer Research, 2013, 73, 3412-3424.	0.9	17
25	Identification of neuronal substrates implicates Pak5 in synaptic vesicle trafficking. Proceedings of the United States of America, 2012, 109, 4116-4121.	7.1	20
26	Regulation of the DH–PH tandem of guanine nucleotide exchange factor for Rho GTPases by phosphoinositides. Advances in Biological Regulation, 2012, 52, 303-314.	2.3	33
27	Identification of Allosteric Inhibitors of p21-Activated Kinase. , 2012, 928, 67-79.		1
28	Phosphoinositides Are Essential Coactivators for p21-Activated Kinase 1. Molecular Cell, 2010, 40, 493-500.	9.7	43
29	An allosteric kinase inhibitor binds the p21-activated kinase autoregulatory domain covalently. Molecular Cancer Therapeutics, 2009, 8, 2559-2565.	4.1	100
30	Structure–activity relationships of Bak derived peptides: Affinity and specificity modulations by amino acid replacement. European Journal of Medicinal Chemistry, 2008, 43, 966-972.	5.5	12
31	Structure-based discovery of an inhibitor of Arf activation by Sec7 domains through targeting of protein-protein complexes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10370-10375.	7.1	88
32	Structure-Based Design, Synthesis, and Biological Evaluation of Novel Inhibitors of Human Cyclophilin A. Journal of Medicinal Chemistry, 2006, 49, 900-910.	6.4	57