Ulrike Dackermann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9291271/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Damage identification in civil engineering structures utilizing PCA-compressed residual frequency response functions and neural network ensembles. Structural Control and Health Monitoring, 2011, 18, 207-226.	1.9	91
2	In situ assessment of structural timber using stress-wave measurements. Materials and Structures/Materiaux Et Constructions, 2014, 47, 787-803.	1.3	81
3	Damage identification based on response-only measurements using cepstrum analysis and artificial neural networks. Structural Health Monitoring, 2014, 13, 430-444.	4.3	56
4	Dynamic-Based Damage Identification Using Neural Network Ensembles and Damage Index Method. Advances in Structural Engineering, 2010, 13, 1001-1016.	1.2	51
5	Identification of member connectivity and mass changes on a two-storey framed structure using frequency response functions and artificial neural networks. Journal of Sound and Vibration, 2013, 332, 3636-3653.	2.1	40
6	Wavelet packet energy–based damage identification of wood utility poles using support vector machine multi-classifier and evidence theory. Structural Health Monitoring, 2019, 18, 123-142.	4.3	39
7	A comparative study of using static and ultrasonic material testing methods to determine the anisotropic material properties of wood. Construction and Building Materials, 2016, 102, 963-976.	3.2	37
8	Guided wave–based condition assessment of in situ timber utility poles using machine learning algorithms. Structural Health Monitoring, 2014, 13, 374-388.	4.3	29
9	Elastic wave modes for the assessment of structural timber: ultrasonic echo for building elements and guided waves for pole and pile structures. Journal of Civil Structural Health Monitoring, 2015, 5, 221-249.	2.0	29
10	Location and Severity Identification of Notch-Type Damage in a Two-Storey Steel Framed Structure Utilising Frequency Response Functions and Artificial Neural Network. Advances in Structural Engineering, 2012, 15, 743-757.	1.2	26
11	Condition Assessment of Foundation Piles and Utility Poles Based on Guided Wave Propagation Using a Network of Tactile Transducers and Support Vector Machines. Sensors, 2017, 17, 2938.	2.1	22
12	Cepstrum-based damage identification in structures with progressive damage. Structural Health Monitoring, 2019, 18, 87-102.	4.3	19
13	Novel Hybrid Method Based on Advanced Signal Processing and Soft Computing Techniques for Condition Assessment of Timber Utility Poles. Journal of Aerospace Engineering, 2019, 32, .	0.8	15
14	Condition Assessment of Timber Utility Poles Based on a Hierarchical Data Fusion Model. Journal of Computing in Civil Engineering, 2016, 30, .	2.5	14
15	A dynamic-based method for the assessment of connection systems of timber composite structures. Construction and Building Materials, 2016, 102, 999-1008.	3.2	12
16	Damage Identification in Timber Bridges Utilising the Damage Index Method and Neural Network Ensembles. Australian Journal of Structural Engineering, 2009, 9, 181-194.	0.4	9
17	FRF Sensitivity-Based Damage Identification Using Linkage Modeling for Limited Sensor Arrays. International Journal of Structural Stability and Dynamics, 2018, 18, 1840002.	1.5	6
18	Load capacity prediction of in-service timber utility poles considering wind load. Journal of Civil Structural Health Monitoring, 2016, 6, 385-394.	2.0	5

#	Article	IF	CITATIONS
19	Experimental Investigations of Material Properties of Timber Utility Poles Using Various Material Testing Approaches. Advanced Materials Research, 2013, 778, 265-272.	0.3	1
20	A Vibration-Based Approach for the Estimation of the Loss of Composite Action in Timber Composite Systems. Advanced Materials Research, 0, 778, 462-469.	0.3	0