D Howard Fairbrother

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9291049/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solvent-free bottom-up patterning of zeolitic imidazolate frameworks. Nature Communications, 2022, 13, 420.	5.8	20
2	Relative cross sections and appearance energies in electron impact ionization and dissociation of mono-halogenated biphenyls. International Journal of Mass Spectrometry, 2021, 459, 116452.	0.7	3
3	Electron beam induced modification of ZIF-8 membrane permeation properties. Chemical Communications, 2021, 57, 5250-5253.	2.2	12
4	Multicolor polymeric carbon dots: synthesis, separation and polyamide-supported molecular fluorescence. Chemical Science, 2021, 12, 2441-2455.	3.7	82
5	Water-processable, biodegradable and coatable aquaplastic from engineered biofilms. Nature Chemical Biology, 2021, 17, 732-738.	3.9	64
6	Biodegradation of Functionalized Nanocellulose. Environmental Science & Technology, 2021, 55, 10744-10757.	4.6	35
7	Low Energy Electron- and Ion-Induced Surface Reactions of Fe(CO) ₅ Thin Films. Journal of Physical Chemistry C, 2021, 125, 17749-17760.	1.5	10
8	Biodegradable Polymer Nanocomposites Provide Effective Delivery and Reduce Phosphorus Loss during Plant Growth. ACS Agricultural Science and Technology, 2021, 1, 529-539.	1.0	12
9	Charged Particle-Induced Surface Reactions of Organometallic Complexes as a Guide to Precursor Design for Electron- and Ion-Induced Deposition of Nanostructures. ACS Applied Materials & Interfaces, 2021, 13, 48333-48348.	4.0	8
10	Evaluating performance, degradation, and release behavior of a nanoform pigmented coating after natural and accelerated weathering. NanoImpact, 2020, 17, 100199.	2.4	6
11	Electron beam-induced deposition of platinum from Pt(CO)2Cl2 and Pt(CO)2Br2. Beilstein Journal of Nanotechnology, 2020, 11, 1789-1800.	1.5	11
12	Surface Reactions of Low-Energy Argon lons with Organometallic Precursors. Journal of Physical Chemistry C, 2020, 124, 24795-24808.	1.5	7
13	Influence of Oxygen-Containing Functional Groups on the Environmental Properties, Transformations, and Toxicity of Carbon Nanotubes. Chemical Reviews, 2020, 120, 11651-11697.	23.0	84
14	Unveiling the Synergistic Role of Oxygen Functional Groups in the Graphene-Mediated Oxidation of Glutathione. ACS Applied Materials & amp; Interfaces, 2020, 12, 45753-45762.	4.0	12
15	Surface Curvature and Aminated Side-Chain Partitioning Affect Structure of Poly(oxonorbornenes) Attached to Planar Surfaces and Nanoparticles of Gold. Langmuir, 2020, 36, 10412-10420.	1.6	0
16	UV–Vis quantification of hydroxyl radical concentration and dose using principal component analysis. Talanta, 2020, 218, 121148.	2.9	31
17	Photochemical Transformations of Carbon Dots in Aqueous Environments. Environmental Science & Technology, 2020, 54, 4160-4170.	4.6	24
18	Influence of polymer type and carbon nanotube properties on carbon nanotube/polymer nanocomposite biodegradation. Science of the Total Environment, 2020, 742, 140512.	3.9	8

D HOWARD FAIRBROTHER

#	Article	IF	CITATIONS
19	Identifying and Rationalizing the Differing Surface Reactions of Low-Energy Electrons and Ions with an Organometallic Precursor. Journal of Physical Chemistry Letters, 2020, 11, 2006-2013.	2.1	12
20	Electron-Induced Reactions of Ru(CO) ₄ 1 ₂ : Gas Phase, Surface, and Electron Beam-Induced Deposition. Journal of Physical Chemistry C, 2020, 124, 10593-10604.	1.5	12
21	Evaluating performance, degradation, and release behavior of a nanoform pigmented coating after natural and accelerated weathering. NanoImpact, 2020, 17, .	2.4	Ο
22	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry A, 2019, 123, 5837-5848.	1.1	2
23	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry B, 2019, 123, 5973-5984.	1.2	1
24	Facile benchtop reactor design using dendrimer-templating technology for the fabrication of polyethyleneimine-coated CuO nanoparticles on the gram scale. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, 041402.	0.9	1
25	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry C, 2019, 123, 17063-17074.	1.5	1
26	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry Letters, 2019, 10, 4051-4062.	2.1	2
27	The role of the dihedral angle and excited cation states in ionization and dissociation of mono-halogenated biphenyls; a combined experimental and theoretical coupled cluster study. Physical Chemistry Chemical Physics, 2019, 21, 4556-4567.	1.3	4
28	β-Cyclodextrin Polymers on Microcrystalline Cellulose as a Granular Media for Organic Micropollutant Removal from Water. ACS Applied Materials & Interfaces, 2019, 11, 8089-8096.	4.0	49
29	Two-Phase Synthesis of Gold–Copper Bimetallic Nanoparticles of Tunable Composition: Toward Optimized Catalytic CO ₂ Reduction. ACS Applied Nano Materials, 2019, 2, 3989-3998.	2.4	22
30	Copper release and transformation following natural weathering of nano-enabled pressure-treated lumber. Science of the Total Environment, 2019, 668, 234-244.	3.9	12
31	Design, Synthesis, and Evaluation of CF ₃ AuCNR Precursors for Focused Electron Beam-Induced Deposition of Gold. ACS Applied Materials & Interfaces, 2019, 11, 11976-11987.	4.0	9
32	Use of X-ray photoelectron spectroscopy and spectroscopic ellipsometry to characterize carbonaceous films modified by electrons and hydrogen atoms. Applied Surface Science, 2019, 479, 557-568.	3.1	5
33	Next-Generation Complex Metal Oxide Nanomaterials Negatively Impact Growth and Development in the Benthic Invertebrate <i>Chironomus riparius</i> upon Settling. Environmental Science & Technology, 2019, 53, 3860-3870.	4.6	29
34	Engineering Lignocellulose Fibers with Higher Thermal Stability through Natural Fiber Welding. Macromolecular Materials and Engineering, 2019, 304, 1900042.	1.7	8
35	Electron induced surface reactions of (η ⁵ -C ₅ H ₅)Fe(CO) ₂ Mn(CO) ₅ , a potential heterobimetallic precursor for focused electron beam induced deposition (FEBID). Physical Chemistry Chemical Devices 20, 7862-7874	1.3	21
36	Low energy electron-induced decomposition of (η ⁵ -Cp)Fe(CO) ₂ Mn(CO) ₅ , a potential bimetallic precursor for focused electron beam induced deposition of alloy structures. Physical Chemistry Chemical Physics, 2018, 20, 5644-5656.	1.3	11

#	Article	IF	CITATIONS
37	Quantification of carbon nanotubes in polymer composites. Analytical Methods, 2018, 10, 1032-1037.	1.3	3
38	Electron Induced Surface Reactions of HFeCo ₃ (CO) ₁₂ , a Bimetallic Precursor for Focused Electron Beam Induced Deposition (FEBID). Journal of Physical Chemistry C, 2018, 122, 2648-2660.	1.5	22
39	Mechanism-based design of precursors for focused electron beam-induced deposition. MRS Communications, 2018, 8, 343-357.	0.8	28
40	Structure–Property Relationships of Amine-rich and Membrane-Disruptive Poly(oxonorbornene)-Coated Gold Nanoparticles. Langmuir, 2018, 34, 4614-4625.	1.6	13
41	Sustainable and scalable natural fiber welded palladium-indium catalysts for nitrate reduction. Applied Catalysis B: Environmental, 2018, 221, 290-301.	10.8	50
42	Biodegradation of Carbon Nanotube/Polymer Nanocomposites using a Monoculture. Environmental Science & Technology, 2018, 52, 40-51.	4.6	22
43	Impact of Silanization on the Structure, Dispersion Properties, and Biodegradability of Nanocellulose as a Nanocomposite Filler. ACS Applied Nano Materials, 2018, 1, 7025-7038.	2.4	38
44	Synthesis and Degradation of Cadmium-Free InP and InPZn/ZnS Quantum Dots in Solution. Langmuir, 2018, 34, 13924-13934.	1.6	26
45	Electron interactions with the heteronuclear carbonyl precursor H ₂ FeRu ₃ (CO) ₁₃ and comparison with HFeCo ₃ (CO) ₁₂ : from fundamental gas phase and surface science studies to focused electron beam induced deposition. Beilstein lournal of Nanotechnology. 2018. 9. 555-579.	1.5	16
46	Biodegradability of carbon nanotube/polymer nanocomposites under aerobic mixed culture conditions. Science of the Total Environment, 2018, 639, 804-814.	3.9	22
47	Release, detection and toxicity of fragments generated during artificial accelerated weathering of CdSe/ZnS and CdSe quantum dot polymer composites. Environmental Science: Nano, 2018, 5, 1694-1710.	2.2	19
48	Investigation of phosphorous doping effects on polymeric carbon dots: Fluorescence, photostability, and environmental impact. Carbon, 2018, 129, 438-449.	5.4	115
49	Malic Acid Carbon Dots: From Super-resolution Live-Cell Imaging to Highly Efficient Separation. ACS Nano, 2018, 12, 5741-5752.	7.3	135
50	Resonantly Enhanced Nonlinear Optical Probes of Oxidized Multiwalled Carbon Nanotubes at Supported Lipid Bilayers. Journal of Physical Chemistry B, 2017, 121, 1321-1329.	1.2	10
51	Oxygen-promoted catalyst sintering influences number density, alignment, and wall number of vertically aligned carbon nanotubes. Nanoscale, 2017, 9, 5222-5233.	2.8	33
52	Carbon Dots: A Modular Activity To Teach Fluorescence and Nanotechnology at Multiple Levels. Journal of Chemical Education, 2017, 94, 1143-1149.	1.1	28
53	Phosphorus-functionalized multi-wall carbon nanotubes as flame-retardant additives for polystyrene and poly (methyl methacrylate). Journal of Thermal Analysis and Calorimetry, 2017, 130, 735-753.	2.0	25
54	Photodegradation of polymer-CNT nanocomposites: effect of CNT loading and CNT release characteristics. Environmental Science: Nano, 2017, 4, 967-982.	2.2	36

#	Article	lF	CITATIONS
55	Environmental Processes at the Solid–Liquid Interface: What Constitutes New Physical Insights?. Journal of Physical Chemistry A, 2017, 121, 5947-5947.	1.1	2
56	Methodology for quantifying engineered nanomaterial release from diverse product matrices under outdoor weathering conditions and implications for life cycle assessment. Environmental Science: Nano, 2017, 4, 1784-1797.	2.2	22
57	Environmental Processes at the Solid–Liquid Interface: What Constitutes New Physical Insights?. Journal of Physical Chemistry C, 2017, 121, 17045-17045.	1.5	1
58	Interfacial and Confined Colloidal Rod Diffusion. Langmuir, 2017, 33, 9034-9042.	1.6	18
59	Comparing postdeposition reactions of electrons and radicals with Pt nanostructures created by focused electron beam induced deposition. Beilstein Journal of Nanotechnology, 2017, 8, 2410-2424.	1.5	17
60	Amplified cross-linking efficiency of self-assembled monolayers through targeted dissociative electron attachment for the production of carbon nanomembranes. Beilstein Journal of Nanotechnology, 2017, 8, 2562-2571.	1.5	8
61	Electron Induced Surface Reactions of <i>cis</i> -Pt(CO) ₂ Cl ₂ : A Route to Focused Electron Beam Induced Deposition of Pure Pt Nanostructures. Journal of the American Chemical Society, 2016, 138, 9172-9182.	6.6	36
62	Analysis of single-walled carbon nanotubes using spICP-MS with microsecond dwell time. NanoImpact, 2016, 1, 65-72.	2.4	22
63	Diffusing colloidal probes of cell surfaces. Soft Matter, 2016, 12, 4731-4738.	1.2	6
64	Biofilm development on carbon nanotube/polymer nanocomposites. Environmental Science: Nano, 2016, 3, 545-558.	2.2	22
65	The contribution of indirect photolysis to the degradation of graphene oxide in sunlight. Carbon, 2016, 110, 426-437.	5.4	35
66	Lignocellulose Fiber- and Welded Fiber- Supports for Palladium-Based Catalytic Hydrogenation: A Natural Fiber Welding Application for Water Treatment. ACS Sustainable Chemistry and Engineering, 2016, 4, 5511-5522.	3.2	29
67	Diffusing Colloidal Probes of kT-Scale Biomaterial–Cell Interactions. Langmuir, 2016, 32, 12212-12220.	1.6	4
68	Potential Environmental Impacts and Antimicrobial Efficacy of Silver- and Nanosilver-Containing Textiles. Environmental Science & amp; Technology, 2016, 50, 4018-4026.	4.6	88
69	The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors. Beilstein Journal of Nanotechnology, 2015, 6, 1904-1926.	1.5	131
70	Photochemical Transformation of Graphene Oxide in Sunlight. Environmental Science & Technology, 2015, 49, 3435-3443.	4.6	202
71	Electron-Induced Surface Reactions of η ³ -Allyl Ruthenium Tricarbonyl Bromide [(η ³ -C ₃ H ₅)Ru(CO) ₃ Br]: Contrasting the Behavior of Different Ligands. Journal of Physical Chemistry C, 2015, 119, 15349-15359.	1.5	28
72	Interactions of Microorganisms with Polymer Nanocomposite Surfaces Containing Oxidized Carbon Nanotubes. Environmental Science & Technology, 2015, 49, 5484-5492.	4.6	31

#	Article	IF	CITATIONS
73	Understanding the electron-stimulated surface reactions of organometallic complexes to enable design of precursors for electron beam-induced deposition. Applied Physics A: Materials Science and Processing, 2014, 117, 1631-1644.	1.1	42
74	Catalytic Dehydration of 2-Propanol by Size-Selected (WO3)n and (MoO3)n Metal Oxide Clusters. Journal of Physical Chemistry C, 2014, 118, 29278-29286.	1.5	32
75	Transformations of oxidized multiwalled carbon nanotubes exposed to UVC (254 nm) irradiation. Environmental Science: Nano, 2014, 1, 324-337.	2.2	29
76	Photo-Oxidation of Hydrogenated Fullerene (Fullerane) in Water. Environmental Science and Technology Letters, 2014, 1, 490-494.	3.9	31
77	Electron Induced Surface Reactions of Organometallic Metal(hfac) ₂ Precursors and Deposit Purification. ACS Applied Materials & Interfaces, 2014, 6, 8590-8601.	4.0	27
78	Carbon nanotube composite membranes for small â€~designer' water treatment systems. Water Science and Technology: Water Supply, 2014, 14, 917-923.	1.0	2
79	Anomalous Silica Colloid Stability and Gel Layer Mediated Interactions. Langmuir, 2013, 29, 8835-8844.	1.6	33
80	Electron Beam Induced Reactions of Adsorbed Cobalt Tricarbonyl Nitrosyl (Co(CO) ₃ NO) Molecules. Journal of Physical Chemistry C, 2013, 117, 16053-16064.	1.5	36
81	Electron induced reactions of surface adsorbed tungsten hexacarbonyl (W(CO)6). Physical Chemistry Chemical Physics, 2013, 15, 4002.	1.3	48
82	Detection of single walled carbon nanotubes by monitoring embedded metals. Environmental Sciences: Processes and Impacts, 2013, 15, 204-213.	1.7	55
83	Bacterial anti-adhesive properties of polysulfone membranes modified with polyelectrolyte multilayers. Journal of Membrane Science, 2013, 446, 201-211.	4.1	34
84	Transport of Oxidized Multi-Walled Carbon Nanotubes through Silica Based Porous Media: Influences of Aquatic Chemistry, Surface Chemistry, and Natural Organic Matter. Environmental Science & Technology, 2013, 47, 14034-14043.	4.6	33
85	Substrate temperature and electron fluence effects on metallic films created by electron beam induced deposition. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, 051805.	0.6	25
86	Influence of Surface Oxygen on the Interactions of Carbon Nanotubes with Natural Organic Matter. Environmental Science & Technology, 2012, 46, 12839-12847.	4.6	55
87	UV-induced photochemical transformations of citrate-capped silver nanoparticle suspensions. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	114
88	Modification of low pressure membranes with carbon nanotube layers for fouling control. Water Research, 2012, 46, 5645-5654.	5.3	163
89	Surface Morphologies of Size-Selected Mo _{100±2.5} and (MoO ₃) _{67±1.5} Clusters Soft-Landed onto HOPG. Journal of Physical Chemistry C, 2011, 115, 12299-12307.	1.5	40
90	Imaging Carbon Nanotube Interactions, Diffusion, and Stability in Nanopores. ACS Nano, 2011, 5, 5909-5919.	7.3	19

#	Article	IF	CITATIONS
91	Low-Energy Electron-Induced Decomposition and Reactions of Adsorbed Tetrakis(trifluorophosphine)platinum [Pt(PF ₃) ₄]. Journal of Physical Chemistry C, 2011, 115, 17452-17463.	1.5	59
92	Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon, 2011, 49, 24-36.	5.4	631
93	Chemical and structural characterization of carbon nanotube surfaces. Analytical and Bioanalytical Chemistry, 2010, 396, 1003-1014.	1.9	498
94	Changes in the thermophysical properties of microcrystalline cellulose as function of carbonization temperature. Carbon, 2010, 48, 31-40.	5.4	47
95	Changes in electrical and microstructural properties of microcrystalline cellulose as function of carbonization temperature. Carbon, 2010, 48, 1012-1024.	5.4	208
96	Electron beam irradiation of dimethyl-(acetylacetonate) gold(III) adsorbed onto solid substrates. Journal of Applied Physics, 2010, 107, .	1.1	36
97	Sorption of Aqueous Zn[II] and Cd[II] by Multiwall Carbon Nanotubes: The Relative Roles of Oxygen-Containing Functional Groups and Graphenic Carbon. Langmuir, 2010, 26, 967-981.	1.6	215
98	Assessing the colloidal properties of engineered nanoparticles in water: case studies from fullerene C60 nanoparticles and carbon nanotubes. Environmental Chemistry, 2010, 7, 10.	0.7	134
99	Photochemistry of Aqueous C ₆₀ Clusters: Wavelength Dependency and Product Characterization. Environmental Science & Technology, 2010, 44, 8121-8127.	4.6	56
100	Electron induced dissociation of trimethyl (methylcyclopentadienyl) platinum (IV): Total cross section as a function of incident electron energy. Journal of Applied Physics, 2009, 106, .	1.1	51
101	Colloidal Properties of Aqueous Suspensions of Acid-Treated, Multi-Walled Carbon Nanotubes. Environmental Science & Technology, 2009, 43, 819-825.	4.6	196
102	Correlation between microstructure and magnetotransport in organic semiconductor spin-valve structures. Physical Review B, 2009, 79, .	1.1	63
103	Electron Induced Surface Reactions of the Organometallic Precursor Trimethyl(methylcyclopentadienyl)platinum(IV). Journal of Physical Chemistry C, 2009, 113, 2487-2496.	1.5	99
104	Influence of Surface Oxides on the Colloidal Stability of Multi-Walled Carbon Nanotubes: A Structureâ^'Property Relationship. Langmuir, 2009, 25, 9767-9776.	1.6	190
105	Influence of Surface Oxides on the Adsorption of Naphthalene onto Multiwalled Carbon Nanotubes. Environmental Science & Technology, 2008, 42, 2899-2905.	4.6	277
106	Adsorption of Natural Organic Matter onto Carbonaceous Surfaces:Â Atomic Force Microscopy Study. Environmental Science & Technology, 2007, 41, 1238-1244.	4.6	33
107	Modification of Alkanethiolate Self-Assembled Monolayers by Atomic Hydrogen:  Influence of Alkyl Chain Length. Journal of Physical Chemistry C, 2007, 111, 374-382.	1.5	36
108	Effect of wet chemical treatments on the distribution of surface oxides on carbonaceous materials. Carbon, 2007, 45, 47-54.	5.4	94

D HOWARD FAIRBROTHER

#	Article	IF	CITATIONS
109	Influence of transition metal additives and temperature on the rate of organohalide reduction by granular iron: Implications for reaction mechanisms. Applied Catalysis B: Environmental, 2007, 76, 348-356.	10.8	66
110	Multifunctional chondroitin sulphate for cartilage tissue–biomaterial integration. Nature Materials, 2007, 6, 385-392.	13.3	609
111	Influence of Copper Loading and Surface Coverage on the Reactivity of Granular Iron toward 1,1,1-Trichloroethane. Environmental Science & Technology, 2006, 40, 1485-1490.	4.6	82
112	Quantification of Surface Oxides on Carbonaceous Materials. Chemistry of Materials, 2006, 18, 169-178.	3.2	130
113	Exploring the Influence of Granular Iron Additives on 1,1,1-Trichloroethane Reduction. Environmental Science & Technology, 2006, 40, 6837-6843.	4.6	155
114	Selected Effect of the Ions and the Neutrals in the Plasma Treatment of PTFE Surfaces: An OES-AFM-Contact Angle and XPS Study. Plasma Processes and Polymers, 2005, 2, 493-500.	1.6	40
115	Surface Reactions of Molecular and Atomic Oxygen with Carbon Phosphide Films. Journal of Physical Chemistry B, 2005, 109, 20379-20386.	1.2	41
116	Kinetics of electron-induced decomposition of CF[sub 2]Cl[sub 2] coadsorbed with water (ice): A comparison with CCl[sub 4]. Journal of Chemical Physics, 2004, 121, 8547.	1.2	22
117	Atomic oxygen reactions with semifluorinated and n-alkanethiolate self-assembled monolayers. Journal of Chemical Physics, 2004, 120, 3799-3810.	1.2	32
118	A Comparison of PE Surfaces Modified by Plasma Generated Neutral Nitrogen Species and Nitrogen Ions. Plasmas and Polymers, 2003, 8, 119-134.	1.5	62
119	Low-Temperature Oxidation of Nitrided Iron Surfaces. Journal of Physical Chemistry B, 2003, 107, 5558-5567.	1.2	77
120	Investigation of the Inhibitory Effect of Silica on the Degradation of 1,1,1-Trichloroethane by Granular Iron. Environmental Science & Technology, 2003, 37, 5806-5812.	4.6	35
121	Sputter-deposition and characterization of paramelaconite. Journal of Materials Research, 2003, 18, 1535-1542.	1.2	45
122	Investigating the reaction path and growth kinetics in CuOx/Al multilayer foils. Journal of Applied Physics, 2003, 94, 2923-2929.	1.1	104
123	Radical Reactions with Organic Thin Films:Â Chemical Interaction of Atomic Oxygen with an X-ray Modified Self-Assembled Monolayer. Journal of Physical Chemistry B, 2002, 106, 6265-6272.	1.2	54
124	Effect of X-ray Irradiation on the Chemical and Physical Properties of a Semifluorinated Self-Assembled Monolayer. Langmuir, 2002, 18, 1542-1549.	1.6	35
125	Electron-Stimulated Chemical Reactions in Carbon Tetrachloride/Water (Ice) Films. Journal of Physical Chemistry B, 2002, 106, 4432-4440.	1.2	24
126	Effect of chemical composition on the neutral reaction products produced during electron beam irradiation of carbon tetrachloride/water (ice) films. Physical Chemistry Chemical Physics, 2002, 4, 3806-3813.	1.3	8

#	Article	IF	CITATIONS
127	Electron stimulated C–F bond breaking kinetics in fluorine-containing organic thin films. Chemical Physics, 2002, 280, 111-118.	0.9	28
128	CF3(CF2)7(CH2)2SH Self-Assembled on Au and Subsequent Degradation Under the Influence of Ionizing Radiation as Measured by XPS. Surface Science Spectra, 2001, 8, 32-38.	0.3	2
129	X-ray Induced Modification of Semifluorinated Organic Thin Filmsâ€. Journal of Physical Chemistry B, 2000, 104, 3291-3297.	1.2	42
130	Iron Metalization of Fluorinated Organic Films:  A Combined X-ray Photoelectron Spectroscopy and Atomic Force Microscopy Study. Journal of Physical Chemistry B, 2000, 104, 6633-6641.	1.2	35
131	Global Thermodynamic Atmospheric Modeling:  Search for New Heterogeneous Reactions. Journal of Physical Chemistry A, 1997, 101, 7350-7358.	1.1	19
132	Structure of Monolayer and Multilayer Magnesium Chloride Films Grown on Pd(111). Langmuir, 1997, 13, 2090-2096.	1.6	38
133	The role of adsorbate structure in the photodissociation dynamics of adsorbed species: Methyl iodide/MgO(100). Journal of Chemical Physics, 1995, 102, 7267-7276.	1.2	41
134	Ultraviolet photodissociation dynamics of methyl iodide at 333 nm. Journal of Chemical Physics, 1994, 101, 3787-3791.	1.2	44
135	Carbon-carbon coupling of methyl groups on Pt(111). Surface Science Letters, 1993, 285, L455-L460.	0.1	4
136	Photodissociation dynamics of CH3I adsorbed on MgO(100): Theory and experiment. Journal of Chemical Physics, 1992, 97, 5168-5176.	1.2	34
137	257 nm photoinduced chemistry of methyl iodide adsorbed on MgO(100). Journal of Chemical Physics, 1992, 96, 9221-9232.	1.2	46
138	Surface chemical processes in metal organic molecularâ€beam epitaxy; Ga deposition from triethylgallium on GaAs(100). Journal of Applied Physics, 1990, 68, 4053-4063.	1.1	86
139	Surface Oxides on Carbon Nanotubes (CNTs): Effects on CNT Stability and Sorption Properties in Aquatic Environments. , 0, , 133-158.		1