List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9290876/publications.pdf Version: 2024-02-01

ΙΟΛΝΝ ΤΡΕΙΟ

#	Article	IF	CITATIONS
1	G Protein–Coupled Receptor Sorting to Endosomes and Lysosomes. Annual Review of Pharmacology and Toxicology, 2008, 48, 601-629.	9.4	389
2	Human Ste20 homologue hPAK1 links GTPases to the JNK MAP kinase pathway. Current Biology, 1996, 6, 598-605.	3.9	251
3	Signal transduction by proteaseâ€activated receptors. British Journal of Pharmacology, 2010, 160, 191-203.	5.4	243
4	Clathrinâ€Dependent Mechanisms of G Protein oupled Receptor Endocytosis. Traffic, 2007, 8, 462-470.	2.7	198
5	β-Arrestins Regulate Protease-activated Receptor-1 Desensitization but Not Internalization or Down-regulation. Journal of Biological Chemistry, 2002, 277, 1292-1300.	3.4	195
6	Protease-Activated Receptor-2 Is Essential for Factor VIIa and Xa–Induced Signaling, Migration, and Invasion of Breast Cancer Cells. Cancer Research, 2006, 66, 307-314.	0.9	191
7	Arrestin-2 Interacts with the Ubiquitin-Protein Isopeptide Ligase Atrophin-interacting Protein 4 and Mediates Endosomal Sorting of the Chemokine Receptor CXCR4. Journal of Biological Chemistry, 2007, 282, 36971-36979.	3.4	174
8	The Cytoplasmic Tails of Protease-activated Receptor-1 and Substance P Receptor Specify Sorting to Lysosomes versusRecycling. Journal of Biological Chemistry, 1999, 274, 2216-2224.	3.4	152
9	ALIX binds a YPX3L motif of the GPCR PAR1 and mediates ubiquitin-independent ESCRT-III/MVB sorting. Journal of Cell Biology, 2012, 197, 407-419.	5.2	135
10	Activated protein C promotes protease-activated receptor-1 cytoprotective signaling through β-arrestin and dishevelled-2 scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1372-80.	7.1	133
11	Protease-activated receptor signalling, endocytic sorting and dysregulation in cancer. Journal of Cell Science, 2007, 120, 921-928.	2.0	130
12	Down-Regulation of Protease-activated Receptor-1 Is Regulated by Sorting Nexin 1. Molecular Biology of the Cell, 2002, 13, 1965-1976.	2.1	128
13	PAR-1 contributes to the innate immune response during viral infection. Journal of Clinical Investigation, 2013, 123, 1310-1322.	8.2	128
14	Role of the Thrombin Receptor's Cytoplasmic Tail in Intracellular Trafficking. Journal of Biological Chemistry, 1996, 271, 32874-32880.	3.4	123
15	Termination of signaling by protease-activated receptor-1 is linked to lysosomal sorting. Proceedings of the United States of America, 1998, 95, 13698-13702.	7.1	123
16	Caveolae are required for protease-selective signaling by protease-activated receptor–1. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6393-6397.	7.1	122
17	An Essential Role for SNX1 in Lysosomal Sorting of Protease-activated Receptor-1: Evidence for Retromer-, Hrs-, and Tsg101-independent Functions of Sorting Nexins. Molecular Biology of the Cell, 2006, 17, 1228-1238.	2.1	117
18	The Cloned Thrombin Receptor Is Necessary and Sufficient for Activation of Mitogen-activated Protein Kinase and Mitogenesis in Mouse Lung Fibroblasts. Journal of Biological Chemistry, 1996, 271, 21536-21541.	3.4	114

#	Article	IF	CITATIONS
19	Intracellular delivery of an anionic antisense oligonucleotide via receptor-mediated endocytosis. Nucleic Acids Research, 2008, 36, 2764-2776.	14.5	114
20	A Role for Sorting Nexin 2 in Epidermal Growth Factor Receptor Down-regulation: Evidence for Distinct Functions of Sorting Nexin 1 and 2 in Protein Trafficking. Molecular Biology of the Cell, 2004, 15, 2143-2155.	2.1	111
21	Persistent transactivation of EGFR and ErbB2/HER2 by protease-activated receptor-1 promotes breast carcinoma cell invasion. Oncogene, 2008, 27, 4434-4445.	5.9	108
22	Protease-Activated Receptors: New Concepts in Regulation of G Protein-Coupled Receptor Signaling and Trafficking. Journal of Pharmacology and Experimental Therapeutics, 2003, 307, 437-442.	2.5	107
23	Persistent Signaling by Dysregulated Thrombin Receptor Trafficking Promotes Breast Carcinoma Cell Invasion. Molecular and Cellular Biology, 2004, 24, 1990-1999.	2.3	102
24	Thrombin Promotes Release of ATP from Lung Epithelial Cells through Coordinated Activation of Rho- and Ca2+-dependent Signaling Pathways. Journal of Biological Chemistry, 2009, 284, 20638-20648.	3.4	95
25	Clathrin Adaptor AP2 Regulates Thrombin Receptor Constitutive Internalization and Endothelial Cell Resensitization. Molecular and Cellular Biology, 2006, 26, 3231-3242.	2.3	93
26	Ubiquitination differentially regulates clathrin-dependent internalization of protease-activated receptor-1. Journal of Cell Biology, 2007, 177, 905-916.	5.2	92
27	Protease-activated receptor signaling: new roles and regulatory mechanisms. Current Opinion in Hematology, 2007, 14, 230-235.	2.5	91
28	Multiple Independent Functions of Arrestins in the Regulation of Protease-Activated Receptor-2 Signaling and Trafficking. Molecular Pharmacology, 2005, 67, 78-87.	2.3	87
29	Post-Translational Modifications of G Protein–Coupled Receptors Control Cellular Signaling Dynamics in Space and Time. Pharmacological Reviews, 2021, 73, 120-151.	16.0	86
30	Proteases Display Biased Agonism at Protease-Activated Receptors: Location matters!. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2009, 9, 87-96.	3.4	81
31	Cofactoring and Dimerization of Proteinase-Activated Receptors. Pharmacological Reviews, 2013, 65, 1198-1213.	16.0	79
32	Protease-activated Receptor-1 Down-regulation. Journal of Biological Chemistry, 2000, 275, 31255-31265.	3.4	76
33	Transactivation of the PAR1-PAR2 Heterodimer by Thrombin Elicits β-Arrestin-mediated Endosomal Signaling. Journal of Biological Chemistry, 2013, 288, 11203-11215.	3.4	74
34	Genetic evidence for a mammalian retromer complex containing sorting nexins 1 and 2. Proceedings of the United States of America, 2005, 102, 15173-15177.	7.1	71
35	Ubiquitin-dependent regulation of G protein-coupled receptor trafficking and signaling. Cellular Signalling, 2013, 25, 707-716.	3.6	71
36	GPCRs in Cancer: Protease-Activated Receptors, Endocytic Adaptors and Signaling. International Journal of Molecular Sciences, 2018, 19, 1886.	4.1	69

#	Article	IF	CITATIONS
37	Termination of Protease-activated Receptor-1 Signaling by β-Arrestins Is Independent of Receptor Phosphorylation. Journal of Biological Chemistry, 2004, 279, 10020-10031.	3.4	67
38	The α-arrestin ARRDC3 mediates ALIX ubiquitination and G protein–coupled receptor lysosomal sorting. Molecular Biology of the Cell, 2015, 26, 4660-4673.	2.1	67
39	Adaptor Protein Complex-2 (AP-2) and Epsin-1 Mediate Protease-activated Receptor-1 Internalization via Phosphorylation- and Ubiquitination-dependent Sorting Signals. Journal of Biological Chemistry, 2011, 286, 40760-40770.	3.4	66
40	Ubiquitin plays an atypical role in GPCR-induced p38 MAP kinase activation on endosomes. Journal of Cell Biology, 2015, 210, 1117-1131.	5.2	63
41	The Chemokine Receptor CCR1 Is Constitutively Active, Which Leads to G Protein-independent, β-Arrestin-mediated Internalization. Journal of Biological Chemistry, 2013, 288, 32194-32210.	3.4	62
42	A Tyrosine-based Sorting Signal Regulates Intracellular Trafficking of Protease-activated Receptor-1. Journal of Biological Chemistry, 2004, 279, 21938-21947.	3.4	57
43	The unfolded protein response regulator ATF6 promotes mesodermal differentiation. Science Signaling, 2018, 11, .	3.6	54
44	Phosphorylation of Protease-activated Receptor-2 Differentially Regulates Desensitization and Internalization. Journal of Biological Chemistry, 2009, 284, 34444-34457.	3.4	53
45	AP-3 regulates PAR1 ubiquitin-independent MVB/lysosomal sorting via an ALIX-mediated pathway. Molecular Biology of the Cell, 2012, 23, 3612-3623.	2.1	51
46	A requirement for membrane cholesterol in the β-arrestin- and clathrin-dependent endocytosis of LPA1 lysophosphatidic acid receptors. Journal of Cell Science, 2005, 118, 5291-5304.	2.0	50
47	N-linked glycosylation of protease-activated receptor-1 at extracellular loop 2 regulates G-protein signaling bias. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3600-8.	7.1	50
48	Challenges and Opportunities in Protease-Activated Receptor Drug Development. Annual Review of Pharmacology and Toxicology, 2017, 57, 349-373.	9.4	50
49	N-Linked Glycosylation of Protease-activated Receptor-1 Second Extracellular Loop. Journal of Biological Chemistry, 2010, 285, 18781-18793.	3.4	48
50	Dynamic Regulation of Mammalian Numb by G Protein-coupled Receptors and Protein Kinase C Activation: Structural Determinants of Numb Association with the Cortical Membrane. Molecular Biology of the Cell, 2006, 17, 4142-4155.	2.1	47
51	Ubiquitination of G Protein-Coupled Receptors: Functional Implications and Drug Discovery. Molecular Pharmacology, 2012, 82, 563-570.	2.3	46
52	The burden of service for faculty of color to achieve diversity and inclusion: the minority tax. Molecular Biology of the Cell, 2020, 31, 2752-2754.	2.1	45
53	Novel Roles for the E3 Ubiquitin Ligase Atrophin-interacting Protein 4 and Signal Transduction Adaptor Molecule 1 in G Protein-coupled Receptor Signaling. Journal of Biological Chemistry, 2012, 287, 9013-9027.	3.4	42
54	ALIX Regulates the Ubiquitin-Independent Lysosomal Sorting of the P2Y1 Purinergic Receptor via a YPX3L Motif. PLoS ONE, 2016, 11, e0157587.	2.5	39

JOANN TREJO

#	Article	IF	CITATIONS
55	Endoâ€lysosomal sorting of Gâ€proteinâ€coupled receptors by ubiquitin: Diverse pathways for Gâ€proteinâ€coupled receptor destruction and beyond. Traffic, 2019, 20, 101-109.	2.7	39
56	Protease-activated receptor-4 and purinergic receptor P2Y12 dimerize, co-internalize, and activate Akt signaling via endosomal recruitment of β-arrestin. Journal of Biological Chemistry, 2017, 292, 13867-13878.	3.4	36
57	The α-arrestin ARRDC3 suppresses breast carcinoma invasion by regulating G protein–coupled receptor lysosomal sorting and signaling. Journal of Biological Chemistry, 2018, 293, 3350-3362.	3.4	36
58	A Tyrosine Switch on NEDD4-2 E3 Ligase Transmits GPCR Inflammatory Signaling. Cell Reports, 2018, 24, 3312-3323.e5.	6.4	36
59	Internal PDZ Ligands: Novel Endocytic Recycling Motifs for G Protein-Coupled Receptors: TABLE 1. Molecular Pharmacology, 2005, 67, 1388-1390.	2.3	35
60	G protein–coupled receptors activate p38 MAPK via a non-canonical TAB1–TAB2– and TAB1–TAB3–dependent pathway in endothelial cells. Journal of Biological Chemistry, 2019, 294, 5867-5878.	3.4	33
61	Signaling diversity enabled by Rap1-regulated plasma membrane ERK with distinct temporal dynamics. ELife, 2020, 9, .	6.0	32
62	Integration of endothelial protease-activated receptor-1 inflammatory signaling by ubiquitin. Current Opinion in Hematology, 2016, 23, 274-279.	2.5	27
63	Recycling and Endosomal Sorting of Protease-activated Receptor-1 Is Distinctly Regulated by Rab11A and Rab11B Proteins. Journal of Biological Chemistry, 2016, 291, 2223-2236.	3.4	26
64	Protease-activated Receptor-4 Signaling and Trafficking Is Regulated by the Clathrin Adaptor Protein Complex-2 Independent of β-Arrestins. Journal of Biological Chemistry, 2016, 291, 18453-18464.	3.4	25
65	Phosphoproteomic analysis of protease-activated receptor-1 biased signaling reveals unique modulators of endothelial barrier function. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5039-5048.	7.1	25
66	Subcellular hot spots of GPCR signaling promote vascular inflammation. Current Opinion in Endocrine and Metabolic Research, 2021, 16, 37-42.	1.4	24
67	Characterization of Thrombin-Bound Dabigatran Effects on Protease-Activated Receptor-1 Expression and Signaling In Vitro. Molecular Pharmacology, 2015, 88, 95-105.	2.3	23
68	Location-specific inhibition of Akt reveals regulation of mTORC1 activity in the nucleus. Nature Communications, 2020, 11, 6088.	12.8	23
69	Heat shock protein 27 activity is linked to endothelial barrier recovery after proinflammatory GPCR-induced disruption. Science Signaling, 2021, 14, eabc1044.	3.6	23
70	α-Arrestin ARRDC3 tumor suppressor function is linked to GPCR-induced TAZ activation and breast cancer metastasis. Journal of Cell Science, 2021, 134, .	2.0	22
71	A General Method for Site Specific Fluorescent Labeling of Recombinant Chemokines. PLoS ONE, 2014, 9, e81454.	2.5	21
72	Group B Streptococcal Infection and Activation of Human Astrocytes. PLoS ONE, 2015, 10, e0128431.	2.5	20

#	Article	IF	CITATIONS
73	Allosteric Modulation of Protease-Activated Receptor Signaling. Mini-Reviews in Medicinal Chemistry, 2012, 12, 804-811.	2.4	19
74	Palmitoylation of Protease-activated Receptor-1 Regulates Adaptor Protein Complex-2 and -3 Interaction with Tyrosine-based Motifs and Endocytic Sorting. Journal of Biological Chemistry, 2013, 288, 15900-15912.	3.4	19
75	Endosomal Signaling by Protease-Activated Receptors. Methods in Enzymology, 2014, 535, 389-401.	1.0	19
76	Atypical regulation of G protein-coupled receptor intracellular trafficking by ubiquitination. Current Opinion in Cell Biology, 2014, 27, 44-50.	5.4	19
77	Faculty Equity, Diversity, Culture and Climate Change in Academic Medicine: A Longitudinal Study. Journal of the National Medical Association, 2019, 111, 46-53.	0.8	19
78	RNA interference screen for RGS protein specificity at muscarinic and protease-activated receptors reveals bidirectional modulation of signaling. American Journal of Physiology - Cell Physiology, 2010, 299, C654-C664.	4.6	14
79	Regulation of proteaseâ€activated receptor signaling by postâ€translational modifications. IUBMB Life, 2011, 63, 403-411.	3.4	14
80	Polo-like kinase 2 regulates angiogenic sprouting and blood vessel development. Developmental Biology, 2015, 404, 49-60.	2.0	14
81	Regulation of Protease-activated Receptor 1 Signaling by the Adaptor Protein Complex 2 and R4 Subfamily of Regulator of G Protein Signaling Proteins. Journal of Biological Chemistry, 2014, 289, 1580-1591.	3.4	13
82	Cryptic messages: Is noncoagulant tissue factor reserved for cell signaling?. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14259-14260.	7.1	12
83	aPC/PAR1 confers endothelial anti-apoptotic activity via a discrete, β-arrestin-2–mediated SphK1-S1PR1-Akt signaling axis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
84	A system-wide health sciences faculty mentor training program is associated with improved effective mentoring and institutional climate. Journal of Clinical and Translational Science, 2022, 6, e18.	0.6	11
85	GPCR sorting at multivesicular endosomes. Methods in Cell Biology, 2015, 130, 319-332.	1.1	10
86	The α-Arrestin ARRDC3 Is an Emerging Multifunctional Adaptor Protein in Cancer. Antioxidants and Redox Signaling, 2022, 36, 1066-1079.	5.4	8
87	Phosphoproteomic analysis of thrombin- and p38 MAPK-regulated signaling networks in endothelial cells. Journal of Biological Chemistry, 2022, 298, 101801.	3.4	8
88	Chapter 3 Multiple pathways for signal transduction through the muscarinic cholinergic receptor. Progress in Brain Research, 1990, 84, 21-29.	1.4	7
89	A reflection on faculty diversity in the 21st century. Molecular Biology of the Cell, 2017, 28, 2911-2914.	2.1	7
90	GLUT1-mediated glycolysis supports GnRH-induced secretion of luteinizing hormone from female gonadotropes. Scientific Reports, 2020, 10, 13063.	3.3	7

#	Article	IF	CITATIONS
91	A modular laboratory course using planarians to study genes involved in tissue regeneration. Biochemistry and Molecular Biology Education, 2019, 47, 547-559.	1.2	6
92	COVID-19 threatens faculty diversity: postdoctoral scholars call for action. Molecular Biology of the Cell, 2022, 33, vo1.	2.1	5
93	Building a laboratory and networks during the COVID-19 pandemic. Trends in Biochemical Sciences, 2022, , .	7.5	2
94	Deubiquitinases as Regulators of Thrombinâ€induced p38 Inflammatory Response. FASEB Journal, 2021, 35,	0.5	0
95	Regulation of Thrombin Receptor Signaling. , 2009, , 47-61.		0
96	Dysregulation of G Protein-Coupled Receptor Signaling in Cancer. , 2010, , 83-98.		0
97	Teasing a(PAR)t biasedâ€agonism: Proteaseâ€activated Receptorâ€1 at signaling crossroads in endothelial barrier function. FASEB Journal, 2011, 25, 1012.4.	0.5	0
98	Activated protein C promotes endothelial barrier protection through biased PAR1 signaling mediated by βâ€arrestin and dishevelledâ€2 scaffolds. FASEB Journal, 2012, 26, 671.4.	0.5	0
99	Ubiquitination of proteaseâ€activated receptorâ€1 reveals a new mode of signal regulation. FASEB Journal, 2012, 26, 664.2.	0.5	0
100	Regulation of proteaseâ€activated receptorâ€4 signaling and trafficking. FASEB Journal, 2012, 26, 664.3.	0.5	0
101	Adaptor Protein Complexâ€2 and epsinâ€1 mediate Proteaseâ€activated Receptorâ€1 internalization via phosphorylation―and ubiquitinationâ€dependent sorting signals. FASEB Journal, 2012, 26, 664.1.	0.5	0
102	ALIX interacts with a YPX3L motif of Proteaseâ€Activated Receptor 1 and mediates MVB/Lysosomal sorting through an ESCRTâ€IIIâ€dependent pathway independent of ubiquitination. FASEB Journal, 2012, 26, 780.2.	0.5	0
103	Endothelial GPCRs Activate p38 MAPK Inflammatory Signaling Via Nonâ€canonical TAB1, 2 and 3â€dependent Pathways. FASEB Journal, 2018, 32, 555.12.	0.5	0
104	Activated Protein Câ€mediated Crosstalk Between PAR1 and S1PR1 in Endothelial Barrier Stabilization. FASEB Journal, 2018, 32, 685.1.	0.5	0
105	Tumor Suppressor Alphaâ€arrestin ARRDC3 Controls GPCR Signaling and Breast Cancer Invasion. FASEB Journal, 2018, 32, 566.14.	0.5	0
106	The αâ€Arrestin ARRDC3 Suppresses Breast Carcinoma Invasion by Regulating GPCR Lysosomal Sorting and Signaling. FASEB Journal, 2018, 32, 695.13.	0.5	0
107	aâ€arrestin ARRDC3 is a Multifunctional Adaptor That Regulates G Proteinâ€Coupled Receptor Signaling and Breast Cancer Invasion. FASEB Journal, 2020, 34, 1-1.	0.5	0
108	Role of Proteaseâ€activated receptors in Activated protein Câ€mediated antiâ€inflammatory responses in endothelial cells. FASEB Journal, 2020, 34, 1-1.	0.5	0

#	Article	IF	CITATIONS
109	An siRNA screen for endothelial PAR1â€specific deubiquitinases regulating p38 inflammatory signaling. FASEB Journal, 2020, 34, 1-1.	0.5	0
110	Identification of Deubiquitinases (DUBs) that modulate PAR1â€mediated p38 MAPK inflammatory signaling in endothelial cells. FASEB Journal, 2022, 36, .	0.5	0