
Felino R Cagampang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9290592/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A High Fat "Westernâ€style―Diet Induces AMD‣ike Features in Wildtype Mice. Molecular Nutrition and Food Research, 2022, 66, e2100823.	3.3	10
2	Is sleep deficit associated with infertility and recurrent pregnancy losses? Results from a prospective cohort study. Acta Obstetricia Et Gynecologica Scandinavica, 2021, 100, 302-313.	2.8	16
3	Intracellular and Tissue Levels of Vitamin B12 in Hepatocytes Are Modulated by CD320 Receptor and TCN2 Transporter. International Journal of Molecular Sciences, 2021, 22, 3089.	4.1	9
4	Unique Genetic and Histological Signatures of Mouse Pericardial Adipose Tissue. Nutrients, 2020, 12, 1855.	4.1	6
5	Successful treatment of chronic myelomonocytic leukaemia with hydroxycarbamide in a patient presenting with acute hypoxic respiratory failure due to COVIDâ€19 pneumonia. British Journal of Haematology, 2020, 190, e195-e198.	2.5	2
6	Maternal Obesity during Pregnancy Alters Daily Activity and Feeding Cycles, and Hypothalamic Clock Gene Expression in Adult Male Mouse Offspring. International Journal of Molecular Sciences, 2019, 20, 5408.	4.1	11
7	Defective NOTCH signalling drives smooth muscle cell death and differentiation in bicuspid aortic valve aortopathy. European Journal of Cardio-thoracic Surgery, 2019, 56, 117-125.	1.4	11
8	Maternal Obesity During Pregnancy and Lactation Influences Offspring Obesogenic Adipogenesis but Not Developmental Adipogenesis in Mice. Nutrients, 2019, 11, 495.	4.1	18
9	Aortic Stenosis Prognostication in Patients With Type 2 Diabetes: Protocol for Testing and Validation of a Biomarker-Derived Scoring System. JMIR Research Protocols, 2019, 8, e13186.	1.0	5
10	The influence of a high fat diet on bone and soft tissue formation in Matrix Gla Protein knockout mice. Scientific Reports, 2018, 8, 3635.	3.3	9
11	The Divergent Effect of Maternal Protein Restriction during Pregnancy and Postweaning High-Fat Diet Feeding on Blood Pressure and Adiposity in Adult Mouse Offspring. Nutrients, 2018, 10, 1832.	4.1	8
12	Candidate plasma biomarkers for predicting ascending aortic aneurysm in bicuspid aortic valve disease. Journal of Cardiothoracic Surgery, 2018, 13, 76.	1.1	6
13	Identifying stably expressed housekeeping genes in the endometrium of fertile women, women with recurrent implantation failure and recurrent miscarriages. Scientific Reports, 2017, 7, 14857.	3.3	7
14	Developmental Programming of Nonalcoholic Fatty Liver Disease (NAFLD). , 2016, , 255-288.		0
15	MNK1 and MNK2 mediate adverse effects of high-fat feeding in distinct ways. Scientific Reports, 2016, 6, 23476.	3.3	29
16	Altered cellular redox status, sirtuin abundance and clock gene expression in a mouse model of developmentally primed NASH. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 584-593.	2.4	24
17	Endogenous Reference Genes for Gene Expression Studies on Bicuspid Aortic Valve Associated Aortopathy in Humans. PLoS ONE, 2016, 11, e0164329.	2.5	11
18	Maternal High Fat Diet Affects Offspring's Vitamin K-Dependent Proteins Expression Levels. PLoS ONE, 2015, 10, e0138730.	2.5	6

FELINO R CAGAMPANG

#	Article	IF	CITATIONS
19	AMPK Activation via Modulation of De Novo Purine Biosynthesis with an Inhibitor of ATIC Homodimerization. Chemistry and Biology, 2015, 22, 838-848.	6.0	72
20	Effect of maternal protein restriction during pregnancy and postweaning high-fat feeding on diet-induced thermogenesis in adult mouse offspring. European Journal of Nutrition, 2014, 53, 1523-1531.	3.9	16
21	On the Evolutionary Origins of Obesity: A New Hypothesis. Endocrinology, 2014, 155, 1573-1588.	2.8	105
22	Diet-induced maternal obesity alters ovarian morphology and gene expression in the adult mouse offspring. Fertility and Sterility, 2014, 102, 899-907.	1.0	43
23	Fetal programming of adipose tissue function: an evolutionary perspective. Mammalian Genome, 2014, 25, 413-423.	2.2	11
24	Sensitivity of housekeeping genes in the suprachiasmatic nucleus of the mouse brain to diet and the daily light–dark cycle. Brain Research, 2014, 1575, 72-77.	2.2	9
25	Long-Term Statin Administration to Dams on High-Fat Diet Protects Not Only Them but Also Their Offspring from Cardiovascular Risk. Annals of Nutrition and Metabolism, 2013, 62, 250-256.	1.9	12
26	Poor sleep in PCOS; is melatonin the culprit?. Human Reproduction, 2013, 28, 1348-1353.	0.9	61
27	Developmental exposure to bisphenol A leads to cardiometabolic dysfunction in adult mouse offspring. Journal of Developmental Origins of Health and Disease, 2012, 3, 287-292.	1.4	16
28	The housekeeping gene <i>YWHAZ</i> remains stable in a model of developmentally primed nonâ€elcoholic fatty liver disease. Liver International, 2012, 32, 1315-1321.	3.9	21
29	Variation in stability of housekeeping genes in endometrium of healthy and polycystic ovarian syndrome women. Human Reproduction, 2012, 27, 251-256.	0.9	34
30	Variation in stability of housekeeping genes in healthy and adhesion-related mesothelium. Fertility and Sterility, 2012, 98, 1023-1027.	1.0	7
31	The role of the circadian clock system in nutrition and metabolism. British Journal of Nutrition, 2012, 108, 381-392.	2.3	62
32	Interaction between Maternal and Offspring Diet to Impair Vascular Function and Oxidative Balance in High Fat Fed Male Mice. PLoS ONE, 2012, 7, e50671.	2.5	53
33	Epigenetic priming of the metabolic syndrome. Toxicology Mechanisms and Methods, 2011, 21, 353-361.	2.7	45
34	Developmental origins of the metabolic syndrome: Body clocks and stress responses. Brain, Behavior, and Immunity, 2011, 25, 214-220.	4.1	38
35	Hypothesis: Role for the circadian Clock system and sleep in the pathogenesis of adhesions and chronic pelvic pain?. Medical Hypotheses, 2011, 76, 453-456.	1.5	6
36	Maternal Periconceptional and Gestational Low Protein Diet Affects Mouse Offspring Growth, Cardiovascular and Adipose Phenotype at 1 Year of Age. PLoS ONE, 2011, 6, e28745.	2.5	93

Felino R Cagampang

#	Article	IF	CITATIONS
37	Identification of Robust Cardiac Reference Genes in a Mouse Model of Cardiometabolic Disease. Journal of Clinical & Experimental Cardiology, 2011, 02, .	0.0	2
38	Effect of a low-protein diet during pregnancy on expression of genes involved in cardiac hypertrophy in fetal and adult mouse offspring. Journal of Developmental Origins of Health and Disease, 2010, 1, 371-375.	1.4	7
39	Maternal high-fat diet: effects on offspring bone structure. Osteoporosis International, 2010, 21, 1703-1714.	3.1	38
40	Maternal high fat diet during pregnancy and lactation alters hepatic expression of insulin like growth factor-2 and key microRNAs in the adult offspring. BMC Genomics, 2009, 10, 478.	2.8	179
41	Maternal high-fat feeding primes steatohepatitis in adult mice offspring, involving mitochondrial dysfunction and altered lipogenesis gene expression. Hepatology, 2009, 50, 1796-1808.	7.3	391
42	Long-term maternal high-fat feeding from weaning through pregnancy and lactation predisposes offspring to hypertension, raised plasma lipids and fatty liver in mice. British Journal of Nutrition, 2009, 102, 514.	2.3	215
43	Metabolic disturbances in non-alcoholic fatty liver disease. Clinical Science, 2009, 116, 539-564.	4.3	210
44	Low protein diet fed exclusively during mouse oocyte maturation leads to behavioural and cardiovascular abnormalities in offspring. Journal of Physiology, 2008, 586, 2231-2244.	2.9	165
45	Appetite regulatory mechanisms and food intake in mice are sensitive to mismatch in diets between pregnancy and postnatal periods. Brain Research, 2008, 1237, 146-152.	2.2	19
46	Sensitivity of housekeeping genes in the hypothalamus to mismatch in diets between pre- and postnatal periods in mice. Neuroscience Letters, 2008, 447, 54-57.	2.1	12
47	Statin Treatment in Hypercholesterolemic Pregnant Mice Reduces Cardiovascular Risk Factors in Their Offspring. Hypertension, 2008, 51, 939-944.	2.7	71
48	Meeting Report on the 3rd International Congress on Developmental Origins of Health and Disease (DOHaD). Pediatric Research, 2007, 61, 625-629.	2.3	162
49	High-unsaturated-fat, high-protein, and low-carbohydrate diet during pregnancy and lactation modulates hepatic lipid metabolism in female adult offspring. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 288, R112-R118.	1.8	45
50	The tau Mutation in the Syrian Hamster Differentially Reprograms the Circadian Clock in the SCN and Peripheral Tissues. Journal of Biological Rhythms, 2005, 20, 99-110.	2.6	38
51	Skeletal bone morphology is resistant to the high amplitude seasonal leptin cycle in the Siberian hamster. Journal of Endocrinology, 2005, 186, 475-479.	2.6	7
52	Expression of agouti-related peptide, neuropeptide Y, pro-opiomelanocortin and the leptin receptor isoforms in fetal mouse brain from pregnant dams on a protein-restricted diet. Molecular Brain Research, 2005, 140, 111-115.	2.3	25
53	Photoperiod Differentially Regulates Circadian Oscillators in Central and Peripheral Tissues of the Syrian Hamster. Current Biology, 2003, 13, 1543-1548.	3.9	73
54	Evidence for an endogenous per1 ―and ICER â€independent seasonal timer in the hamster pituitary gland. FASEB Journal, 2003, 17, 810-815.	0.5	53

FELINO R CAGAMPANG

#	Article	IF	CITATIONS
55	Photoperiodic Regulation of Leptin Resistance in the Seasonally Breeding Siberian Hamster (Phodopus) Tj ETQq1	1 0.78431 2.8	4 ₃ rgBT /Ov
56	Posttranslational Mechanisms Regulate the Mammalian Circadian Clock. Cell, 2001, 107, 855-867.	28.9	1,071
57	Photoperiodic Regulation of Prolactin Gene Expression in the Syrian Hamster by a Pars Tuberalis-Derived Factor. Journal of Neuroendocrinology, 2001, 13, 147-157.	2.6	59
58	Leptin Acts on Metabolism in a Photoperiod-Dependent Manner, But Has No Effect on Reproductive Function in the Seasonally Breeding Siberian Hamster (Phodopus sungorus). Endocrinology, 2000, 141, 4128-4135.	2.8	22
59	Adrenomedullectomy Prevents the Suppression of Pulsatile Luteinising Hormone Release During Fasting in Female Rats. Journal of Neuroendocrinology, 1999, 11, 429-433.	2.6	7
60	Circadian regulation of prion protein messenger RNA in the rat forebrain: a widespread and synchronous rhythm. Neuroscience, 1999, 91, 1201-1204.	2.3	28
61	Estrogen Receptor Immunoreactivity Is Present in the Majority of Central Histaminergic Neurons: Evidence for a New Neuroendocrine Pathway Associated with Luteinizing Hormone-Releasing Hormone-Synthesizing Neurons in Rats and Humans. Endocrinology, 1999, 140, 4335-4341.	2.8	3
62	Circadian changes of type II adenylyl cyclase mRNA in the rat suprachiasmatic nuclei. Brain Research, 1998, 810, 279-282.	2.2	10
63	Circadian changes in PACAP type 1 (PAC1) receptor mRNA in the rat suprachiasmatic and supraoptic nuclei. Brain Research, 1998, 813, 218-222.	2.2	59
64	Variation in the expression of the mRNA for protein kinase C isoforms in the rat suprachiasmatic nuclei, caudate putamen and cerebral cortex. Molecular Brain Research, 1998, 53, 277-284.	2.3	24
65	Circadian changes in the expression of vasoactive intestinal peptide 2 receptor mRNA in the rat suprachiasmatic nuclei. Molecular Brain Research, 1998, 54, 108-112.	2.3	55
66	Expression of vasoactive intestinal peptide mRNA in the suprachiasmatic nuclei of the circadian tau mutant hamster. Neuroscience Letters, 1998, 249, 147-150.	2.1	7
67	Hypoglycaemiaâ€Induced Inhibition of Pulsatile Luteinizing Hormone Secretion in Female Rats: Role of Oestradiol, EndogenousOpioids and the Adrenal Medulla. Journal of Neuroendocrinology, 1997, 9, 867-872.	2.6	59
68	Circadian variation of EAAC1 glutamate transporter messenger RNA in the rat suprachiasmatic nuclei. Molecular Brain Research, 1996, 35, 190-196.	2.3	28
69	Circadian variation of arginine-vasopressin messenger RNA in the rat suprachiasmatic nucleus. Molecular Brain Research, 1994, 24, 179-184.	2.3	75
70	Emergence of VIP rhythmicity following somatostatin depletion in the rat suprachiasmatic nucleus. Brain Research, 1994, 645, 343-346.	2.2	26
71	Diurnal and circadian changes of serotonin in the suprachiasmatic nuclei: regulation by light and an endogenous pacemaker. Brain Research, 1994, 639, 175-179.	2.2	69
72	Circadian fluctuations of cAMP content in the suprachiasmatic nucleus and the anterior hypothalamus of the rat. Brain Research, 1994, 651, 329-331.	2.2	24

Felino R Cagampang

#	Article	IF	CITATIONS
73	Circadian rhythms of norepinephrine in the rat suprachiasmatic nucleus. Neuroscience Letters, 1994, 173, 185-188.	2.1	28
74	Corticotropin-releasing hormone mediates suppression of pulsatile luteinizing hormone secretion induced by activation of alpha-adrenergic receptors in the paraventricular nucleus in female rats. Endocrinology, 1994, 134, 1460-1466.	2.8	19
75	Involvement of the catecholaminergic input to the paraventricular nucleus and of corticotropin-releasing hormone in the fasting-induced suppression of luteinizing hormone release in female rats. Endocrinology, 1994, 134, 1718-1722.	2.8	34
76	Substance P-like immunoreactivity in the suprachiasmatic nucleus of the rat. Brain Research, 1993, 619, 271-277.	2.2	30
77	Vasoactive intestinal polypeptide precursor mRNA exhibits diurnal variation in the rat suprachiasmatic nuclei. Molecular Brain Research, 1993, 20, 259-262.	2.3	37
78	Circadian rhythm of neuropeptide Y-like immunoreactivity in the iris-ciliary body of the rat. Current Eye Research, 1993, 12, 803-807.	1.5	4
79	Serotonin in the raphe nuclei. NeuroReport, 1993, 5, 49-52.	1.2	60
80	α ₂ -Adrenergic Receptors Are Involved in the Suppression of Luteinizing Hormone Release during Acute Fasting in the Ovariectomized Estradiol-Primed Rats. Neuroendocrinology, 1992, 56, 724-728.	2.5	32
81	Involvement of the gastric vagal nerve in the suppression of pulsatile luteinizing hormone release during acute fasting in rats. Endocrinology, 1992, 130, 3003-3006.	2.8	10
82	Effects of intracerebroventricular administration of opiate receptor antagonists on the suppressed pulsatile LH release during acute fasting in ovariectomized estradiol-treated rats. Life Sciences, 1991, 49, 1823-1828.	4.3	15
83	Involvement of ovarian steroids and endogenous opioids in the fasting-induced suppression of pulsatile LH release in ovariectomized rats. Journal of Endocrinology, 1991, 129, 321-328.	2.6	176
84	Effect of Food Deprivation on the Pulsatile LH Release in the Cycling and Ovariectomized Female Rat. Hormone and Metabolic Research, 1990, 22, 269-272.	1.5	109