Jasper Boeddinghaus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9290360/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Application of High-Sensitivity Troponin in Suspected Myocardial Infarction. New England Journal of Medicine, 2019, 380, 2529-2540.	13.9	230
2	Clinical Use of High-Sensitivity Cardiac Troponin in Patients With Suspected Myocardial Infarction. Journal of the American College of Cardiology, 2017, 70, 996-1012.	1.2	183
3	Prospective Validation of the 0/1-h Algorithm for Early Diagnosis of Myocardial Infarction. Journal of the American College of Cardiology, 2018, 72, 620-632.	1.2	147
4	Direct Comparison of 4 Very Early Rule-Out Strategies for Acute Myocardial Infarction Using High-Sensitivity Cardiac Troponin I. Circulation, 2017, 135, 1597-1611.	1.6	138
5	Impact of high-sensitivity cardiac troponin on use of coronary angiography, cardiac stress testing, and time to discharge in suspected acute myocardial infarction. European Heart Journal, 2016, 37, 3324-3332.	1.0	132
6	Outcome of Applying the ESC 0/1-hour Algorithm in Patients With Suspected Myocardial Infarction. Journal of the American College of Cardiology, 2019, 74, 483-494.	1.2	126
7	0/1-Hour Triage Algorithm for Myocardial Infarction in Patients With Renal Dysfunction. Circulation, 2018, 137, 436-451.	1.6	110
8	Clinical Validation of a Novel High-Sensitivity Cardiac Troponin I Assay for Early Diagnosis of Acute Myocardial Infarction. Clinical Chemistry, 2018, 64, 1347-1360.	1.5	110
9	Two-Hour Algorithm for Triage toward Rule-Out and Rule-In of Acute Myocardial Infarction by Use of High-Sensitivity Cardiac Troponin I. Clinical Chemistry, 2016, 62, 494-504.	1.5	95
10	Effect of Definition on Incidence and Prognosis of Type 2 Myocardial Infarction. Journal of the American College of Cardiology, 2017, 70, 1558-1568.	1.2	94
11	Early Diagnosis of Myocardial Infarction With Point-of-Care High-Sensitivity Cardiac Troponin I. Journal of the American College of Cardiology, 2020, 75, 1111-1124.	1.2	94
12	Characterization of the observe zone of the ESC 2015 high-sensitivity cardiac troponin 0 h/1 h-algorithm for the early diagnosis of acute myocardial infarction. International Journal of Cardiology, 2016, 207, 238-245.	0.8	85
13	Impact of age on the performance of the ESC 0/1h-algorithms for early diagnosis of myocardial infarction. European Heart Journal, 2018, 39, 3780-3794.	1.0	78
14	Clinical Effect of Sex-Specific Cutoff Values of High-Sensitivity Cardiac Troponin T in Suspected Myocardial Infarction. JAMA Cardiology, 2016, 1, 912.	3.0	75
15	Diurnal Rhythm of Cardiac Troponin: Consequences for the Diagnosis of Acute Myocardial Infarction. Clinical Chemistry, 2016, 62, 1602-1611.	1.5	71
16	Direct Comparison of Cardiac Myosin-Binding Protein C With Cardiac Troponins for the Early Diagnosis of Acute Myocardial Infarction. Circulation, 2017, 136, 1495-1508.	1.6	63
17	High-Sensitivity Cardiac Troponin I Assay for Early Diagnosis of Acute Myocardial Infarction. Clinical Chemistry, 2019, 65, 893-904.	1.5	59
18	Combining High-Sensitivity Cardiac Troponin I and Cardiac Troponin T in the Early Diagnosis of Acute Myocardial Infarction, Circulation, 2018, 138, 989-999.	1.6	56

JASPER BOEDDINGHAUS

#	Article	IF	CITATIONS
19	Direct Comparison of the 0/1h and 0/3h Algorithms for Early Rule-Out of Acute Myocardial Infarction. Circulation, 2018, 137, 2536-2538.	1.6	48
20	Comparison of fourteen rule-out strategies for acute myocardial infarction. International Journal of Cardiology, 2019, 283, 41-47.	0.8	45
21	Incidence and outcomes of unstable angina compared with non-ST-elevation myocardial infarction. Heart, 2019, 105, 1423-1431.	1.2	42
22	Clinical Use of a New High-Sensitivity Cardiac Troponin I Assay in Patients with Suspected Myocardial Infarction. Clinical Chemistry, 2019, 65, 1426-1436.	1.5	41
23	B-Type Natriuretic Peptides and Cardiac Troponins for Diagnosis and Risk-Stratification of Syncope. Circulation, 2019, 139, 2403-2418.	1.6	40
24	External Validation of the MEESSI Acute Heart Failure Risk Score. Annals of Internal Medicine, 2019, 170, 248.	2.0	40
25	Skeletal Muscle Disorders: A Noncardiac Source of Cardiac Troponin T. Circulation, 2022, 145, 1764-1779.	1.6	38
26	Clinical Utility of Procalcitonin in the Diagnosis of Pneumonia. Clinical Chemistry, 2019, 65, 1532-1542.	1.5	37
27	Two-Hour Algorithm for Rapid Triage of Suspected Acute Myocardial Infarction Using a High-Sensitivity Cardiac Troponin I Assay. Clinical Chemistry, 2019, 65, 1437-1447.	1.5	36
28	Early diagnosis of acute myocardial infarction in patients with mild elevations of cardiac troponin. Clinical Research in Cardiology, 2017, 106, 457-467.	1.5	35
29	Direct Comparison of 2 Rule-Out Strategies for Acute Myocardial Infarction: 2-h Accelerated Diagnostic Protocol vs 2-h Algorithm. Clinical Chemistry, 2017, 63, 1227-1236.	1.5	35
30	Prospective Validation of a Biomarker-Based Rule Out Strategy for Functionally Relevant Coronary Artery Disease. Clinical Chemistry, 2018, 64, 386-395.	1.5	30
31	Amyloid-β (1-40) and Mortality in Patients With Non–ST-Segment Elevation Acute Coronary Syndrome. Annals of Internal Medicine, 2018, 168, 855.	2.0	29
32	Diagnostic and prognostic value of cystatin C in acute heart failure. Clinical Biochemistry, 2017, 50, 1007-1013.	0.8	28
33	Predicting Major Adverse Events in Patients With Acute Myocardial Infarction. Journal of the American College of Cardiology, 2019, 74, 842-854.	1.2	28
34	Prospective validation of current quantitative electrocardiographic criteria for ST-elevation myocardial infarction. International Journal of Cardiology, 2019, 292, 1-12.	0.8	27
35	Prevalence of Pulmonary Embolism in Patients With Syncope. Journal of the American College of Cardiology, 2019, 74, 744-754.	1.2	26
36	Novel Criteria for the Observe-Zone of the ESC 0/1h-hs-cTnT Algorithm. Circulation, 2021, 144, 773-787.	1.6	25

3

#	Article	IF	CITATIONS
37	Diagnosis of acute myocardial infarction in the presence of left bundle branch block. Heart, 2019, 105, 1559-1567.	1.2	24
38	Cardiovascular Biomarkers in the Early Discrimination of Type 2 Myocardial Infarction. JAMA Cardiology, 2021, 6, 771.	3.0	24
39	Clinical impact of the 2010–2012 low-end shift of high-sensitivity cardiac troponin T. European Heart Journal: Acute Cardiovascular Care, 2016, 5, 399-408.	0.4	20
40	Direct Comparison of Cardiac Troponin T and I Using a Uniform and a Sex-Specific Approach in the Detection of Functionally Relevant Coronary Artery Disease. Clinical Chemistry, 2018, 64, 1596-1606.	1.5	19
41	An algorithm for rule-in and rule-out of acute myocardial infarction using a novel troponin I assay. Heart, 2017, 103, 125-131.	1.2	18
42	Impact of the US Food and Drug Administration–Approved Sex-Specific Cutoff Values for High-Sensitivity Cardiac Troponin T to Diagnose Myocardial Infarction. Circulation, 2018, 137, 1867-1869.	1.6	18
43	Prospective validation of prognostic and diagnostic syncope scores in the emergency department. International Journal of Cardiology, 2018, 269, 114-121.	0.8	18
44	Incremental diagnostic and prognostic value of the QRS-T angle, a 12-lead ECG marker quantifying heterogeneity of depolarization and repolarization, in patients with suspected non-ST-elevation myocardial infarction. International Journal of Cardiology, 2019, 277, 8-15.	0.8	18
45	Performance of the ESC 0/1-h and 0/3-h Algorithm for the Rapid Identification of Myocardial Infarction Without ST-Elevation in Patients With Diabetes. Diabetes Care, 2020, 43, 460-467.	4.3	18
46	How to best use high-sensitivity cardiac troponin in patients with suspected myocardial infarction. Clinical Biochemistry, 2018, 53, 143-155.	0.8	17
47	Diagnostic and prognostic values of the V-index, a novel ECG marker quantifying spatial heterogeneity of ventricular repolarization, in patients with symptoms suggestive of non-ST-elevation myocardial infarction. International Journal of Cardiology, 2017, 236, 23-29.	0.8	16
48	Gender-specific uncertainties in the diagnosis of acute coronary syndrome. Clinical Research in Cardiology, 2017, 106, 28-37.	1.5	16
49	Prohormones in the Early Diagnosis of Cardiac Syncope. Journal of the American Heart Association, 2017, 6, .	1.6	16
50	Rhabdomyolysis. Journal of the American College of Cardiology, 2018, 72, 2936-2937.	1.2	16
51	Diagnostic and Prognostic Utility of Circulating Cytochrome <i>c</i> in Acute Myocardial Infarction. Circulation Research, 2016, 119, 1339-1346.	2.0	15
52	Obesity paradox and perioperative myocardial infarction/injury in non-cardiac surgery. Clinical Research in Cardiology, 2020, 109, 1140-1147.	1.5	15
53	Effect of a Proposed Modification of the Type 1 and Type 2 Myocardial Infarction Definition on Incidence and Prognosis. Circulation, 2020, 142, 2083-2085.	1.6	14
54	Using High-Sensitivity Cardiac Troponin for the Exclusion of Inducible Myocardial Ischemia in Symptomatic Patients. Annals of Internal Medicine, 2020, 172, 175.	2.0	14

JASPER BOEDDINGHAUS

#	Article	IF	CITATIONS
55	Combining high-sensitivity cardiac troponin and B-type natriuretic peptide in the detection of inducible myocardial ischemia. Clinical Biochemistry, 2018, 52, 33-40.	0.8	13
56	Diagnostic Accuracy of a High-Sensitivity Cardiac Troponin Assay with a Single Serum Test in the Emergency Department. Clinical Chemistry, 2019, 65, 1006-1014.	1.5	13
57	Early Rule-Out Strategies in the Emergency Department Utilizing High-Sensitivity Cardiac Troponin Assays. Clinical Chemistry, 2021, 67, 114-123.	1.5	12
58	Characteristics and Outcomes of Type 2 Myocardial Infarction. JAMA Cardiology, 2022, 7, 427.	3.0	12
59	Relative hypochromia and mortality in acute heart failure. International Journal of Cardiology, 2019, 286, 104-110.	0.8	11
60	Direct comparison of high-sensitivity cardiac troponin T and I in the early differentiation of type 1 vs. type 2 myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 2022, 11, 62-74.	0.4	11
61	Biomarkers in cardiovascular medicine: towards precision medicine. Swiss Medical Weekly, 2019, 149, w20125.	0.8	11
62	Prospective validation of Nâ€ŧerminal pro Bâ€ŧype natriuretic peptide cutâ€off concentrations for the diagnosis of acute heart failure. European Journal of Heart Failure, 2019, 21, 813-815.	2.9	10
63	Clinical utility of circulating interleukin-6 concentrations in the detection of functionally relevant coronary artery disease. International Journal of Cardiology, 2019, 275, 20-25.	0.8	10
64	Diagnostic value of the cardiac electrical biomarker, a novel <scp>ECG</scp> marker indicating myocardial injury, in patients with symptoms suggestive of nonâ€ <scp>ST</scp> â€elevation myocardial infarction. Annals of Noninvasive Electrocardiology, 2018, 23, e12538.	0.5	9
65	Performance of the ESC 0/2h-algorithm using high-sensitivity cardiac troponin I in the early diagnosis of myocardial infarction. American Heart Journal, 2021, 242, 132-137.	1.2	9
66	Adding stress biomarkers to high-sensitivity cardiac troponin for rapid non-ST-elevation myocardial infarction rule-out protocols. European Heart Journal: Acute Cardiovascular Care, 2022, 11, 201-212.	0.4	9
67	Effects of hemolysis on the diagnostic accuracy of cardiac troponin I for the diagnosis of myocardial infarction. International Journal of Cardiology, 2015, 187, 313-315.	0.8	8
68	Diagnostic and Prognostic Value of Lead aVR During Exercise Testing in Patients Suspected of Having Myocardial Ischemia. American Journal of Cardiology, 2017, 119, 959-966.	0.7	8
69	Proenkephalin for the early detection of acute kidney injury in hospitalized patients with chronic kidney disease. European Journal of Clinical Investigation, 2018, 48, e12999.	1.7	8
70	Incidence, characteristics, determinants, and prognostic impact of recurrent syncope. Europace, 2020, 22, 1885-1895.	0.7	8
71	Rhabdomyolysis. Journal of the American College of Cardiology, 2020, 76, 2685-2687.	1.2	8
72	Diagnostic value of ST-segment deviations during cardiac exercise stress testing: Systematic comparison of different ECG leads and time-points. International Journal of Cardiology, 2017, 238, 166-172.	0.8	7

#	Article	IF	CITATIONS
73	Circadian, weekly, seasonal, and temperature-dependent patterns of syncope aetiology in patients at increased risk of cardiac syncope. Europace, 2019, 21, 511-521.	0.7	7
74	Predicting Acute Myocardial Infarction with a Single Blood Draw. Clinical Chemistry, 2019, 65, 437-450.	1.5	7
75	Growth differentiation factor-15 and all-cause mortality in patients with suspected myocardial infarction. International Journal of Cardiology, 2019, 292, 241-245.	0.8	7
76	Effect of COVID-19 on acute treatment of ST-segment elevation and Non-ST-segment elevation acute coronary syndrome in northwestern Switzerland. IJC Heart and Vasculature, 2021, 32, 100686.	0.6	7
77	Measurement of cardiac troponin for exclusion of myocardial infarction. Lancet, The, 2016, 387, 2288.	6.3	5
78	Effect of Acute Coronary Syndrome Probability on Diagnostic and Prognostic Performance of High-Sensitivity Cardiac Troponin. Clinical Chemistry, 2018, 64, 515-525.	1.5	5
79	Early kinetics of cardiac troponin in suspected acute myocardial infarction. Revista Espanola De Cardiologia (English Ed), 2021, 74, 502-509.	0.4	5
80	0/2 h-Algorithm for Rapid Triage of Suspected Myocardial Infarction Using a Novel High-Sensitivity Cardiac Troponin I Assay. Clinical Chemistry, 2022, 68, 303-312.	1.5	5
81	External validation of the clinical chemistry score. Clinical Biochemistry, 2021, 91, 16-25.	0.8	5
82	Incidence, clinical presentation, management, and outcome of acute pericarditis and myopericarditis. European Heart Journal: Acute Cardiovascular Care, 2022, 11, 137-147.	0.4	5
83	Incidence and Predictors of Cardiomyocyte Injury in Elective Coronary Angiography. American Journal of Medicine, 2016, 129, 537.e1-537.e8.	0.6	4
84	Automatically computed ECG algorithm for the quantification of myocardial scar and the prediction of mortality. Clinical Research in Cardiology, 2018, 107, 824-835.	1.5	4
85	Prospective Validation of the ESC 0/1h-Algorithm Using High-Sensitivity Cardiac Troponin I. American Journal of Cardiology, 2021, 158, 152-153.	0.7	4
86	A 0/1h-algorithm using cardiac myosin-binding protein C for early diagnosis of myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 2022, 11, 325-335.	0.4	4
87	Lower diagnostic accuracy of hs-cTnl in patients with prior coronary artery bypass grafting. International Journal of Cardiology, 2022, 354, 1-6.	0.8	4
88	Impact of Food and Drug Administration Regulatory Approach on the 0/2-Hour Algorithm for Rapid Triage of Suspected Myocardial Infarction. Circulation: Cardiovascular Quality and Outcomes, 2019, 12, e005188.	0.9	3
89	Incremental value of high-frequency QRS analysis for diagnosis and prognosis in suspected exercise-induced myocardial ischaemia. European Heart Journal: Acute Cardiovascular Care, 2020, 9, 836-847.	0.4	3
90	Diagnostic and prognostic value of ST-segment deviation scores in suspected acute myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 2020, 9, 857-868.	0.4	3

#	Article	IF	CITATIONS
91	External Validation and Extension of a Clinical Score for the Discrimination of Type 2 Myocardial Infarction. Journal of Clinical Medicine, 2021, 10, 1264.	1.0	3
92	Optimising the early rule-out and rule-in of myocardial infarction using biomarkers. Cardiovascular Medicine(Switzerland), 0, , .	0.1	3
93	Multimarker assessment for the prediction of renal function improvement after percutaneous revascularization for renal artery stenosis. Cardiovascular Diagnosis and Therapy, 2016, 6, 221-233.	0.7	2
94	Response by Kaier et al to Letter Regarding Article, "Direct Comparison of Cardiac Myosin-Binding Protein C With Cardiac Troponins for the Early Diagnosis of Acute Myocardial Infarctionâ€: Circulation, 2018, 138, 544-545.	1.6	2
95	Type 2 myocardial infarction. European Heart Journal, 2018, 39, 3825-3825.	1.0	2
96	Long-term beta-blocker treatment in stable patients after myocardial infarction: a potential impact due to changes in the diagnosis of myocardial infarction?. European Heart Journal, 2021, , .	1.0	2
97	External Validation of the No Objective Testing Rules in Acute Chest Pain. Journal of the American Heart Association, 2021, 10, e020031.	1.6	2
98	Association of Previous Myocardial Infarction and Time to Presentation With Suspected Acute Myocardial Infarction. Journal of the American Heart Association, 2021, 10, e017829.	1.6	2
99	Clinical presentation of patients with prior coronary artery bypass grafting and suspected acute myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 2021, 10, 746-755.	0.4	2
100	Soluble urokinase plasminogen activator receptor and functionally relevant coronary artery disease: a prospective cohort study. Biomarkers, 2022, 27, 278-285.	0.9	2
101	Factors associated with late presentation to the emergency department in patients complaining of chest pain. Patient Education and Counseling, 2022, 105, 695-706.	1.0	1
102	Utility of Echocardiography in Patients With Suspected Acute Myocardial Infarction and Left Bundleâ€Branch Block. Journal of the American Heart Association, 2021, 10, e021262.	1.6	1
103	Validation of the Novel European Society of Cardiology 0/2-hour Algorithm Using Hs-cTnT in the Early Diagnosis of Myocardial Infarction. American Journal of Cardiology, 2021, 154, 128-130.	0.7	1
104	Letter to the Editor: "High sensitive cardiac troponin T: Testing the test― International Journal of Cardiology, 2017, 234, 126.	0.8	0
105	Letter by Nestelberger et al Regarding Article, "Association Between Early Hyperoxia Exposure After Resuscitation from Cardiac Arrest and Neurological Disability: Prospective Multicenter Protocol-Directed Cohort Study― Circulation, 2018, 138, 2862-2863.	1.6	0
106	Prevalence and determinants of exerciseâ€induced left ventricular dysfunction in patients with coronary artery disease. European Journal of Clinical Investigation, 2019, 49, e13112.	1.7	0
107	CARDIAC ARREST AND CLINICAL OUTCOMES IN COVID 19 PATIENTS : A SINGLE CENTER EXPERIENCE. Journal of the American College of Cardiology, 2021, 77, 3180.	1.2	0
108	Biomarkers for Myocardial Infarction Type Discrimination—The Key Might Be in the Time Course of the Disease—Reply. JAMA Cardiology, 2021, , .	3.0	0