Vinod Saharan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9290295/publications.pdf Version: 2024-02-01

VINOD SAHADAN

#	Article	IF	CITATIONS
1	Nanofertilizer for Precision and Sustainable Agriculture: Current State and Future Perspectives. Journal of Agricultural and Food Chemistry, 2018, 66, 6487-6503.	2.4	416
2	Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. International Journal of Biological Macromolecules, 2013, 62, 677-683.	3.6	319
3	Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato. International Journal of Biological Macromolecules, 2015, 75, 346-353.	3.6	311
4	Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Scientific Reports, 2017, 7, 9754.	1.6	235
5	Cu-Chitosan Nanoparticle Mediated Sustainable Approach To Enhance Seedling Growth in Maize by Mobilizing Reserved Food. Journal of Agricultural and Food Chemistry, 2016, 64, 6148-6155.	2.4	192
6	Engineered chitosan based nanomaterials: Bioactivities, mechanisms and perspectives in plant protection and growth. International Journal of Biological Macromolecules, 2018, 113, 494-506.	3.6	167
7	Zinc encapsulated chitosan nanoparticle to promote maize crop yield. International Journal of Biological Macromolecules, 2019, 127, 126-135.	3.6	134
8	Thymol nanoemulsion exhibits potential antibacterial activity against bacterial pustule disease and growth promotory effect on soybean. Scientific Reports, 2018, 8, 6650.	1.6	115
9	Salicylic acid functionalized chitosan nanoparticle: A sustainable biostimulant for plant. International Journal of Biological Macromolecules, 2019, 123, 59-69.	3.6	106
10	Chitosan-silicon nanofertilizer to enhance plant growth and yield in maize (Zea mays L.). Plant Physiology and Biochemistry, 2021, 159, 53-66.	2.8	78
11	Chitosan nanofertilizer to foster source activity in maize. International Journal of Biological Macromolecules, 2020, 145, 226-234.	3.6	57
12	A High Level of Transgenic Viral Small RNA Is Associated with Broad Potyvirus Resistance in Cucurbits. Molecular Plant-Microbe Interactions, 2011, 24, 1220-1238.	1.4	56
13	Larvicidal activity of saponins from Balanites aegyptiaca callus against Aedes aegypti mosquito. Bioresource Technology, 2008, 99, 1165-1168.	4.8	55
14	MgO Nanoparticles Biosynthesis and Its Effect on Chlorophyll Contents in the Leaves of Clusterbean (<i>Cyamopsis tetragonoloba L.</i>). Advanced Science, Engineering and Medicine, 2014, 6, 538-545.	0.3	44
15	High frequency plant regeneration from desiccated calli of indica rice (Oryza Sativa l.). African Journal of Biotechnology, 2004, 3, 256-259.	0.3	41
16	Cu-chitosan nano-net improves keeping quality of tomato by modulating physio-biochemical responses. Scientific Reports, 2020, 10, 21914.	1.6	31
17	Chitosan nanomaterials: A prelim of next-generation fertilizers; existing and future prospects. Carbohydrate Polymers, 2022, 288, 119356.	5.1	29
18	Mechanism of nanotoxicity in Chlorella vulgaris exposed to zinc and iron oxide. Toxicology Reports, 2021, 8, 724-731.	1.6	25

VINOD SAHARAN

#	Article	IF	CITATIONS
19	Chitosan Based Nanomaterials in Plant Growth and Protection. SpringerBriefs in Plant Science, 2016, ,	0.4	23
20	Synthesis, Characterization, and Application of Chitosan Nanomaterials Loaded with Zinc and Copper for Plant Growth and Protection. , 2017, , 227-247.		23
21	Physio-biochemical responses of wheat plant towards salicylic acid-chitosan nanoparticles. Plant Physiology and Biochemistry, 2021, 162, 699-705.	2.8	21
22	Characterization Methods for Chitosan-Based Nanomaterials. Nanotechnology in the Life Sciences, 2019, , 103-116.	0.4	12
23	Antioxidant properties and free radicals scavenging activities of pomegranate (Punica granatum L.) peels: An in-vitro study. Biocatalysis and Agricultural Biotechnology, 2022, 42, 102368.	1.5	12
24	Inactivation thermodynamics and iso-kinetic profiling for evaluating operational suitability of milk clotting enzyme immobilized in composite polymer matrix. International Journal of Biological Macromolecules, 2016, 91, 317-328.	3.6	11
25	Zinc-functionalized thymol nanoemulsion for promoting soybean yield. Plant Physiology and Biochemistry, 2019, 145, 64-74.	2.8	11
26	Green synthesis and characterization of Mg0.93Na0.07O nanoparticles for antimicrobial activity, cytotoxicity and magnetic hyperthermia. Ceramics International, 2022, 48, 28355-28373.	2.3	11
27	Slow-release Zn application through Zn-chitosan nanoparticles in wheat to intensify source activity and sink strength. Plant Physiology and Biochemistry, 2021, 168, 272-281.	2.8	10
28	Effect of Laboratory Synthesized Cu-Chitosan Nanocomposites on Control of PFSR Disease of Maize caused by Fusarium verticillioids. International Journal of Current Microbiology and Applied Sciences, 2017, 6, 1656-1664.	0.0	9
29	Viral, Fungal and Bacterial Disease Resistance in Transgenic Plants. , 2016, , 627-656.		8
30	In vitro Propagation of Stevia rebaudiana (Bertoni): An Overview. International Journal of Current Microbiology and Applied Sciences, 2017, 6, 1010-1022.	0.0	7
31	Effect of gibberellic acid combined with saponin on shoot elongation of Asparagus officinalis. Biologia Plantarum, 2010, 54, 740-742.	1.9	6
32	Ashwagandha Root Extract Inhibits Acetylcholine Esterase, Protein Modification and Ameliorates H2O2-Induced Oxidative Stress in Rat Lymphocytes. Pharmacognosy Journal, 2017, 9, 302-309.	0.3	6
33	Thidiazuron Induced Direct Shoot Organogenesis in Stevia rebaudiana and Assessment of Clonal Fidelity of Regenerated Plants by RAPD and ISSR. International Journal of Current Microbiology and Applied Sciences, 2017, 6, 1690-1702.	0.0	6
34	Nano-strategies as Oral Drug Delivery Platforms for Treatment of Cancer: Challenges and Future Perspectives. AAPS PharmSciTech, 2022, 23, .	1.5	6
35	Protein landmarks for diversity assessment in wheat genotypes. African Journal of Biotechnology, 2013, 12, 4640-4647.	0.3	5
36	Extraction and Evaluation of Antioxidant and Free Radical Scavenging Potential Correlated with Biochemical Components of Red Rose Petals. Iranian Journal of Science and Technology, Transaction A: Science, 2018, 42, 1027-1036.	0.7	5

0

#	Article	IF	CITATIONS
37	Simultaneous Estimation of Twenty Eight Phenolic Compounds by a Novel and Expeditious Method Developed on Quaternary Ultra-Performance Liquid Chromatography System with a Photodiode Array Detector. Biomolecules, 2020, 10, 6.	1.8	5
38	Properties and Types of Chitosan-Based Nanomaterials. SpringerBriefs in Plant Science, 2016, , 23-32.	0.4	5
39	Assessment of Cu- Chitosan Nanoparticles for its Antibacterial Activity against Pseudomonas syringae pv. glycinea. International Journal of Current Microbiology and Applied Sciences, 2017, 6, 1335-1350.	0.0	5
40	Nano-materials for plant protection with special reference to Nano-chitosan. , 2014, , .		5
41	Glycyrrhiza glabra: An Insight to Nanomedicine. Journal of Nanoscience and Nanotechnology, 2021, 21, 3367-3378.	0.9	5
42	Current and Future Prospects of Chitosan-Based Nanomaterials in Plant Protection and Growth. SpringerBriefs in Plant Science, 2016, , 43-48.	0.4	4
43	Current Status of Bacillus thuringiensis: Insecticidal Crystal Proteins and Transgenic Crops. , 2016, , 657-698.		3
44	Biological Activities of Chitosan-Based Nanomaterials. SpringerBriefs in Plant Science, 2016, , 33-41.	0.4	2
45	Bioproduction of Diosgenin in Callus Cultures of <i>Balanites aegyptiaca</i> : Effect of Growth Regulators, Explants and Somatic Embryogenesis. Natural Product Communications, 2006, 1, 1934578X0600100.	0.2	1
46	Intervention of Fungi in Nano-Particle Technology and Applications. Fungal Biology, 2016, , 241-251.	0.3	1
47	Differential stem reserve food mobilization and sink strength in rice cultivars grown under submerged and aerobic conditions. Journal of Plant Biochemistry and Biotechnology, 0, , 1.	0.9	0
48	In-vitro applications of Nanomaterials for Plants. , 2013, , .		0
49	Synthesis of Chitosan-Based Nanomaterials. SpringerBriefs in Plant Science, 2016, , 5-21.	0.4	0
50	Nanomaterials Synthesis and Characterization. , 2019, , 1-10.		0
51	Thymol Based Nanoemulsions. , 2019, , 164-182.		0

52 Smart Nano-Chitosan for Fungal Disease Control. , 2020, , 23-47.