
Stefan Paulus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9289398/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Disease Incidence and Severity of Cercospora Leaf Spot in Sugar Beet Assessed by Multispectral Unmanned Aerial Images and Machine Learning. Plant Disease, 2023, 107, 188-200.	1.4	6
2	Digital plant pathology: a foundation and guide to modern agriculture. Journal of Plant Diseases and Protection, 2022, 129, 457-468.	2.9	8
3	A Hyperspectral Library of Foliar Diseases of Wheat. Phytopathology, 2021, 111, 1583-1593.	2.2	11
4	Spectral signatures in the UV range can be combined with secondary plant metabolites by deep learning to characterize barley–powdery mildew interaction. Plant Pathology, 2021, 70, 1572-1582.	2.4	16
5	Pheno4D: A spatio-temporal dataset of maize and tomato plant point clouds for phenotyping and advanced plant analysis. PLoS ONE, 2021, 16, e0256340.	2.5	39
6	Automatic UAV-based counting of seedlings in sugar-beet field and extension to maize and strawberry. Computers and Electronics in Agriculture, 2021, 191, 106493.	7.7	22
7	Unlocking the Potential of Hyperspectral Imaging of Plants for Precision Agriculture and Plant Phenotyping. , 2021, , .		1
8	Statistical shape analysis of tap roots: a methodological case study on laser scanned sugar beets. BMC Bioinformatics, 2020, 21, 335.	2.6	1
9	Prediction of the Kiwifruit Decline Syndrome in Diseased Orchards by Remote Sensing. Remote Sensing, 2020, 12, 2194.	4.0	16
10	Technical workflows for hyperspectral plant image assessment and processing on the greenhouse and laboratory scale. GigaScience, 2020, 9, .	6.4	33
11	Hyperspectral imaging of symptoms induced by Rhizoctonia solani in sugar beet: comparison of input data and different machine learning algorithms. Journal of Plant Diseases and Protection, 2020, 127, 441-451.	2.9	32
12	Geometrische und spektrale Erfassung von Bestandeseigenschaften zur PhÃ ¤ otypisierung von Zuckerrüben und Weizen. Zuckerindustrie, 2020, , 53-58.	0.1	0
13	Extending Hyperspectral Imaging for Plant Phenotyping to the UV-Range. Remote Sensing, 2019, 11, 1401.	4.0	33
14	Measuring crops in 3D: using geometry for plant phenotyping. Plant Methods, 2019, 15, 103.	4.3	111
15	Spatial Referencing of Hyperspectral Images for Tracing of Plant Disease Symptoms. Journal of Imaging, 2018, 4, 143.	3.0	23
16	Image processing for bioassays. , 2018, , 263-287.		0
17	Generation and application of hyperspectral 3D plant models: methods and challenges. Machine Vision and Applications, 2016, 27, 611-624.	2.7	72
18	The Impact of different Leaf Surface Tissues on active 3D Laser Triangulation Measurements. Photogrammetrie, Fernerkundung, Geoinformation, 2015, 2015, 437-447.	1.2	4

STEFAN PAULUS

#	Article	IF	CITATIONS
19	Accuracy Analysis of a Multi-View Stereo Approach for Phenotyping of Tomato Plants at the Organ Level. Sensors, 2015, 15, 9651-9665.	3.8	108
20	Calibration of hyperspectral close-range pushbroom cameras for plant phenotyping. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 106, 172-182.	11.1	60
21	Automated interpretation of 3D laserscanned point clouds for plant organ segmentation. BMC Bioinformatics, 2015, 16, 248.	2.6	66
22	Generation and Application of Hyperspectral 3D Plant Models. Lecture Notes in Computer Science, 2015, , 117-130.	1.3	7
23	Low-Cost 3D Systems: Suitable Tools for Plant Phenotyping. Sensors, 2014, 14, 3001-3018.	3.8	215
24	Limits of Active Laser Triangulation as an Instrument for High Precision Plant Imaging. Sensors, 2014, 14, 2489-2509.	3.8	27
25	Automated Analysis of Barley Organs Using 3D Laser Scanning: An Approach for High Throughput Phenotyping. Sensors, 2014, 14, 12670-12686.	3.8	86
26	A Multi-Resolution Approach for an Automated Fusion of Different Low-Cost 3D Sensors. Sensors, 2014, 14, 7563-7579.	3.8	12
27	Fusion of sensor data for the detection and differentiation of plant diseases in cucumber. Plant Pathology, 2014, 63, 1344-1356.	2.4	98
28	High-precision laser scanning system for capturing 3D plant architecture and analysing growth ofAcereal plants. Biosystems Engineering, 2014, 121, 1-11.	4.3	157
29	Surface feature based classification of plant organs from 3D laserscanned point clouds for plant phenotyping. BMC Bioinformatics, 2013, 14, 238.	2.6	145