Evan H. Campbell Grant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9288994/publications.pdf

Version: 2024-02-01

95 papers 4,983 citations

34 h-index 102487 66 g-index

99 all docs 99 docs citations 99 times ranked 5739 citing authors

#	Article	IF	CITATIONS
1	Identifying climateâ€resistant vernal pools: Hydrologic refugia for amphibian reproduction under droughts and climate change. Ecohydrology, 2022, 15, e2354.	2.4	10
2	Site―and individualâ€level contamination affects infection prevalence of an emerging infectious disease of amphibians. Environmental Toxicology and Chemistry, 2022, , .	4.3	1
3	Geographic variation and thermal plasticity shape salamander metabolic rates under current and future climates. Ecology and Evolution, 2022, 12, e8433.	1.9	1
4	Evaluating the effect of expert elicitation techniques on population status assessment in the face of large uncertainty. Journal of Environmental Management, 2022, 306, 114453.	7.8	4
5	Looking ahead, guided by the past: The role of U.S. national parks in amphibian research and conservation. Ecological Indicators, 2022, 136, 108631.	6.3	9
6	A comparison of monitoring designs to assess wildlife community parameters across spatial scales. Ecological Applications, 2022, , e2621.	3.8	2
7	Ignoring species availability biases occupancy estimates in singleâ€scale occupancy models. Methods in Ecology and Evolution, 2022, 13, 1790-1804.	5 . 2	1
8	Diverse aging rates in ectothermic tetrapods provide insights for the evolution of aging and longevity. Science, 2022, 376, 1459-1466.	12.6	34
9	Risks posed by SARSâ€CoVâ€2 to North American bats during winter fieldwork. Conservation Science and Practice, 2021, 3, e410.	2.0	12
10	Accommodating the role of site memory in dynamic species distribution models. Ecology, 2021, 102, e03315.	3.2	2
11	Rapid Assessment Indicates Contextâ€Dependent Mitigation for Amphibian Disease Risk. Wildlife Society Bulletin, 2021, 45, 290-299.	0.8	2
12	Experimental evaluation of spatial capture–recapture study design. Ecological Applications, 2021, 31, e02419.	3.8	9
13	Successful molecular detection studies require clear communication among diverse research partners. Frontiers in Ecology and the Environment, 2020, 18, 43-51.	4.0	17
14	A latent process model approach to improve the utility of indicator species. Oikos, 2020, 129, 1753-1762.	2.7	5
15	Moving from decision to action in conservation science. Biological Conservation, 2020, 249, 108698.	4.1	20
16	Principles and Mechanisms of Wildlife Population Persistence in the Face of Disease. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	16
17	Batrachochytrium salamandrivorans (Bsal) not detected in an intensive survey of wild North American amphibians. Scientific Reports, 2020, 10, 13012.	3.3	36
18	Identifying research needs to inform whiteâ€nose syndrome management decisions. Conservation Science and Practice, 2020, 2, e220.	2.0	21

#	Article	IF	CITATIONS
19	A National-Scale Assessment of Mercury Bioaccumulation in United States National Parks Using Dragonfly Larvae As Biosentinels through a Citizen-Science Framework. Environmental Science & Emp; Technology, 2020, 54, 8779-8790.	10.0	27
20	A hierarchical analysis of habitat area, connectivity, and quality on amphibian diversity across spatial scales. Landscape Ecology, 2020, 35, 529-544.	4.2	16
21	A Synthesis of Evidence of Drivers of Amphibian Declines. Herpetologica, 2020, 76, 101.	0.4	64
22	Factors Facilitating Co-occurrence at the Range Boundary of Shenandoah and Red-Backed Salamanders. Journal of Herpetology, 2020, 54, 125.	0.5	2
23	Different management strategies are optimal for combating disease in East Texas cave versus culvert hibernating bat populations. Conservation Science and Practice, 2019, 1, e106.	2.0	12
24	Proactive management of amphibians: Challenges and opportunities. Biological Conservation, 2019, 236, 404-410.	4.1	22
25	Identifying Common Decision Problem Elements for the Management of Emerging Fungal Diseases of Wildlife. Society and Natural Resources, 2019, 32, 1040-1055.	1.9	16
26	A three-pipe problem: dealing with complexity to halt amphibian declines. Biological Conservation, 2019, 236, 107-114.	4.1	22
27	Managing the trifecta of disease, climate, and contaminants: Searching for robust choices under multiple sources of uncertainty. Biological Conservation, 2019, 236, 153-161.	4.1	9
28	Overview of emerging amphibian pathogens and modeling advances for conservation-related decisions. Biological Conservation, 2019, 236, 474-483.	4.1	12
29	Northâ€facing slopes and elevation shape asymmetric genetic structure in the rangeâ€restricted salamander <i>Plethodon shenandoah</i> . Ecology and Evolution, 2019, 9, 5094-5105.	1.9	9
30	Diseaseâ€structured <i>N</i> â€mixture models: A practical guide to model disease dynamics using count data. Ecology and Evolution, 2019, 9, 899-909.	1.9	18
31	Functional variation at an expressed MHC class $\hat{\Pi}^2$ locus associates with Ranavirus infection intensity in larval anuran populations. Immunogenetics, 2019, 71, 335-346.	2.4	16
32	ESTIMATING OCCURRENCE, PREVALENCE, AND DETECTION OF AMPHIBIAN PATHOGENS: INSIGHTS FROM OCCUPANCY MODELS. Journal of Wildlife Diseases, 2019, 55, 563.	0.8	12
33	The contribution of roadâ€based citizen science to the conservation of pondâ€breeding amphibians. Journal of Applied Ecology, 2019, 56, 988-995.	4.0	21
34	Linking variability in climate to wetland habitat suitability: is it possible to forecast regional responses from simple climate measures?. Wetlands Ecology and Management, 2019, 27, 39-53.	1.5	10
35	Twoâ€species occupancy modelling accounting for species misidentification and nonâ€detection. Methods in Ecology and Evolution, 2018, 9, 1468-1477.	5.2	15
36	Decisionâ€making for mitigating wildlife diseases: From theory to practice for an emerging fungal pathogen of amphibians. Journal of Applied Ecology, 2018, 55, 1987-1996.	4.0	49

#	Article	IF	CITATIONS
37	Effects of host species and environment on the skin microbiome of Plethodontid salamanders. Journal of Animal Ecology, 2018, 87, 341-353.	2.8	120
38	Imperfect pathogen detection from nonâ€invasive skin swabs biases disease inference. Methods in Ecology and Evolution, 2018, 9, 380-389.	5.2	37
39	Range position and climate sensitivity: The structure of amongâ€population demographic responses to climatic variation. Global Change Biology, 2018, 24, 439-454.	9.5	43
40	Identifying management-relevant research priorities for responding to disease-associated amphibian declines. Global Ecology and Conservation, 2018, 16, e00441.	2.1	11
41	Ecoâ€evolutionary rescue promotes host–pathogen coexistence. Ecological Applications, 2018, 28, 1948-1962.	3.8	28
42	Evidence that climate sets the lower elevation range limit in a highâ€elevation endemic salamander. Ecology and Evolution, 2018, 8, 7553-7562.	1.9	20
43	Quantifying climate sensitivity and climate-driven change in North American amphibian communities. Nature Communications, 2018, 9, 3926.	12.8	79
44	Prepublication Communication of Research Results. EcoHealth, 2018, 15, 478-481.	2.0	8
45	Antifungal Bacteria on Woodland Salamander Skin Exhibit High Taxonomic Diversity and Geographic Variability. Applied and Environmental Microbiology, 2017, 83, .	3.1	36
46	Climate-Mediated Competition in a High-Elevation Salamander Community. Journal of Herpetology, 2017, 51, 190-196.	0.5	11
47	Using decision analysis to support proactive management of emerging infectious wildlife diseases. Frontiers in Ecology and the Environment, 2017, 15, 214-221.	4.0	69
48	Evolutionary dynamics of an expressed MHC class $\hat{\mathbb{Il}^2}$ locus in the Ranidae (Anura) uncovered by genome walking and high-throughput amplicon sequencing. Developmental and Comparative Immunology, 2017, 76, 177-188.	2.3	10
49	Integrating count and detection–nondetection data to model population dynamics. Ecology, 2017, 98, 1640-1650.	3.2	54
50	Detecting spatial ontogenetic niche shifts in complex dendritic ecological networks. Ecosphere, 2017, 8, e01662.	2.2	5
51	Design tradeoffs in longâ€ŧerm research for stream salamanders. Journal of Wildlife Management, 2017, 81, 1430-1438.	1.8	1
52	A Framework for Modeling Emerging Diseases to Inform Management. Emerging Infectious Diseases, 2017, 23, 1-6.	4.3	47
53	Evaluating withinâ€population variability in behavior and demography for the adaptive potential of a dispersalâ€limited species to climate change. Ecology and Evolution, 2016, 6, 8740-8755.	1.9	30
54	Using Spatial Capture–Recapture to Elucidate Population Processes and Space-Use in Herpetological Studies. Journal of Herpetology, 2016, 50, 570-581.	0.5	28

#	Article	IF	Citations
55	Uncertainty in biological monitoring: a framework for data collection and analysis to account for multiple sources of sampling bias. Methods in Ecology and Evolution, 2016, 7, 900-909.	5.2	53
56	Quantitative evidence for the effects of multiple drivers on continental-scale amphibian declines. Scientific Reports, 2016, 6, 25625.	3.3	196
57	Spatial variation in risk and consequence of <i>Batrachochytrium salamandrivorans</i> introduction in the USA. Royal Society Open Science, 2016, 3, 150616.	2.4	64
58	Spatial Capture–Recapture: A Promising Method for Analyzing Data Collected Using Artificial Cover Objects. Herpetologica, 2016, 72, 6.	0.4	37
59	Unifying research on the fragmentation of terrestrial and aquatic habitats: patches, connectivity and the matrix in riverscapes. Freshwater Biology, 2015, 60, 1487-1501.	2.4	62
60	Estimating occupancy dynamics for largeâ€scale monitoring networks: amphibian breeding occupancy across protected areas in the northeast United States. Ecology and Evolution, 2015, 5, 4735-4746.	1.9	28
61	Please don't misuse the museum: â€~declines' may be statistical. Global Change Biology, 2015, 21, 1018-1024	4.9.5	25
62	Performance of species occurrence estimators when basic assumptions are not met: a test using field data where true occupancy status is known. Methods in Ecology and Evolution, 2015, 6, 557-565.	5.2	57
63	Inferences about population dynamics from count data using multistate models: a comparison to capture–recapture approaches. Ecology and Evolution, 2014, 4, 417-426.	1.9	30
64	Modeling structured population dynamics using data from unmarked individuals. Ecology, 2014, 95, 22-29.	3.2	80
65	Potential reduction in terrestrial salamander ranges associated with Marcellus shale development. Biological Conservation, 2014, 180, 233-240.	4.1	10
66	Stream-Water Temperature Limits Occupancy of Salamanders in Mid-Atlantic Protected Areas. Journal of Herpetology, 2014, 48, 45-50.	0.5	12
67	Evaluating breeding and metamorph occupancy and vernal pool management effects for wood frogs using a hierarchical model. Journal of Applied Ecology, 2013, 50, 1116-1123.	4.0	33
68	A Strategy for Monitoring and Managing Declines in an Amphibian Community. Conservation Biology, 2013, 27, 1245-1253.	4.7	26
69	Presenceâ€only modelling using <scp>MAXENT</scp> : when can we trust the inferences?. Methods in Ecology and Evolution, 2013, 4, 236-243.	5.2	537
70	Relaxing the closure assumption in occupancy models: staggered arrival and departure times. Ecology, 2013, 94, 610-617.	3.2	56
71	Trends in Amphibian Occupancy in the United States. PLoS ONE, 2013, 8, e64347.	2.5	129
72	Estimating patterns and drivers of infection prevalence and intensity when detection is imperfect and sampling error occurs. Methods in Ecology and Evolution, 2012, 3, 850-859.	5.2	60

#	Article	IF	Citations
73	Experimental investigation of false positive errors in auditory species occurrence surveys. Ecological Applications, 2012, 22, 1665-1674.	3.8	78
74	Interbasin Water Transfer, Riverine Connectivity, and Spatial Controls on Fish Biodiversity. PLoS ONE, 2012, 7, e34170.	2.5	68
7 5	Evaluating the predictive abilities of community occupancy models using AUC while accounting for imperfect detection. Ecological Applications, 2012, 22, 1962-1972.	3.8	107
76	How restructuring river connectivity changes freshwater fish biodiversity and biogeography. Water Resources Research, 2011, 47, .	4.2	40
77	Structural complexity, movement bias, and metapopulation extinction risk in dendritic ecological networks. Journal of the North American Benthological Society, 2011, 30, 252-258.	3.1	67
78	Landscape matrix mediates occupancy dynamics of Neotropical avian insectivores., 2011, 21, 1837-1850.		56
79	Improving occupancy estimation when two types of observational error occur: non-detection and species misidentification. Ecology, 2011, 92, 1422-1428.	3.2	305
80	Metacommunity theory as a multispecies, multiscale framework for studying the influence of river network structure on riverine communities and ecosystems. Journal of the North American Benthological Society, 2011, 30, 310-327.	3.1	191
81	Organized Oral Session 16. Linking Data and Theory in Dendritic Ecological Networks: from Ecological Problems to Rapid Understanding. Bulletin of the Ecological Society of America, 2010, 91, 65-67.	0.2	О
82	Use of multiple dispersal pathways facilitates amphibian persistence in stream networks. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6936-6940.	7.1	149
83	Low Prevalence of Chytrid Fungus (Batrachochytrium dendrobatidis) in Amphibians of U.S. Headwater Streams. Journal of Herpetology, 2010, 44, 253-260.	0.5	28
84	Salamander occupancy in headwater stream networks. Freshwater Biology, 2009, 54, 1370-1378.	2.4	39
85	Monitoring multiple species: Estimating state variables and exploring the efficacy of a monitoring program. Biological Conservation, 2009, 142, 720-737.	4.1	36
86	Methods for estimating the amount of vernal pool habitat in the northeastern United States. Wetlands, 2008, 28, 585-593.	1.5	28
87	Multiâ€scale occupancy estimation and modelling using multiple detection methods. Journal of Applied Ecology, 2008, 45, 1321-1329.	4.0	306
88	Visual Implant Elastomer Mark Retention Through Metamorphosis in Amphibian Larvae. Journal of Wildlife Management, 2008, 72, 1247-1252.	1.8	50
89	Prevalence of the amphibian pathogen Batrachochytrium dendrobatidis in stream and wetland amphibians in Maryland, USA. Applied Herpetology, 2008, 5, 233-241.	0.5	14
90	Living in the branches: population dynamics and ecological processes in dendritic networks. Ecology Letters, 2007, 10, 165-175.	6.4	566

#	Article	IF	CITATIONS
91	Correlates of vernal pool occurrence in the Massachusetts, USA landscape. Wetlands, 2005, 25, 480-487.	1.5	24
92	Double-observer approach to estimating egg mass abundance of pool-breeding amphibians. Wetlands Ecology and Management, 2005, 13, 305-320.	1.5	43
93	Stream Salamander Species Richness and Abundance in Relation to Environmental Factors in Shenandoah National Park, Virginia. American Midland Naturalist, 2005, 153, 348-356.	0.4	13
94	Evaluating the risk of SARS oVâ€⊋ transmission to bats in the context of wildlife research, rehabilitation, and control. Wildlife Society Bulletin, 0, , .	0.8	1
95	Speciation with gene flow in a narrow endemic West Virginia cave salamander (Gyrinophilus) Tj ETQq1 1 0.784:	314 rgBT /	Overlock 10 Ti