List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9288819/publications.pdf Version: 2024-02-01

LEEN M'T HADT

#	Article	IF	CITATIONS
1	Rare and low-frequency coding variants alter human adult height. Nature, 2017, 542, 186-190.	13.7	544
2	Mitochondrial Diabetes: Molecular Mechanisms and Clinical Presentation. Diabetes, 2004, 53, S103-S109.	0.3	376
3	The power of genetic diversity in genome-wide association studies of lipids. Nature, 2021, 600, 675-679.	13.7	353
4	Impaired glucagon-like peptide-1-induced insulin secretion in carriers of transcription factor 7-like 2 (TCF7L2) gene polymorphisms. Diabetologia, 2007, 50, 2443-2450.	2.9	284
5	Association of a leucine(7)-to-proline(7) polymorphism in the signal peptide of neuropeptide Y with high serum cholesterol and LDL cholesterol levels. Nature Medicine, 1998, 4, 1434-1437.	15.2	214
6	Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nature Genetics, 2016, 48, 1055-1059.	9.4	165
7	Gene Variants in the Novel Type 2 Diabetes Loci <i>CDC123/CAMK1D</i> , <i>THADA</i> , <i>ADAMTS9</i> , <i>BCL11A</i> , and <i>MTNR1B</i> Affect Different Aspects of Pancreatic Î ² -Cell Function. Diabetes, 2010, 59, 293-301.	0.3	125
8	Molecular mechanisms of mitochondrial diabetes (MIDD). Annals of Medicine, 2005, 37, 213-221.	1.5	121
9	Exome sequencing-driven discovery of coding polymorphisms associated with common metabolic phenotypes. Diabetologia, 2013, 56, 298-310.	2.9	119
10	Variants of CDKAL1 and IGF2BP2 affect first-phase insulin secretion during hyperglycaemic clamps. Diabetologia, 2008, 51, 1659-1663.	2.9	116
11	A gene variant near ATM is significantly associated with metformin treatment response in type 2 diabetes: a replication and meta-analysis of five cohorts. Diabetologia, 2012, 55, 1971-1977.	2.9	107
12	A Genome-Wide Association Study of IVGTT-Based Measures of First-Phase Insulin Secretion Refines the Underlying Physiology of Type 2 Diabetes Variants. Diabetes, 2017, 66, 2296-2309.	0.3	102
13	The <i>CTRB1/2</i> Locus Affects Diabetes Susceptibility and Treatment via the Incretin Pathway. Diabetes, 2013, 62, 3275-3281.	0.3	96
14	Focal segmental glomerulosclerosis associated with mitochondrial cytopathy. Kidney International, 2000, 58, 1851-1858.	2.6	90
15	Heteroplasmy levels of a mitochondrial gene mutation associated with diabetes mellitus decrease in leucocyte DNA upon aging. , 1996, 7, 193-197.		87
16	Association of Polymorphism in the Receptor for Advanced Glycation End Products (RAGE) Gene with Circulating RAGE Levels. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 5174-5180.	1.8	86
17	Variants in the sulphonylurea receptor gene: association of the exon 16-3t variant with Type II diabetes mellitus in Dutch Caucasians. Diabetologia, 1999, 42, 617-620.	2.9	79
18	Variants in Pharmacokinetic Transporters and Glycemic Response to Metformin: A Metgen Metaâ€Analysis. Clinical Pharmacology and Therapeutics, 2017, 101, 763-772.	2.3	79

#	Article	lF	CITATIONS
19	Tumor necrosis factorâ€Î± plays an important role in restenosis development. FASEB Journal, 2005, 19, 1998-2004.	0.2	73
20	Search for Mitochondrial Dna Mutations in Migraine Subgroups. Cephalalgia, 1999, 19, 20-22.	1.8	71
21	Combined effects of single-nucleotide polymorphisms in GCK, GCKR, G6PC2 and MTNR1B on fasting plasma glucose and type 2 diabetes risk. Diabetologia, 2009, 52, 1866-1870.	2.9	71
22	Genetic Factors and Insulin Secretion: Gene Variants in the IGF Genes. Diabetes, 2004, 53, S26-S30.	0.3	68
23	Heritability estimates for 361 blood metabolites across 40 genome-wide association studies. Nature Communications, 2020, 11, 39.	5.8	64
24	The Hoorn Diabetes Care System (DCS) cohort. A prospective cohort of persons with type 2 diabetes treated in primary care in the Netherlands. BMJ Open, 2017, 7, e015599.	0.8	58
25	Integration of epidemiologic, pharmacologic, genetic and gut microbiome data in a drug–metabolite atlas. Nature Medicine, 2020, 26, 110-117.	15.2	54
26	Prevalence of maternally inherited diabetes and deafness in diabetic populations in the Netherlands. Diabetologia, 1994, 37, 1169-1170.	2.9	52
27	Preserved GLP-1 and exaggerated GIP secretion in type 2 diabetes and relationships with triglycerides and ALT. European Journal of Endocrinology, 2013, 169, 421-430.	1.9	52
28	Combined Risk Allele Score of Eight Type 2 Diabetes Genes Is Associated With Reduced First-Phase Glucose-Stimulated Insulin Secretion During Hyperglycemic Clamps. Diabetes, 2010, 59, 287-292.	0.3	51
29	Metabolic Age Based on the BBMRI-NL ¹ H-NMR Metabolomics Repository as Biomarker of Age-related Disease. Circulation Genomic and Precision Medicine, 2020, 13, 541-547.	1.6	50
30	Evidence that the Mitochondrial Leucyl tRNA Synthetase (LARS2) Gene Represents a Novel Type 2 Diabetes Susceptibility Gene. Diabetes, 2005, 54, 1892-1895.	0.3	48
31	A SNP panel for identification of DNA and RNA specimens. BMC Genomics, 2018, 19, 90.	1.2	47
32	Predicting and elucidating the etiology of fatty liver disease: A machine learning modeling and validation study in the IMI DIRECT cohorts. PLoS Medicine, 2020, 17, e1003149.	3.9	47
33	Variations in Insulin Secretion in Carriers of the E23K Variant in the KIR6.2 Subunit of the ATP-Sensitive K+ Channel in the Â-Cell. Diabetes, 2002, 51, 3135-3138.	0.3	45
34	Prevalence of Variants in Candidate Genes for Type 2 Diabetes Mellitus in The Netherlands: The Rotterdam Study and the Hoorn Study. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 1002-1006.	1.8	45
35	Prevalence of Variants in Candidate Genes for Type 2 Diabetes Mellitus in The Netherlands: The Rotterdam Study and the Hoorn Study1. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 1002-1006.	1.8	44
36	Replication and cross-validation of type 2 diabetes subtypes based on clinical variables: an IMI-RHAPSODY study. Diabetologia, 2021, 64, 1982-1989.	2.9	44

#	Article	IF	CITATIONS
37	Variation in the Plasma Membrane Monoamine Transporter (PMAT) (Encoded by <i>SLC29A4</i>) and Organic Cation Transporter 1 (OCT1) (Encoded by <i>SLC22A1</i>) and Gastrointestinal Intolerance to Metformin in Type 2 Diabetes: An IMI DIRECT Study. Diabetes Care, 2019, 42, 1027-1033.	4.3	43
38	Characterization of a novel mitochondrial DNA deletion in a patient with a variant of the Pearson marrow–pancreas syndrome. European Journal of Human Genetics, 2000, 8, 195-203.	1.4	40
39	Detection of Mitochondrial DNA Deletions in Human Skin Fibroblasts of Patients with Pearson's Syndrome by Two-color Fluorescence In Situ Hybridization. Journal of Histochemistry and Cytochemistry, 1997, 45, 55-61.	1.3	38
40	Common Variants in the Type 2 Diabetes KCNQ1 Gene Are Associated with Impairments in Insulin Secretion During Hyperglycaemic Glucose Clamp. PLoS ONE, 2012, 7, e32148.	1.1	37
41	Mitochondrial diabetes and its lessons for common Type 2 diabetes. Biochemical Society Transactions, 2006, 34, 819-823.	1.6	36
42	Reduced second phase insulin secretion in carriers of a sulphonylurea receptor gene variant associating with Type II diabetes mellitus. Diabetologia, 2000, 43, 515-519.	2.9	35
43	A Type 1 Diabetes Genetic Risk Score Can Identify Patients With GAD65 Autoantibody–Positive Type 2 Diabetes Who Rapidly Progress to Insulin Therapy. Diabetes Care, 2019, 42, 208-214.	4.3	35
44	Neuropeptide Y polymorphism significantly magnifies diabetes and cardiovascular disease risk in obesity: the Hoorn Study. European Journal of Clinical Nutrition, 2009, 63, 150-152.	1.3	33
45	<i>SULF2</i> strongly prediposes to fasting and postprandial triglycerides in patients with obesity and type 2 diabetes mellitus. Obesity, 2014, 22, 1309-1316.	1.5	33
46	The Gly482Ser Variant in the Peroxisome Proliferator-Activated Receptor Î ³ Coactivator-1 is not Associated with Diabetes-Related Traits in Non-Diabetic German and Dutch Populations. Experimental and Clinical Endocrinology and Diabetes, 2004, 112, 253-257.	0.6	32
47	Metabolite ratios as potential biomarkers for type 2 diabetes: a DIRECT study. Diabetologia, 2018, 61, 117-129.	2.9	32
48	Genetic influences on the insulin response of the beta cell to different secretagogues. Diabetologia, 2009, 52, 2570-2577.	2.9	31
49	Sex Steroids Affect Triglyceride Handling, Glucose-Dependent Insulinotropic Polypeptide, and Insulin Sensitivity. Diabetes Care, 2010, 33, 1831-1833.	4.3	31
50	<i>Bcl</i> I Glucocorticoid Receptor Polymorphism Is Associated With Greater Body Fatness: The Hoorn and CODAM Studies. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E595-E599.	1.8	31
51	Maternally Inherited Diabetes and Deafness: A Diabetic Subtype Associated with a Mutation in Mitochondrial DNA. Hormone and Metabolic Research, 1997, 29, 50-55.	0.7	29
52	New Insights in the Molecular Pathogenesis of the Maternally Inherited Diabetes and Deafness Syndrome. Endocrinology and Metabolism Clinics of North America, 2006, 35, 385-396.	1.2	29
53	Combined Gene and Protein Expression of Hormone-Sensitive Lipase and Adipose Triglyceride Lipase, Mitochondrial Content, and Adipocyte Size in Subcutaneous and Visceral Adipose Tissue of Morbidly Obese Men. Obesity Facts, 2011, 4, 407-416.	1.6	29
54	Low mitochondrial DNA content associates with familial longevity: the Leiden Longevity Study. Age, 2014, 36, 9629.	3.0	28

#	Article	IF	CITATIONS
55	The Role of Pharmacogenetics in Drug Disposition and Response of Oral Glucose-Lowering Drugs. Clinical Pharmacokinetics, 2013, 52, 833-854.	1.6	27
56	Variations in Insulin Secretion in Carriers of Gene Variants in IRS-1 and -2. Diabetes, 2002, 51, 884-887.	0.3	26
57	Distinct Molecular Signatures of Clinical Clusters in People With Type 2 Diabetes: An IMI-RHAPSODY Study. Diabetes, 2021, 70, 2683-2693.	0.3	26
58	Effects of induced hyperinsulinaemia with and without hyperglycaemia on measures of cardiac vagal control. Diabetologia, 2013, 56, 1436-1443.	2.9	25
59	Blood Metabolomic Measures Associate With Present and Future Glycemic Control in Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 4569-4579.	1.8	25
60	Cohort Profile: The Hoorn Studies. International Journal of Epidemiology, 2018, 47, 396-396j.	0.9	24
61	Plasma Metabolomics Identifies Markers of Impaired Renal Function: A Meta-analysis of 3089 Persons with Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 2275-2287.	1.8	24
62	Performance of prediction models for nephropathy in people with type 2 diabetes: systematic review and external validation study. BMJ, The, 2021, 374, n2134.	3.0	24
63	HLA-DQ polymorphism and degree of heteroplasmy of the A3243G mitochondrial DNA mutation in maternally inherited diabetes and deafness. Diabetic Medicine, 2000, 17, 841-847.	1.2	23
64	Visit-to-visit variability of glycemia and vascular complications: the Hoorn Diabetes Care System cohort. Cardiovascular Diabetology, 2019, 18, 170.	2.7	23
65	Genome-Wide Meta-analysis Identifies Genetic Variants Associated With Glycemic Response to Sulfonylureas. Diabetes Care, 2021, 44, 2673-2682.	4.3	23
66	The molecular basis and clinical characteristics of Maternally Inherited Diabetes and Deafness (MIDD), a recently recognized diabetic subtype. Experimental and Clinical Endocrinology and Diabetes, 1996, 104, 205-211.	0.6	22
67	The Impact of Genetic Variation in theG6PC2Gene on Insulin Secretion Depends on Glycemia. Journal of Clinical Endocrinology and Metabolism, 2010, 95, E479-E484.	1.8	22
68	An Insulin Receptor Mutant (Asp707→ Ala), Involved in Leprechaunism, Is Processed and Transported to the Cell Surface but Unable to Bind Insulin. Journal of Biological Chemistry, 1996, 271, 18719-18724.	1.6	21
69	The association between the â^374T/A polymorphism of the receptor for advanced glycation endproducts gene and blood pressure and arterial stiffness is modified by glucose metabolism status: the Hoorn and CoDAM studies. Journal of Hypertension, 2010, 28, 285-293.	0.3	21
70	The Association of Mitochondrial Content with Prevalent and Incident Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 1909-1915.	1.8	21
71	A Common Gene Variant in Glucokinase Regulatory Protein Interacts With Glucose Metabolism on Diabetic Dyslipidemia: the Combined CODAM and Hoorn Studies. Diabetes Care, 2016, 39, 1811-1817.	4.3	21
72	Lessons that can be learned from patients with diabetogenic mutations in mitochondrial DNA: implications for common type 2 diabetes. Current Opinion in Clinical Nutrition and Metabolic Care, 2007, 10, 693-697.	1.3	19

#	Article	IF	CITATIONS
73	A Case of a De Novo A3243G Mutation in Mitochondrial DNA in a Patient with Diabetes and Deafness. Archives of Physiology and Biochemistry, 2002, 110, 186-188.	1.0	18
74	The endothelial function biomarker soluble Eâ€selectin is associated with nonalcoholic fatty liver disease. Liver International, 2020, 40, 1079-1088.	1.9	17
75	Profiles of Glucose Metabolism in Different Prediabetes Phenotypes, Classified by Fasting Glycemia, 2-Hour OGTT, Glycated Hemoglobin, and 1-Hour OGTT: An IMI DIRECT Study. Diabetes, 2021, 70, 2092-2106.	0.3	17
76	Maternally inherited diabetes and deafness (MIDD): unusual occult exocrine pancreatic manifestation in an affected German family. Experimental and Clinical Endocrinology and Diabetes, 2000, 108, 81-85.	0.6	16
77	Processes Underlying Glycemic Deterioration in Type 2 Diabetes: An IMI DIRECT Study. Diabetes Care, 2021, 44, 511-518.	4.3	16
78	Altered beta-cell characteristics in impaired glucose tolerant carriers of a GAA trinucleotide repeat polymorphism in the frataxin gene. Diabetes, 1999, 48, 924-926.	0.3	15
79	Glucocorticoid receptor gene polymorphisms are associated with reduced firstâ€phase glucoseâ€stimulated insulin secretion and disposition index in women, but not in men. Diabetic Medicine, 2012, 29, e211-6.	1.2	15
80	Bcll glucocorticoid receptor polymorphism in relation to cardiovascular variables: the Hoorn and CODAM studies. European Journal of Endocrinology, 2015, 173, 455-464.	1.9	15
81	Lack of association between gene variants in the ALMS1 gene and Type 2 diabetes mellitus. Diabetologia, 2003, 46, 1023-1024.	2.9	14
82	Inflammation and apoptosis genes and the risk of restenosis after percutaneous coronary intervention. Pharmacogenetics and Genomics, 2006, 16, 747-754.	0.7	14
83	Genetic association analysis of 13 nuclear-encoded mitochondrial candidate genes with type II diabetes mellitus: the DAMAGE study. European Journal of Human Genetics, 2009, 17, 1056-1062.	1.4	14
84	Plasma protein <i>N-</i> glycosylation is associated with cardiovascular disease, nephropathy, and retinopathy in type 2 diabetes. BMJ Open Diabetes Research and Care, 2021, 9, e002345.	1.2	14
85	<i>NACHO:</i> an R package for quality control of NanoString nCounter data. Bioinformatics, 2020, 36, 970-971.	1.8	13
86	Sexâ€specific effects of naturally occurring variants in the dopamine receptor D2 locus on insulin secretion and Type 2 diabetes susceptibility. Diabetic Medicine, 2014, 31, 1001-1008.	1.2	12
87	The heritability of beta cell function parameters in a mixed meal test design. Diabetologia, 2011, 54, 1043-1051.	2.9	11
88	Genetic association analysis of LARS2 with type 2 diabetes. Diabetologia, 2010, 53, 103-110.	2.9	10
89	HbA1c is associated with altered expression in blood of cell cycle- and immune response-related genes. Diabetologia, 2018, 61, 138-146.	2.9	10
90	Long RNA Sequencing and Ribosome Profiling of Inflamed β-Cells Reveal an Extensive Translatome Landscape. Diabetes, 2021, 70, 2299-2312.	0.3	10

#	Article	IF	CITATIONS
91	Integrative network analysis highlights biological processes underlying GLP-1 stimulated insulin secretion: A DIRECT study. PLoS ONE, 2018, 13, e0189886.	1.1	9
92	Novel Mitochondrial DNA Length Variants and Genetic Instability in a Family with Diabetes and Deafness. Experimental and Clinical Endocrinology and Diabetes, 2006, 114, 168-174.	0.6	8
93	Metformin and statin use associate with plasma protein <i>N</i> -glycosylation in people with type 2 diabetes. BMJ Open Diabetes Research and Care, 2020, 8, e001230.	1.2	8
94	The HADHSC Gene Encoding Short-Chain L-3-Hydroxyacyl-CoA Dehydrogenase (SCHAD) and Type 2 Diabetes Susceptibility: The DAMAGE Study. Diabetes, 2006, 55, 3193-3196.	0.3	7
95	Post-load glucose subgroups and associated metabolic traits in individuals with type 2 diabetes: An IMI-DIRECT study. PLoS ONE, 2020, 15, e0242360.	1.1	7
96	Genetics and Not Shared Environment Explains Familial Resemblance in Adult Metabolomics Data. Twin Research and Human Genetics, 2020, 23, 145-155.	0.3	6
97	Absence of the Cly40-Ser Mutation in the Clucagon Receptor Among Diabetic Patients in the Netherlands. Diabetes Care, 1995, 18, 1400-1401.	4.3	6
98	Progressive Sensorineural Hearing Impairment in Maternally Inherited Diabetes Mellitus and Deafness (MIDD). Otology and Neurotology, 2006, 27, 802-808.	0.7	5
99	Discovery of predictors of sudden cardiac arrest in diabetes: rationale and outline of the RESCUED (REcognition of Sudden Cardiac arrest vUlnErability in Diabetes) project. Open Heart, 2021, 8, e001554.	0.9	5
100	Search for mitochondrial DNA mutations in migraine subgroups. Cephalalgia, 1999, 19, 20-22.	1.8	4
101	CONQUER: an interactive toolbox to understand functional consequences of GWAS hits. NAR Genomics and Bioinformatics, 2020, 2, Iqaa085.	1.5	3
102	Heteroplasmy levels of a mitochondrial gene mutation associated with diabetes mellitus decrease in leucocyte DNA upon aging. Human Mutation, 1996, 7, 193-197.	1.1	3
103	<i>Bcl</i> I Glucocorticoid Receptor Polymorphism in Relation to Arterial Stiffening and Cardiac Structure and Function: The Hoorn and CODAM Studies. American Journal of Hypertension, 2017, 30, 286-294.	1.0	2
104	Clinical profiles of postâ€load glucose subgroups and their association with glycaemic traits over time: An IMIâ€DIRECT study. Diabetic Medicine, 2021, 38, e14428.	1.2	2
105	Performance of Risk Assessment Models for Prevalent or Undiagnosed Type 2 Diabetes Mellitus in a Multi-Ethnic Population—The Helius Study. Global Heart, 2021, 16, 13.	0.9	2
106	PS5 - 25. Pharmacogenetics in type 2 diabetes: Genetic variation influences metformin treatment response. Nederlands Tijdschrift Voor Diabetologie, 2011, 9, 107-108.	0.0	0
107	Genome-Wide Meta-Analysis Identifies the Organic Anion-Transporting Polypeptide Gene <i>SLCO1B1</i> and Statins as Modifiers of Glycemic Response to Sulfonylureas. SSRN Electronic Journal, 0, , .	0.4	0
108	Response to Comment on Dawed et al. Genome-Wide Meta-analysis Identifies Genetic Variants Associated With Glycemic Response to Sulfonylureas. Diabetes Care 2021;44:2673–2682. Diabetes Care, 2022, 45, e82-e83.	4.3	0

#	Article	IF	CITATIONS
109	Title is missing!. , 2020, 17, e1003149.		0
110	Title is missing!. , 2020, 17, e1003149.		0
111	Title is missing!. , 2020, 17, e1003149.		0
112	Title is missing!. , 2020, 17, e1003149.		0
113	Title is missing!. , 2020, 17, e1003149.		0
114	Diabetes risk loci-associated pathways are shared across metabolic tissues. BMC Genomics, 2022, 23, 368.	1.2	0